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Abstract
In this paper, we study on normalθcomplexθcontactθmetricθmanifold admitting a semi symmetric metric connection. We
obtain curvature properties of a normalθcomplexθ contact metric manifold admitting a semi symmetric metric connection.
We also prove that this type of manifold is not conformal flat, concircular flat, and conharmonic flat. Finally, we examine
complex Heisenberg group with the semi symmetric metric connection.
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1 Introduction

The Riemannian geometry of complex contact manifolds has been studied since 1970s. In the early 1980s
some important developments were presented by Ishihara-Konishi. They obtained the normality conditions and
curvature properties [9, 10]. Due to some important features that are different from real contact geometry, in
2000s some researchers have taken their attention to this notion. Blair, Korkmaz and Foreman gave results for
the Riemannian geometry of complex contact manifolds [2,4,5,8,12] . Also two of presented authors examined
curvature and symmetry notions [15, 16].

In Riemannian geometry the notion of connection gives information about transporting data along a curve
or family of curves in a parallel and consistent manner. Affine connections and Levi-Civita connections are
commonly used for to understand the geometry of manifolds. Levi-Civita connection is symmetric, i.e, has
zero torsion, and also it is metric, i.e, the covariant derivation of metric vanish. In recent years some different
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connections were defined and worked on manifolds. One of them is semi symmetric metric connection. This
type of connection were defined by Hayden and this was developed by Yano [13].

Blair and Molina [4], proved that a normalθcomplexθcontactθmetricθmanifold could not be conformal flat.
Also Turgut Vanlı and Unal, prove that, concircular, quasi-conformal, and conharmonic curvatureθ tensorsθ do
not vanishθon any normalθcomplexθcontact metric manifold [16].

In this paper, we study on normalθcomplexθcontactθmetricθmanifold with a semi symmetric metric
connection. Firstly, we give some basic properties. Our starting point was the non-vanishing of spe-
cial curvature tensors (conformal, concircular, quasi-conformal etc.) on normalθcomplexθcontact man-
ifolds with canonic connection. We research the flatness conditions of these special tensors on nor-
malθcomplexθcontactθ metric manifold with a semi symmetric metric connection. We proved that a nor-
malθcomplexθcontactθmetricθmanifold admitting the semi symmetric metric connection is not conformal flat,
concircular flat and conharmonic flat. Finally we apply our results to complex-Heisenberg group as a well-
known example of normalθcomplexθcontactθmetricθmanifolds.

2 Preliminaries

In 1959 Kobyasahi [11] gave the definition of a complex contact manifold. A complex contact manifold is
a (2m+1)−complex dimensional complex manifold with a holomorphic 1−form ω such that ω ∧ (dω)m 6= 0.
ω is not globally defined. For an open covering by coordinate neighborhoods A ={O ,O ′, ...} of M, there is a
non-vanishing λ : O ∩O ′→ C\{0} such that ω ′ = λω . We have a subbbundle H = kerω which is called the
horizontal subbundle.

Complexθalmostθcontact structure on a complexθcontactθmanifold were given by Ishihara-Konishi [10].
For a Hermitian metric g and complex structure J, we have 1-forms u and v = u ◦ J, with dual vector fields U
and V =−JU , and (1,1) tensor fields G and H = GJ such that

H2 = G2 =−I +u⊗U + v⊗V

GJ =−JG, GU = 0, g(X ,GY ) =−g(GX ,Y ),

g(U,X) = u(X), g(U,U) = 1.

Also there are functions a and b on O ∩O ′ 6= /0 such that

u′ = au−bv, v′ = bu+av,

a2 +b2 = 1,

G′ = aG−bH, H ′ = bG+aH.

With these properties M is said to be a complex almost contact metric manifold.
On the other hand the verical subbundle of T M is spanned by U,V i.e V = sp{U,V}. Thus we have

T M ∼= H ⊕V . Also 2−forms du,dv are defined as follow;

du(Z,T ) = g(Z,GT )+(σ ∧ v)(Z,T ),

dv(Z,T ) = g(Z,HT )− (σ ∧u)(Z,T )

where σ(Z) = g(∇ZU,V ) [10]. σ is called IK-connection [7]. Also if complex contact 1-form is globally defined
then σ vanishes.

There are two normality notions for a complex almost contact metric manifold in literature. The fundamental
difference between of these normality notions is to be a Kähler manifold. IK-tensors are given as below;

S (Z,T ) = [G,G](Z,T )+2g(Z,GT )U−2g(Z,HT )V
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+2(v(T )HZ− v(Z)HT )+σ(GT )HZ

−σ(GZ)HT +σ(Z)GHT −σ(T )GHZ,

T (Z,T ) = [H,H](Z,T )−2g(Z,GT )U +2g(Z,HT )V

+2(u(T )GZ−u(Z)GT )+σ(HZ)GT

−σ(HT )GZ +σ(Z)GHZ−σ(T )GHZ

where [G,G] and [H,H] denote the Nijenhuis tensors of G and H, respectively [9, 10]. If these two tensors
vanishes identically then M is called IK-normal and an IK-Normal complex contact metric manifold is Kähler.
But this definition does not contain normality of complex Heisenberg group. So Korkmaz [12] presented a weak
definition for normality and the complex Heisenberg group is normal in this sense.

Definition 1. [12] A complex contact metric manifold M is called normal if it satisfied the following conditions:

S |H ∧H = S |H ∧V = T |H ∧H = T |H ∧V = 0.

As similar to φ−sectional curvature in real contact geometry, in complex contact geometry the definition of
G H −sectional curvature were given.

Definition 2. [12] Let M be a normalθcomplexθcontactθmetricθmanifold. Z be an unit horizontal vector field
on M and a2 +b2 = 1. A G H −section is a plane which is spanned by Z and T = aGZ+bHZ and the sectional
curvature of this plane is called G H −sectional curvature .

G H −sectional curvature is denoted by G H a,b and we assume that it does not depend on the choice of a
and b. So we will use G H (Z) notation. Also Korkmaz [12] proved that

K(Z,JZ) = G H (Z)+3.

