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Abstract 

This study explores the data-driven properties of the empirical mode decomposition (EMD) 

for signal denoising. EMD is an acknowledged procedure which has been widely used for 

non-stationary and nonlinear signal processing. The main idea of the EMD method is to 

decompose the analyzed signal into components without using expansion functions. This is 

a signal dependent representation and provides intrinsic mode functions (IMFs) as 

components. These are analyzed, through their Hurst exponent and if they are found being 

noisy components they will be partially or integrally eliminated. This study presents an EMD 

decomposition-based filtering procedure applied to test signals, the results are evaluated 

through signal to noise ratio (SNR) and mean square error (MSE). The obtained results are 

compared with discrete wavelet transform based filtering results. 
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1. Introduction 

Denoising could be the most common signal 

processing procedure in order to obtain a cleaner 

signal. Through denoising it is possible to remove 

unwanted components, usually noises and keeping or 

strengthen others. The most accepted denoising 

procedures use transforms in time, frequency or time-

frequency domains. All of these make use of expansion 

functions which more or less expect priori observation-

based information about the signals to process [3]. 

An adaptive procedure as the Empirical Mode 

Decomposition (EMD) which is strongly dependent on 

the analyzing signal could be an alternative solution. 

The EMD was proposed as the first part of the Hilbert–

Huang transform (HHT) which decomposes a signal in 

the time domain through an iterative sifting process 

[1]. The results are a finite number of amplitude and 

frequency modulated zero-mean oscillations called 

intrinsic mode functions (IMFs). In contrast to 

transform based decomposition, IMFs are expressed as 

the signal dependent semi-orthogonal basis functions. 

Briefly the method detects local maxima and minima 

in a signal, interpolates these values in upper and lower 

envelopes and removes their instantaneous mean value 

[2], [5]. This is made repetitively until the IMFs reach 

a stoppage criterion, usually based on the standard 

deviation of two consecutive IMFs. This paper 

presents an EMD based denoising procedure using test 

signals and different types and values of noises[7]. 

The paper is formed as follows. The second section 

introduces the theoretical knowledge about the 

decomposition algorithm. The third describes the de-

noising algorithm based on IMFs thresholding and 

selective reconstruction of the signal and the different 

types of noises. The experimental results are presented 

in the fourth section. Finally, come the conclusions and 

valuable new directions for further work. 

 

2. Empirical Mode Decomposition 

The EMD decomposes a multi-component signal 

into its mono-component constituents. The algorithm 

is based on obtaining interpolated envelope (covering) 

curves defined by local maxima and minima of a 

discrete signal and iterative subtraction of the mean of 

these curves from the initial signal. For these is 

obvious to identify all local minima and maxima in the 

signal [1]. The upper and lower covering curves are 

then obtained by interpolating these extrema through 

(usually) cubic spline functions. Sequentially 

removing the instantaneous mean value of these two 
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envelopes leads to obtain IMFs. The maxima and 

minima of the next level depend on the subtraction of 

the previous level. So, EMD can be done only 

sequentially. The IMFs are obtained through this 

procedure named sifting process. Sifting is a wide used 

expression in signal processing related to separating 

out components of a signal one at a time. It is often 

used related to signal decomposition since this process 

is very similar. The IMFs are not set analytically and 

are instead determined only by the analyzed sequence, 

meaning that the basis functions are in this case 

derived adaptively directly from input data [4]. An 

IMF resulting from the sifting process must satisfy two 

basic requirements. At first, the number of extrema and 

the number of zero-crossings must either be equal or 

differ at most by one and the second, at any point of an 

IMF the mean value of the envelope defined by the 

local maxima and the envelope defined by the local 

minima shall be zero [9]. For a given discrete signal 

the first prototype component is computed by 

extracting the mean value from the signal. In the 

second sifting process, the first prototype is treated as 

the data, and the mean extraction is repeated. The next 

IMF can be obtained by subtracting the previously 

extracted IMF from the original signal and repeating 

the already mentioned procedure until all IMFs are 

extracted. The sifting process usually stops when the 

residue satisfies a stoppage criterion [6]. 