Some basic curvature properties of a normalθcomplexθcontactθmetricθmanifold can be seen in [7, 12, 15,
16]. On a normalθcomplexθcontactθmetric manifold, for Z and T horizontalθvectorθfields we have

R(U,V,V,U) = R(V,U,U,V ) =−2dσ(U,V )

R(Z,Uτ)U = Z, R(Z,V )V = Z

R(Z,T )U = 2(g(Z,JT τ)+dσ(Z,T ))V

R(Z,T )V =−2(g(Z,JT )+dσ(Z,T ))U

R(τZ,U)V = σ(U)GZ +(∇U H)Z− JZ

R(Z,V )U =−σ(V τ)HZ +(∇V G)Z + JZ

R(Z,U)T =−g(Z,T )U−g(JZ,T )V τ +dσ(T,Z)V

R(Z,V )T =−g(Z,T )V +g(JZ,T )τU−dσ(T,Z)U

R(U,V )τZ = JZ .

Details about complex contact geometry can be find in [3], page 233 . Onθ theθotherθhand for Z and
T horizontal vector fields Ricci tensor of a (2m+1)−complex dimensional normalθcomplexθ contact metric
manifold has the following properties

Ric(τGZ,GT ) = Ric(HZ,HT ) = Ric(Z,T )

Ric(τU,U) = Ric(τV,V ) = 4m−2dσ(τU,V ) and Ric(τU,V ) = 0

Ric(Z,τU) = Ric(Z,τV ) = 0

[15].
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3 Normal Complex Contact Metric Manifolds Admitting a Semi Symmetric Metric Connection

In this section the definition of a semi symmetric metric connection are given for normalθcomplexθ contact
metricθmanifolds. Some basic equalities are computed via this connection.
Let M be normalθcomplexθcontactθmetricθmanifold and define ∇ : χ(M)×χ(M)→ χ(M) as follow

∇ZT = ∇ZT +u(T )Z−g(Z,T )U + v(T )Z−g(Z,T )V (1)

where ∇ is Levi-Cevita connection on M, U,V are the structure vector fields and u,v are dual 1−forms. It can
be easily showed that ∇ is an linear connection. Also we could write the torsion tensor field of ∇ as follow;

T(Z,T ) = u(T )Z + v(T )Z−u(Z)T − v(Z)T.

As we see ∇ is not torsion free and it is also a semi symmetric metric connection. In addition we have Lie
bracket operator [Z,T ] = [Z,T ].
For brevity we use a abbreviation "NCCMM" for normalθcomplexθcontactθmetricθmanifold , and (M,∇) for
a normalθcomplexθcontactθmetricθmanifold M admitting a semi symmetric metric connection ∇.

Lemma 1. Onθ(M,∇)θweθhave

(∇TU) = T −GT +σ(T )V −u(T )[U +V ] (2)

(∇TV ) = T +HT −σ(T )U− v(T )[U +V ] (3)

for an arbitrary vector field T .

Proof. Let T be an arbitrary vector field on (M,∇). From (1) we have

∇TU = ∇TU +u(U)T −g(T,U)U + v(U)T −g(T,U)V

=−GT +σ(T )V +T −u(T )U−u(T )V

=−GT +T +σ(T )V −u(T )[U +V ].

Similarly we get

∇TV = ∇TV +u(V )T −g(T,V )U + v(V )T −g(T,V )V

= HT −σ(T )U +T − v(T )U− v(T )V

= HT +T −σ(T )U− v(T )[U +V ].

Corollary 1. On (M,∇) we have

∇UU = (1+σ(U))V, ∇VV =−(1+σ(V ))U

∇UV = (1−σ(U))U, ∇VU = (1+σ(V ))V.

Corollary 2. Onθ(M,∇)θweθhave
σ(Z) = σ(Z)+ v(Z)−u(Z) (4)

for arbitrary vector field Z on M.
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4 Curvature Properties of Normal Complex Contact Metric Manifolds Admitting a Semi Symmetric Met-
ric Connection

The Riemannian and Ricci curvature properties of (M,∇) is given in this section.

Theorem 1. On (M,∇) we have

R(T,W )Z = R(T,W )Z (5)

+[u(Z)u(W )+u(Z)v(W )+ v(Z)u(W )+ v(Z)v(W )−2g(W,Z)

+g(GW,Z)+g(HW,Z)+σ(W )[u(Z)− v(Z)]]T

+[−u(Z)u(T )−u(Z)v(T )− v(Z)u(T )− v(Z)v(T )+2g(T,Z)

−g(GT,Z)−g(HT,Z)+σ(T )[v(Z)−u(Z)]]W

+[g(W,Z)[u(T )+ v(T )]−g(T,Z)[u(W )+ v(W )]+σ(T )g(W,Z)

−σ(W )g(T,Z)]U

+[g(W,Z)[u(T )+ v(T )]−g(T,Z)[u(W )+ v(W )]−σ(T )g(W,Z)

+σ(W )g(T,Z)]V

+g(W,Z)(GT +HT )−g(T,Z)(GW +HW )

where T,W,Z are arbitrary vector fields on M and R,R are the Riemannian curvature tensor of ∇ and ∇ ,
respectively.

Proof. It is known that for arbitrary vector fields X ,Y,Z on M, the Riemannian curvature R is given by

R(T,W,Z) = ∇T ∇W Z−∇W ∇T Z−∇[T,W ]Z. (6)

From (1) we obtain ∇T ∇W Z, ∇W ∇T Z and ∇[W,W ]Z as below:

∇T ∇W Z = ∇T ∇W Z +u(∇W Z)T −g(T,∇W Z)U + v(∇W Z)T −g(T,∇W Z)V

+g(∇TU,Z)W +g(U,∇T Z)W +u(Z)∇TW +u(Z)u(W )T

−u(Z)g(T,W )U +u(Z)v(W )T −u(Z)g(T,W )V −g(∇TW,Z)U

−g(W,∇T Z)U−g(W,Z)∇TU−g(W,Z)T +g(W,Z)u(T )U +g(W,Z)u(T )V

+g(∇TV,Z)W +g(V,∇T Z)W + v(Z)∇TW + v(Z)u(W )T

− v(Z)g(T,W )U + v(Z)v(W )T − v(Z)g(T,W )V −g(∇TW,Z)V

−g(W,∇T Z)V −g(W,Z)∇TV +g(W,Z)v(T )U−g(W,Z)T +g(W,Z)v(T )V

∇W ∇T Z = ∇W ∇T Z +u(∇T Z)W −g(W,∇T Z)U + v(∇T Z)W −g(W,∇T Z)V

+g(∇WU,Z)T +g(U,∇W Z)T +u(Z)∇W T +u(Z)u(T )W

−u(Z)g(W,T )U +u(Z)v(T )W −u(Z)g(W,T )V −g(∇W T,Z)U

−g(T,∇W Z)U−g(T,Z)∇WU−g(T,Z)W +g(T,Z)u(W )U +g(T,Z)u(W )V

+g(∇WV,Z)T +g(V,∇W Z)T + v(Z)∇W T + v(Z)u(T )W − v(Z)g(W,T )U

+ v(Z)v(T )W − v(Z)g(W,T )V −g(∇W T,Z)V

−g(T,∇W Z)V −g(T,Z)∇WV +g(T,Z)v(W )U−g(T,Z)W +g(T,Z)v(W )V,

∇[T,W ]Z = ∇[T,W ]Z +u(Z)[T,W ]−g([T,W ],Z)U + v(Z)[T,W ]−g([T,W ],Z)V
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= ∇[T,W ]Z +u(Z)(∇TW −∇W T )−g(∇TW −∇W T,Z)U

+ v(Z)(∇TW −∇W T )−g(∇TW −∇W T,Z)V

= ∇[T,W ]Z +u(Z)∇TW −u(Z)∇W T −g(∇TW,Z)U +g(∇W T,Z)U

+ v(Z)∇TW − v(Z)∇W T −g(∇TW,Z)V +g(∇W T,Z)V.

By consider all these equalities we get 6.

Also we have

R(T,W,Z,Y ) = R(T,W,Z,Y ) (7)

+[u(Z)u(W )+u(Z)v(W )+ v(Z)u(W )+ v(Z)v(W )−2g(W,Z)

+g(GW,Z)+g(HW,Z)+σ(W )[u(Z)− v(Z)]]g(T,Y )

+ [−u(Z)u(T )−u(Z)v(T )+ v(Z)u(T )− v(Z)v(T )+2g(T,Z)

−g(GT,Z)−g(HT,Z)+σ(T )[v(Z)−u(Z)]]g(W,Y )

+ [g(W,Z)[u(T )+ v(T )]−g(T,Z)[u(W )+ v(W )]+σ(T )g(W,Z)

−σ(W )g(T,Z)]u(Y )

+ [g(W,Z)[u(T )+ v(T )]−g(T,Z)[u(W )+ v(W )]−σ(T )g(W,Z)

+σ(W )g(T,Z)]v(Y )

+g(W,Z)[g(GT,Y )+g(HT,Y )]−g(T,Z)[g(GW,Y )+g(HW,Y )]

As we know that Riemannian curvature tensor R has some symmetric properties. The Riemannian curvature
tensor R of (M,∇) has the following symmetry properties.

R(T,W,Z,Y ) =−R(W,T,Z,Y )

R(T,W,Z,Y ) =−R(T,W,Y,Z)

R(T,W,Z,Y )−R(Z,Y,T,W ) =−2g(T,Y )g(GZ +HZ,W )+2g(W,Y )g(GZ +HZ,T )

+2g(T,Z)g(GY +HY,W )−2g(W,Z)g(GY +HY,T )

+(u(T )− v(T ))[σ(Z)g(W,Y )−σ(Y )g(W,Z)]

+(u(W )− v(W ))[σ(Y )g(T,Z)−σ(Z)g(T,Y )]

+(u(Z)− v(Z))[σ(W )g(T,Z)−σ(T )g(W,Y )]

+(u(Y )− v(Y ))[σ(T )g(W,Z)−σ(W )g(T,Z)].

Also similar to Bianchi identity for R we have

R(T,W )Z +R(W,Z)T +R(Z,T )W = [2g(GW,Z)+2g(HW,Z)

+σ(W )(u(Z)− v(Z))+σ(Z)(v(W )−u(Z))]T

+[−2g(GT,Z)−2g(HT,Z)

+σ(T )(v(Z)−u(Z))+σ(Z)(u(T )− v(T ))]W

+[2g(GT,W )+2g(HT,W )

+σ(T )(u(W )− v(W ))+σ(W )(v(T )−u(T ))]Z.

As we know for a normalθcomplexθcontactθmetricθmanifold [15], we have

R(GT,GW,GZ,GY ) = R(HT,HW,HZ,HY ) = R(T,W,Y,Z).
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For τT,W,Z,Y τvector τfieldsτon M weτget

R(GT,GW,GZ,GY )−R(HT,HW,HZ,HY ) = 2[g(GW,Z)+g(HW,Z)]g(T,Y )

−2[g(GT,Z)+g(HT,Z)]g(W,Y )

+2g(W,Z)[g(GT,Y )+g(T,HY )]

+2g(T,Z)[g(W,GY )

+g(HW,Y )],

R(JT,JW,JZ,JY )−R(T,W,Z,Y ) =−2[g(GW,Z)+g(HW,Z)]g(T,Y )

+2[g(GT,Z)+g(HT,Z)]g(W,Y )

−2g(W,Z)[g(GT,Y )+g(HT,Y )]

+2g(T,Z)[g(GW,Y )+g(HW,Y )],

R(T,GT,HT,T ) =R(T,GT,HT,T ), (8)

R(T,HT,GT,T ) =R(T,HT,GT,T ), (9)

R(T,GT,HT,T ) =R(T,HT,GT,T ). (10)

These results let us to obtain curvature properties of (M,∇).