Decomposition results in a family of frequency 

ordered IMF components. Each successive IMF 

contains lower frequency oscillations than the 

preceding one. The fact is that an IMF has an 

oscillatory behavior, having variable amplitude and 

frequency along the time axis. These components are 

synthetic; their extraction helps to better understand 

the structure of the signal and allows its analysis. 

The EMD method, as well as the Hilbert–Huang 

transform, is intended for analyzing non-stationary and 

nonlinear data, but it can be successfully applied to 

linear and stationary sequences. 

 

3. The denoising procedure 

In this paper, the proposed algorithm and the 

computational procedures are carried out in 

MATLAB. The used ECG signals are taken from 

specific toolboxes. At first, the EMD procedure is 

applied to the input noisy signal 𝑥𝑛in order to obtain 

the set of IMFs. For every IMF the Hurst exponent is 

estimated, if this is above then a previewed threshold 

it will be taken as noise t and eliminated. A Hurst 

exponent value between 0 and 0.5 is indicative of anti-

persistent behavior and the closer the value is to 0, the 

stronger is the tendency for the time series to revert to 

its long-term means value [14]. Denoising means a 

thresholding process for each IMF and a summing of 

them. [8].Usually the noisy signal 𝑥𝑛 is assumed to be 

the superposition of a clean signal 𝑥 and a noise 𝑛 

 𝑥𝑛 = 𝑥 + 𝑛 (1) 

This is the simplest approach; usually the signal 

can be correlated with several types of noises. 

 
 

Fig. 1: The proposed procedure 

 

In order to evaluate the denoising, different types 

of noise are used, gaussian white noise, red, pink, and 

blue noise. Every type of these has specific 

characteristics as white noise has equal power 

throughout all frequencies, while the power in pink 

noise decreases as the frequency increases [].Blue 

noise increases in volume with increasing frequencies, 

the spectrum of red noise is strongly weighted toward 

low frequencies, dropping off like 1/f2[12]. 

The filtering procedure should eliminate the noise 

and preserve the clear signal. In order to evaluate the 

filtering results added Gaussian white noise, pink, was 

used. The level of added noise was varied. The 

followed parameters are the obtained signal to noise 

ratio (SNR) and the mean square error (MSE). The 

power of signal and noise are defined as 

 PS =
1

N
∑ xi

2,N
i=1 Pn =

1

N
∑ ni

2N
i=1  (2) 

The initial signal to noise ratio 𝑆𝑁𝑅𝑖 (with known 

noise) and the obtained signal to noise ratio 𝑆𝑁𝑅 

(where 𝑥𝑓 is the filtered signal) are 

 𝑆𝑁𝑅𝑖 = 10𝑙𝑔(𝑃𝑆 𝑃𝑛⁄ ) (3) 

𝑃𝑆𝑓 =
1

𝑁
∑ (𝑥𝑓𝑖)

2
,𝑁

𝑖=1 𝑃𝑛𝑒 =
1

𝑁
∑ (𝑥𝑛𝑖 − 𝑥𝑓𝑖)

2𝑁
𝑖=1  (4) 

 𝑆𝑁𝑅 = 10𝑙𝑔 (
𝑃𝑆𝑓

𝑃𝑛𝑒
) (5) 

Where 𝑁 is the length of the signal. 

 

4. Simulation results 

This study uses test signals from MATLAB 

toolbox, added noise are of different types (white noise 

with normal distribution, pink, red and blue) and 

values. These are representedtogether with their 

spectra on Fig. 2. The noise was added in different 

quantities and the mentioned parameters were 

computed in every case [10]. 

 𝑥𝑛 = 𝑥 + 𝑘 ∙ 𝑛 (6) 

The coefficient k takes different values in order to 

produce different levels of added noise. The main 

parameters are mean squared error (MSE), mean 

absolute error (MAE), signal to noise ratio (SNR). The 

thresholding procedure was performed starting from 

the fact that the noise is located in lower order IMFs, 

all IMFs were evaluated through their Hurst exponent. 