Corollary 3. For T,Y,U,V,W on (M,∇) we have

R(T,Y )U = R(T,Y )U +[v(Y )−u(Y )+σ(Y )]T

+[u(T )− v(T )−σ(T )]Y

+(u(Y )v(T )−u(T )v(Y )+σ(T )u(Y )−σ(Y )u(T ))U

+(u(Y )v(T )−u(T )v(Y )−σ(T )u(Y )+σ(Y )u(T ))V

+u(Y )(GT +HT )−u(T )(GY +HY ),

R(T,Y )V = R(T,Y )V +[u(Y )− v(Y )−σ(Y )]T

+[u(T )+ v(T )+σ(T )]Y

+(v(Y )u(T )− v(T )u(Y )+σ(T )v(Y )−σ(Y )v(T ))U

+(v(Y )u(T )− v(T )u(Y )−σ(T )v(Y )+σ(Y )v(T ))V

+ v(Y )(GT +HT )− v(T )(GY +HY ),

R(T,U)U = R(T,U)U +[σ(U)−1]T −u(T )[σ(U)−1]U

+[v(T )−σ(T )+σ(U)u(T )]V +GT +HT,

R(T,V )V = R(T,V )V − [σ(V )+1]T + v(T )[σ(V )+1]V

+[u(T )+σ(T )−σ(V )v(T )]U +GT +HT,

R(T,V )U = R(T,V )U +[σ(V )+1]T −u(T )[1+σ(V )]U

+[−v(T )−σ(T )+σ(V )u(T )]V,

R(T,U)V = R(T,U)V +[−σ(U)+1]T − v(T )[1−σ(U)]V

+[−u(T )+σ(T )−σ(U)v(T )]U,

R(T,U)W = R(T,U)W +[v(W )−u(W )+σ(U)[u(W )− v(W )]]T

+[−v(W )u(T )− v(W )v(T )+g(T,W )−g(GT,W )−g(HT,W )

+σ(T )v(W )−σ(U)g(T,W )]U

+[u(W )u(T )+u(W )v(T )−g(T,W )−σ(T )u(W )+σ(U)g(T,W )]V

+u(W )(GT +HT ),

https://www.sciendo.com


56 Aysel Turgut Vanli et al. Applied Mathematics and Nonlinear Sciences 5(2020) 49–66

R(T,V )W = R(T,V )W +[u(W )− v(W )+σ(V )[u(W )− v(W )]]T

+[−u(W )u(T )−u(W )v(T )+g(T,W )−g(GT,W )−g(HT,W )

−σ(T )u(W )+σ(V )g(T,Z)]V

+[u(T )v(Z)+ v(Z)v(T )−g(T,Z)+σ(T )v(Z)−σ(V )g(T,Z)]U

+ v(Z)(GT +HT ),

R(V,U)U = R(V,U)U +[σ(U)−σ(V )]V,

R(U,V )V = R(V,V )V +[σ(U)−σ(V )]U.

An other geometric important object in the complex contact geometry is dσ . In [15] an equality for dσ . By
following Proposition we present a new version of dσ on a normalθcomplexθcontactθmetric manifold M was
obtained.

Proposition 1. We have on θ(M,∇)

dσ(Z,T ) = dσ(Z,T )+g(GZ,T )+g(HZ,T )+
1
2
[(u∧σ)(Z,T )+(v∧σ)(Z,T )]

for all Z,T ∈ Γ(T M).

Proof. For any Z,T ∈ Γ(T M) we have

2dσ(Z,T ) = Z(σ(T ))−T (σ(Z))−σ([Z,T ])

= Zg(∇TU,V )−T g(∇ZU,V )−g(∇[Z,T ]U,V )

= g(∇Z∇TU ,V )+g(∇TU,∇ZV )

−g(∇T ∇ZU ,V )−g(∇ZU,∇TV )

−g(∇[Z,T ]U,V ).

Also from (2) and (5) we get

2dσ(Z,T ) = R(Z,T,U,V )+σ(T )[u(Z)+ v(Z)]−σ(Z)[u(T )+ v(T )]

+g(T −GT +σ(T )V −u(T )U−u(T )V,Z +HZ−σ(Z)U− v(Z)U− v(Z)V )

−g(Z−GZ +σ(Z)V −u(Z)U−u(Z)V,T +HT −σ(T )U− v(T )U− v(T )V )

= R(Z,T,U,V )+σ(T )[u(Z)+ v(Z)]−σ(Z)[u(T )+ v(T )]

+g(T,Z)+g(T,HZ)−σ(Z)u(T )− v(Z)u(T )− v(Z)v(T )−g(GT,Z)

−g(GT,HZ)+σ(T )v(Z)−σ(T )v(Z)−u(T )u(Z)+u(T )σ(Z)

+u(T )v(Z)−u(T )v(Z)+u(T )v(Z)

−g(Z,T )−g(Z,HT )+σ(T )u(Z)+ v(T )u(Z)+ v(T )v(Z)+g(GZ,T )

−g(GZ,HT )−σ(Z)v(T )+σ(Z)v(T )+u(T )u(Z)−u(Z)σ(T )

−u(Z)v(T )+u(Z)v(T )−u(Z)v(T )

= R(Z,T,U,V )+σ(T )[u(Z)+ v(Z)]−σ(Z)[u(T )+ v(T )]

+2g(HZ,T )+2g(GZ,T )−g(GHZ,T )+g(HGZ,T )

= R(Z,T,U,V )+σ(T )[u(Z)+ v(Z)]−σ(Z)[u(T )+ v(T )]

−2g(HZ,T )−2g(GZ,T )−g(−JZ−u(Z)U + v(Z)V,T )

+g(JZ +u(Z)U− v(Z)V,T )

= R(Z,T,U,V )+σ(T )[u(Z)+ v(Z)]−σ(Z)[u(T )+ v(T )]
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+2g(HZ,T )+2g(GZ,T )+g(JZ,T )+u(Z)u(T )− v(Z)v(T )

+g(JZ,T )+u(Z)u(T )− v(Z)v(T )

= R(Z,T,U,V )+σ(T )[u(Z)+ v(Z)]−σ(Z)[u(T )+ v(T )]

+2g(HZ,T )+2g(GZ,T )+2g(JZ,T )+2(u(Z)u(T )− v(Z)v(T ))

= R(Z,T,U,V )+σ(T )[u(Z)+ v(Z)]−σ(Z)[u(T )+ v(T )]

+2g(HZ,T )+2g(GZ,T )+2g(JZ,T )+2u∧ v(Z,T ).

Here

2dσ(Z,T ) = R(Z,T,U,V )+2g(JZ,T )+2u∧ v(Z,T )

thus we obtain

dσ(Z,T ) = dσ(Z,T )+g(GZ,T )+g(HZ,T )

+
1
2
[(u∧σ)(Z,T )+(v∧σ)(Z,T )].

From this Proposition we get following corollary.

Corollary 4. Onθ(M,∇)θweθhave

dσ(T,U) = dσ(T,U)− 1
2

σ(T ) and dσ(U,V ) = dσ(U,V )+
1
2
[σ(V )−σ(U)].

for T ∈H

Theorem 2. The sectional curvature of (M,∇) is

k(T,W ) = k(T,W )−2 (11)

where T,W are unit, mutually orthogonal and horizontal vector fields on M, and k is the sectional curvature of
(M,∇).

Proof. Let W,T be unit, mutuallyθorthogonal and horizontalθvector fields on M. By setting Z = W,Y = T in
(7) we get

k(T,W ) = R(T,W,W,T )

= R(T,W,W,T )

+ [−2g(W,W )+g(GW,W )+g(HW,W )]g(T,T )

+ [2g(T,W )−g(GT,W )−g(HT,W )]g(W,T )

+g(W,W )(g(GT,T )+g(HT,T ))

−g(T,W )(g(GW,T )+g(HW,T )). (12)

Also since g(GW,W ) = g(HT,T ) = 0 and k(T,W ) = R(T,W,W,T ) we have

k(T,W ) = k(T,W )−2.

Corollary 5. For unit vector fields T on (M,∇) we have

k(T,JT ) = k(T,JT )−2 (13)

k(T,GT ) = k(T,GT )−2 (14)

k(T,HT ) = k(T,HT )−2. (15)
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Theorem 3. The G H −sectional curvature of (M,∇) is given by

G H a,b(T ) = G H a,b(T )−2 (16)

where T is unit horizontal vector field on M.

Proof. From the definition of G H −sectional curvature, for unit horizontal vector field T on M we have

G H a,b(T ) = k(T,aGT +bHT )

=
R(T,aGT +bHT,aGT +bHT,T )

g(T,T )g(aGT +bHT,aGT +bHT )−g(T,aGT +bHT )2 .

Then the Riemannian curvature tensor is given by

R(T,aGT +bHT,aGT +bHT,T ) = aR(T,aGT +bHT,GT,T )

+bR(T,aGT +bHT,HT,T )

= a2R(T,GT,GT,T )+abR(T,HT,GT,T )

+baR(T,GT,HT,T )+b2R(T,HT,HT,T ).

From (14),(15), (8) and (9) we get

R(T,aGT +bHT,aGT +bHT,T ) = a2R(T,GT,GT,T )−2a2 +abR(T,HT,GT,T )

+baR(T,GT,HT,T )+b2R(T,HT,HT,T )−2b2

= R(T,aGT +bHT,aGT +bHT,T )−2(a2 +b2).

Since R(T,aGT +bHT,aGT +bHT,T ) = G H (T ) and a2 +b2 = 1 we obtain (16).

Proposition 2. For unit and horizontal vector field T on (M,∇) we get

k(T,JT ) =
1
2
[G H (T +GT )+G H (T −GT )]+3. (17)

Proof. By using (16) and (13) in (17) we obtain

k(T,JT )+2 =
1
2
[G H (T +GT )+2+G H (T −GT )+2]+3.

So we get (17).

Corollary 6. If G H −sectional curvature of (M,∇) is constant then we have

k(T,JT ) = G H (T )+3. (18)

Theorem 4. The Ricci curvature of (M,∇) is given by

Ric(T,W ) = Ric(T,W ) (19)

+4m[u(W )u(T )+u(W )v(T )+ v(W )u(T )+ v(W )v(T )

+g(GT,W )+g(HT,W )+σ(T )[u(W )− v(W )]]

+(−8m+σ(U)−σ(V ))g(T,W )

for all T,W ∈ Γ(T M).
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Proof. Let T and W be two arbitrary vector fields on (M,∇) and (E1,E2,E3, ...,E4m,U,V ) be orthonormal basis
of T M. Then from (5) we get

R(Ei,T,W,Ei) = R(Ei,T,W,Ei)

+ [u(W )u(T )+u(W )v(T )+ v(W )u(T )+ v(W )v(T )−2g(T,W )

+g(GT,W )+g(HT,W )+σ(T )[u(W )− v(W )]]g(Ei,Ei)

+ [−u(W )u(Ei)−u(W )v(Ei)− v(W )u(Ei)− v(W )v(Ei)

+2g(Ei,W )−g(GEi,W )−g(HEi,W )

−σ(Ei)[v(W )−u(W )]]g(T,Ei)+ [g(T,W )[u(Ei)+ v(Ei)]

−g(Ei,W )[u(T )+ v(T )]+σ(Ei)g(T,W )

−σ(T )g(Ei,W )]g(U,Ei)+ [g(T,W )[u(Ei)+ v(Ei)]

−g(Ei,W )[u(T )+ v(T )]−σ(Ei)g(T,W )

+σ(T )g(Ei,W )]g(V,Ei)+g(T,W )(g(GEi,Ei)

+g(HEi,Ei))−g(Ei,W )(g(GT,Ei)+g(HT,Ei)).