The Hurst exponent of a data set provides a measure of 

whether the data is a pure white noise random process 
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or has underlying trends. If the Hurst exponent is less 

than 0.5 then it can be considered as a noisy component 

and can be eliminated from the signal.  

 
Fig. 2: The used colored noises and their spectrum 

 

Both test signals (’testi’, ‘leleccum’) and their 

noisy versions are presented on Fig. 3. The two signals 

have different lengths 

 
Fig. 3: The original and the noise corrupted data (‘testi’, 

‘leleccum’) 

 

The test signals and the applied noises are normed 

before denoising procedure in order to be compared. 

The EMD based denoising effect on the second signal 

can be seen on Fig. 4. The level of applied noise is 10% 

from signals value. 

 

 
Fig. 4: The noisy and the denoised signal (‘leleccum’) 

 
Different levels of Gaussian white noise were 

added. Parameter 𝑘 indicates the percentile level of 

noise, which is presented also in form of initial signal 

to noise ratio, following the expression (7). 

𝑆𝑁𝑅𝑖 = 10𝑙𝑔(𝑃𝑆 𝑃𝑛⁄ ) = 10𝑙𝑔 (
1

𝑘
)
2

= −20𝑙𝑔𝑘 (7) 

Table 1: Parameters for different levels of noises 

k 0.1 0.12 0.14 0.16 0.18 0.2 

SNRi 20 18.4163 17.0774 15.9176 14.8945 13.9794 

MSE 0.00114 0.00119 0.00141 0.00209 0.00287 0.00332 

MAE 0.02723 0.02753 0.02990 0.03655 0.04294 0.04582 

SNR 25.6899 25.5058 24.7843 23.0738 21.6957 21.1177 

The measured mean squared erroris presented on 

Fig. 5 for different values of k. of added gaussian white 

noise 

 
Fig. 5: MSE obtained for various gaussian white noise 

levels 

 

The signal to noise ratio (SNR) obtained in case of 

added gaussian white noise is presented on Fig. 6 

 
Fig. 6: SNR obtained for various gaussian white noise 

levels 

 

 To evaluate the denoising results, this study used 

Gaussian white(g), pink(p), red(r) and blue(b) noises. 

The SNR parameters obtained for different types of 

noise of the same level are presented in Table 2 and 

Fig.7. 

 

Table2 

k 0.1 0.12 0.14 0.16 0.18 0.2

white G 25.6899 25.5059 24.7843 23.0738 21.6958 21.1177

blue 8.01543 8.62235 7.85659 7.42176 8.81133 7.99612

pink 12.3504 10.7151 12.8325 10.9202 11.4723 10.8602

re d 23.0794 28.3939 23.8352 27.0272 27.3685 19.8614  
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 In order to evaluate the proposed method, a 

discrete wavelet transform (DWT) based denoising 

was performed, using a third level decomposition, a 

‘db4’ type wavelet function and soft thresholding [8]. 

This means that the signal is decomposed with a basis 

function into time-frequency components which are 

selectively thresholded and resumed again, obtaining 

the filtered signal. 

 
Fig. 7: SNR obtained for various noises with the same level 

 

The obtained results are presented on Fig.8, where 

the obtained SNRs are presented. 

 
Fig.8. SNR obtained for various noises with the same level 

 

 The results show a slightly better signal to noise 

ratio in the case of wavelet filtering but the used 

computational resources are huge compared to the 

EMD method. 

 

 5. Conclusions  

This study shows that EMD based filtering 

procedure can perform denoising if the noise is 

supposed to be an additive signal. The obtained 

simulation results show that EMD based denoising can 

offer in certain conditions good, even better results 

than othermore expensive procedures. A criterion for 

an efficient thresholding of relevant IMFs could 

improve the denoising results  
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