For brevity let state

A = [u(W )u(T )+u(W )v(T )+ v(W )u(T )+ v(W )v(T )

−2g(T,W )+g(GT,W )+g(HT,W )+σ(T )[u(W )− v(W )]]

then we have

4m+2

∑
i=1

R(Ei,T,W,Ei) =
4m+2

∑
i=1

R(Ei,T,W,Ei)+
4m+2

∑
i=1

Ag(Ei,Ei)

+
4m+2

∑
i=1

[−u(W )u(Ei)−u(W )v(Ei)− v(W )u(Ei)

−v(W )v(Ei)+2g(Ei,W )−g(GEi,W )

−g(HEi,W )+σ(Ei)[v(W )−u(W )]]g(T,Ei)

+
4m+2

∑
i=1

[g(T,W )[u(Ei)+ v(Ei)]−g(Ei,W )[u(T )+ v(T )]

+σ(Ei)g(T,W )−σ(T )g(Ei,W )]g(U,Ei)

+
4m+2

∑
i=1

[g(T,W )[u(Ei)+ v(Ei)]−g(Ei,W )[u(T )+ v(T )]

−σ(Ei)g(T,W )+σ(T )g(Ei,W )]g(V,Ei)

+
4m+2

∑
i=1

(g(T,W )(g(GEi,Ei)+g(HEi,Ei))

−g(Ei,W )(g(GT,Ei)+g(HT,Ei))).

Thus by direct computations the proof is completed.

Also from the above theorem we get following corollaries:

Corollary 7. Onθa (M,∇)θ we have

Ric(U,U) =−2dσ(U,V )+(4m+1)σ(U)−σ(V ), (20)
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Ric(V,V ) =−2dσ(U,V )− (4m+1)σ(V )+σ(U), (21)

Ric(U,V ) = 4m(1−σ(U)). (22)

Corollary 8. LetτT,W and Z be horizontalτvectorτfields on (M,∇). Then weτhave

Ric(GT,GW )−Ric(HT,HW ) = +8m(g(GT,W )−g(HT,W )),

Ric(GT,GW )−Ric(T,W ) =−8mg(HT,W ),

Ric(HT,HW )−Ric(T,W ) =−8mg(GT,W ),

Ric(JT,JW )−Ric(T,W ) =−8m[v(W )u(T )+u(W )v(T )−g(GT,W )

−g(HT,W )]+4m[σ(JT )(v(W )+u(W ))

−σ(T )[u(W )− v(W )]]

Corollary 9. The scalar curvature and Ricci operator of (M,∇) is given by

Scal = Scal−32m2 +(σ(U)−σ(V ))(8m+2)−8m,

QT = QT +4m[(u(T )+ v(T ))(U +V )+GT +HT

+σ(T )[U−V ]]+ (−8m+σ(U)−σ(V ))T.

5 Flatness conditions on Normal Complex Contact Metric Manifolds Admitting a Semi Symmetric Metric
Connection

A Riemannian manifold is called flat if its Riemannian curvature tensor vanishes. That means manifold is
locally Euclidean. Also the flatness of a Riemannian manifold can be provided by some special transformations
like conformal, concircular etc. If the manifold is flat under these special transformations, is called conformally
flat, concircularly flat etc. On the other hand there are several tensors which are invariant of these special trans-
formations, and can give flatness of the manifold when vanishes. The three of them are conformal, concircular
and quasi-conformal curvature tensor. The flatness of conformal curvature tensor on a NCCMM was studied
by Blair and Molina [4]. Two of present authors studied the flatness of concircular and quasi-concircular cur-
vature tensors. A NCCMM is not conformal, concircular and quasi-conformal flat. In this section weθstudy
on the flatnessθofθ theseθ tensors on (M,∇). Conformal curvature tensor C , concircular curvature tensor Z ,
quasi-conformal curvature tensor C̃ and conharmonic curvature tensor K of a (2m+ 1)-complex dimensional
normalθcomplexθcontactθmetricθmanifold M is defined by

C (T,W )Z = R(T,W )Z +
Scal

(4m+1)4m
(g(W,Z)T −g(T,Z)W )

+
1

4m
(g(T,Z)QW −g(W,Z)QT +Ric(T,Z)W −Ric(W,Z)T ),

Z (T,W )Z = R(T,W )Z− Scal
(4m+2)(4m+1)

[g(W,Z)T −g(T,Z)W ],

C̃(T,W )Z = pR(T,W )Z +q[Ric(W,Z)T −Ric(T,Z)W +g(W,Z)QT

−g(T,Z)QW ]− Scal
(4m+2)

[
p

4m+1
+2q][g(W,Z)T −g(T,Z)W ],

https://www.sciendo.com


Normal complex contact metric manifolds admitting a semi symmetric metric connection 61

K(T,W )Z = R(T,W )Z

− 1
4m

[Ric(W,Z)T −Ric(T,Z)W +g(W,Z)QT −g(T,Z)QW ].

Theorem 5.

(M,∇) is not conformal,θconcircular,θquasi-conformal andθconharmonicθflat.

Proof. Assume that (M,∇) is quasi-conformal flat. Then for ∀T,W,Z,Y ∈ Γ(T M) we have

g(R(T,W )Z,Y ) =−q
p
[Ric(W,Z)g(T,Y )−Ric(T,Z)g(W,Y ) (23)

+g(W,Z)Ric(T,Y )−g(T,Z)Ric(W,Y )]

+
Scal

(4mτ +2)
[

1
4mτ +1

+
2q
p
][g(W,Z)g(T,Y )−g(T,Z)g(W,Y )]

and setting T = Y =U veW = Z =U we get

g(R(τU,V )V,U) =−q
p
[Ric(τV,V )g(Uτ,U)−Ric(U,V )g(V,U)

+g(V,V )Ric(U,U)−g(U,V )Ric(τV,U)]

+
Scal

(4m+2)
[

1
4m+1

+
2q
p
][g(τV,V )g(U,U)−g(U,V )g(V,U)]

=−q
p
[Ric(τV,V )+Ric(U,U)]

+
Scal

(4m+2)
[

1
4m+1

+
2q
p
].

From (20), (21) and (22) we obtain

dσ(U,V ) =
q(4m+2)+ p

4q+2p
(σ(U)−σ(V ))− Scal

(4m+2)
p

(4q+2p)
[

1
τ4m+1

+
2q
p
].

Onθ theθotherθhandθ for W = Z =U , unitθandθmutuallyθorthogonal T,Y vector fields we have

g(R(T,U)U,T ) =−q
p
[Ric(τU,U)g(T,T )−Ric(T,τU)g(τU,T )+g(U,U)Ric(T,T )

−g(T,U)Ric(U,T )]

+
Scal

(4m+2)
[

1
4m+1

+
2q
p
][g(U,U)g(T,T )−g(T,U)g(U,T )]

=−q
p
[Ric(U,U)+Ric(T,T )]+

Scal
(τ4m+2)

[
1

τ4m+1
+

2q
p
].

Thus from (20) and (21) we obtain

Ric(T,T ) =
Scal p

q(4m+2)
[

1
4m+1

+
2q
p
]+2dσ(U,V )− (4m+1)q+ p

q
σ(U)+σ(V ). (24)

Also for unit T vector field, from (23) G H (T ) is given by

G H (T ) = g(R(T,GT )GT,T ) =−q
p
[Ric(GT,GT )g(T,T )−Ric(T,GT )g(GT,T )
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+g(GT,GT )Ric(T,T )−g(T,GT )Ric(GT,T )]

+
Scal

(4m+2)
[

1
4m+1

+
2q
p
][g(GT,GT )g(T,T )−g(T,GT )g(GT,T )]

=−q
p
[Ric(GT,GT )+Ric(T,T )]+

Scal
(4m+2)

[
1

4m+1
+

2q
p
]

=−2q
p

Ric(T,T )+
Scal

(4m+2)
[

1
4m+1

+
2q
p
].

From (24) we get

G H (T ) =−4q
p

dσ(U,V )+
(8m+2)q+2p

p
σ(U)

− 2q
p

σ(V )− Scal
4m+1

[
1

4m+1
+

2q
p
].

Similarly the holomorphic sectional curvature is

k(T,JT ) = g(R(T,JT )JT,T ) =−q
p
[Ric(JT,JT )g(T,T )−Ric(T,JT )g(JT,T )

+g(JT,JT )Ric(T,T )−g(T,JT )Ric(JT,T )]

+
Scal

(4m+2)
[

1
4m+2

+
2q
p
][g(JT,JT )g(T,T )−g(T,JT )g(JT,T )]

=−q
p
[Ric(JT,JT )+Ric(T,T )]+

Scal
(4m+2)

[
1

4m+2
+

2q
p
]

=−2q
p

Ric(T,T )+
Scal

(4m+2)
[

1
4m+1

+
2q
p
].

Thus from (24) we get

k(T,JT ) =−4q
p

dσ(U,V )+
(8m+2)q+2p

p
σ(U)− 2q

p
σ(V )− Scal

4m+1
[

1
4m+1

+
2q
p
].

Therefore we obtain G H (T ) = k(T,JT ) . There is a contradiction from 18 and so our assumption is not true.
By following same steps one can shown the non-existence of conformal and concircular flatness.

6 Iwasawa Manifold Admitting a Semi Symmetric Metric Connection

An Iwasawa manifold is an important example of a compact complex manifold which does not admit any
Kähler metric [6]. Fernandez and Gray [6] proved that an Iwasawa manifold has indefinite Kähler structure has
symplectic forms each of which is Hermitian with respect to a complex structure .

The Iwasawa manifold is the compact quotient space Γ \HC formed from the right cosets of the discrete
subgroup Γ given by the matrices whose entries z1,z2,z3 are Gaussian integers where HC is given by

HC =


1 c12 c13

0 1 c23
0 0 1

 : c12,c13,c23 ∈ C

' C3.
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Like realθHeisenbergθgroup is an exampleθofθcontactθmanifolds (see [3]), complexθHeisenberg group has
complex almost contact structure. This structure was given by Baikoussis et al. [1] and normality of the structure
was obtained by Korkmaz [12]. Also this manifold is the initial point of the work of Korkmaz and it distinguishes
Korkmaz’s normality from IK-normality.

Blair and Turgut Vanlı [14] worked on corrected energy of Iwasawa manifolds and also Turgut Vanlı and
Unal [15] obtained some curvature results. In this section we examine Iwasawa Manifold with a semi symmetric
metric connection.

Let {e1,e∗1,e2,e∗2,U,V} be an orthonormal frame of Iwasawa manifold which is given by

e1 = 2
(

∂

∂x1
+ x2

∂

∂x3
+ y2

∂

∂y3

)
, (25)

e∗1 = 2
(

∂

∂y1
− y2

∂

∂x3
+ x2

∂

∂y3

)
e2 = 2

∂

∂x2
, e∗2 = 2

∂

∂y2
,

U = 2
∂

∂x3
, V =−2

∂

∂y3
.

Then for

G =



0 0 1 0 0 0
0 0 0 −1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 x2 y2 0 0
0 0 y2 −x2 0 0

and H =



0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 −y2 x2 0 0
0 0 x2 y2 0 0


we have

Ge1 =−e2, Ge∗1 = e∗2, Ge2 = e1, Ge∗2 =−e∗1
He1 =−e∗2, He∗1 =−e2, He2 = e∗1, He∗2 = e1

Je1 =−e∗1, Je∗1 = e1, Je2 =−e∗2, Je∗2 = e2.

Also the Lie derivatives and Lie bracket of basis vectors are given by

[e1,e2] =−2U, [e1,e∗2] = 2V, [e∗1,e2] = 2V, [e∗1,e
∗
2] = 2U (26)

and, from Kozsul formula we get

∇e j e j = ∇e j e j = ∇e j e j∗ = ∇e∗j e
∗
j = 0. (27)

Also by using ( 26)and (27) we get

∇e2U =−∇e∗2V =−e1 ∇e∗2U = ∇e2V = e∗1
∇e1U =−∇e∗1V = e2 ∇e1V = ∇e∗1U =−e∗2
−∇e1e2 = ∇e∗1e∗2 =U ∇e1e∗2 = ∇e∗1e2 =V.

In addition for ei,e j ∈H we have Ric(ei,ei) = Ric(e∗i ,e
∗
i ) = −4 and Ric(U,U) = Ric(V,V ) = 4. By using

above equations and from the definition of the semi symmetric metric connection ∇ we get following corollary.
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Corollary 10. On the Iwasawa manifold admitting ∇ we get

∇eie j = ∇eie j−δ
j

i (U +V )

∇e∗i e∗j = ∇e∗i e∗j −δ
j

i (U +V )

∇e∗i e j = ∇e∗i e j, ∇eie
∗
j = ∇eie

∗
j

∇U ei = ∇U ei, ∇V ei = ∇V ei

where ei,e j ∈H .

We obtain curvatures of Iwasawa manifold admitting ∇ as follow:

R(e1,e∗1)e1 = 2e∗1− e∗2− e2
R(e1,e∗1)e

∗
1 =−2e1− e2 + e∗2

R(e1,e∗1)e2 =−2e∗2 + e1 + e∗1
R(e1,e∗1)e

∗
2 = 2e2 + e1− e∗1

R(e1,e∗1)U =−2V

R(e1,e2)e1 = 5e2 + e∗1
R(e1,e2)e∗1 =−e∗2− e1
R(e1,e2)e2 =−5e1 + e∗2
R(e1,e2)e∗2 = e∗1− e2

R(e∗1,e
∗
2)e1 =−e2− e∗1

R(e∗1,e
∗
2)e
∗
1 = 5e∗2 + e1

R(e∗1,e
∗
2)e2 = e1− e∗2

R(e∗1,e
∗
2)e
∗
2 =−5e∗1 + e2

R(e∗1,e2)e1 = e∗1 + e∗2
R(e∗1,e2)e∗1 = 5e2− e1
R(e∗1,e2)e2 =−5e∗1 + e∗2
R(e∗1,e2)e∗2 =−e2− e1

R(e1,e∗2)e1 = 5e∗2 + e∗1
R(e1,e∗2)e

∗
1 = e2− e1

R(e1,e∗2)e2 = e∗2− e∗1
R(e1,e∗2)e

∗
2 =−5e1− e2

R(e2,e∗2)e1 =−2e∗1− e2− e∗2
R(e2,e∗2)e

∗
1 = 2e1− e2 + e∗2

R(e2,e∗2)e2 = e1 + e∗1 +2e∗2
R(e2,e∗2)e

∗
2 = e1−2e∗2− e∗1

R(e1,U)V = R(e∗1,V )U = e1 + e∗1
R(e2,U)V = R(e∗2,V )U = e2 + e∗2
R(e1,V )U =−R(e∗1,U)V = e1− e∗1
R(e2,V )U =−R(e∗2,U)V = e2− e∗2

R(e1,e2)U = R(e1,e2)V = R(e1,e∗2)U = 0
R(e∗1,e2)U = R(e∗1,e2)V = R(e∗2,e1)U = 0
R(e∗1,e

∗
2)U = R(e∗1,e

∗
2)V = R(e1,e∗2)V = 0

R(e1,e∗1)V = R(e2,e∗2)U = 2U

R(e2,U)e1 =−U
R(e2,U)e∗1 =U
R(e2,U)e2 =−V
R(e2,U)e∗2 =−V

R(e2,V )e1 =−V
R(e2,V )e∗1 =V
R(e2,V )e2 =−U
R(e2,V )e∗2 =U

R(e∗2,U)e1 =U
R(e∗2,U)e∗1 =U
R(e∗2,U)e2 =V
R(e∗2,U)e∗2 =−V

R(e∗2,V )e1 =V
R(e∗2,V )e∗1 =V
R(e∗2,V )e2 =−U
R(e∗2,V )e∗2 =−U .

As we know on Iwasawa manifold σ = 0. Thus from (4) we get σ(T ) = v(T )−u(T ) and from (19) we get

Ric(T,W ) = Ric(T,W )+4(u(T )u(W )+ v(T )u(W )+u(T )v(W )+ v(T )v(W )

+g(GT,W )+g(HT,W ))−8g(T,W ).

Therefore we obtain

Ric(e1,e1) = Ric(e1,e1)+4(u(e1)u(e1)+ v(e1)u(e1)+u(e1)v(e1)+ v(e1)v(Y )

+g(Ge1,e1)+g(He1,e1))−8g(e1,e1)

=−4+4(g(−e2,e1)+g(−e∗2,e1)−8

=−12.

Similarly we have Ric(e∗1,e
∗
1) = Ric(e2,e2) = Ric(e∗2,e

∗
2) =−12 ve Ric(U,U) = Ric(V,V ) = 0. By direct com-

putation we get Scal =−48 . On the other hand for sectional curvatures of Iwasawa manifold admitting ∇
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k(e3,e∗3) = k(e1,e∗1) = k(e1,e∗2) = k(e∗1,e2) = k(e2,e∗2) = 0

k(e1,e3) = k(e∗1,e3) = k(e2,e3) = k(e∗2,e3) = 1,

k(e1,e∗3) = k(e∗1,e
∗
3) = k(e2,e∗3) = k(e∗2,e

∗
3) = 1

k(e1,e2) = 3 ve k(e∗1,e
∗
2) = 1.

From 11 we get

k(e3,e∗3) = k(e1,e∗1) = k(e1,e∗2) = k(e∗1,e2) = k(e2,e∗2) =−2

k(e1,U) = k(e∗1,U) = k(e2,U) = k(e∗2,U) =−1,

k(e1,V ) = k(e∗1,V ) = k(e2,V ) = k(e∗2,V ) =−1,

k(e1,e2) = 1 ve k(e∗1,e
∗
2) =−1.
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