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Abstract
In this work, the well known invariant subspace method has been modified and extended to solve some partial differential
equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are ob-
tained by solving the reduced systems of constructed fractional differential equations. The results show that this method
is very simple and effective for constructing explicit exact solutions for partial differential equations involving new frac-
tional derivatives with nonlocal and non-singular kernels, such solutions are very useful to validate new numerical methods
constructed for solving partial differential equations with CF and AB fractional derivatives.

Keywords: Modified invariant subspace method, Caputo-Fabrizio fractional derivative, Atangana-Baleanu fractional derivative, Exact
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1 Introduction

Fractional calculus provides an important characteristic to describe the complicated physical phenomena
with memory effects. For this reason, the fractional calculus is becoming increasingly used as a modeling tool in
physics, engineering and control processing in various fields of sciences such as fluid dynamics, plasma physics,
mathematical biology and chemical kinetics, diffusion, etc [1–4]. Due to their properties, fractional derivatives
and integrals make this kind of calculus a good candidate to describe such phenomena. Some fundamental
definitions of fractional derivatives were given by Riemann-Liouville and Liouville-Caputo [5–9]. Recently,
Caputo and Fabrizio defined a new fractional derivative without singular kernel [10] named Caputo-Fabrizio
derivative with specific properties, the derivative of a constant is zero and the initial conditions used in the
fractional differential equations having a physical interpretation. Later, Atangana and Baleanu proposed
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another fractional derivative with non-local and non-singular kernel named Atangana-Baleanu derivative [11].
Besides, seeking exact solutions of fractional partial differential equations is not an easy task, and it’s remain
a relevant problem. Therefore, many powerful methods have been proposed for solving analytically the
fractional partial differential equations. Such methods include; Homotopy Perturbation Method [12], Homotopy
Perturbation coupled with Sumudu Transform [13], Adomian Mecomposition Method [14], Variational Iteration
Method [15], Fractional Iteration Method [16], etc.
On the author hand, recent investigations show that the invariant subspace method, developed by V.A.
Galaktionov and S.R. Svirshchevski [17], is an effective tool to construct exact solutions of some fractional
partial differential equations with Caputo fractional derivative. R.Sahadevan and P.Prakash [18] used invariant
subspace method to derive exact solutions of certain time fractional nonlinear partial differential equations,
Hashemi [19] also adopted the same method to solve partial differential equations with conformable derivatives,
Choudhary et al. [20] used this technique to explore solutions of some fractional differential equations, etc.
In the present paper, we present a modified version of the invariant subspace method which does not require
any use of the Laplace transformation. We then make use of this novel technique to solve some fractional
partial differential equations using fractional operators of Caputo-Fabrizio and also Atangana-Baleanu type.
The exact solutions of these equations are obtained by solving the reduced systems constructed from the studied
equations.

The laout of the paper is organized as follows: In section 2, we present some basic definitions of fractional
derivatives and integrals. Section 3 describes the modified invariant subspace method. Construction of exact so-
lutions to some partial differential equations with Caputo-Fabrizio and Atangan-Baleanu derivatives is presented
in section 4. Finally, concluding remarks are given in section 5.

2 Fractional Calculus tools

In this section, we present some important defnitions and mathematical concepts on fractional derivatives
with nonsingular kernels and related tools.

Definition 1. The Mittag-Leffler function Eα [21], is defined as

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)
, (1)

where z is a complex variable, α ∈ C and ℜ(α)> 0.

This function arises naturally in the solution of fractional order integral equations or fractional order dif-
ferential equations. It interpolate between a purely exponential law and power-law like behavior of phenomena
governed by ordinary kinetic equations and their fractional counterparts.
On the other hand, Caputo and Fabrizio [10] developed a new fractional derivative as follows

Definition 2. Let u be a function in H1(a,b), b > a et 0 < α < 1 then, the new Caputo-Fabrizio derivative of
fractional order α is defined as [10]

CFDα
t u(x, t) =

M(α)

1−α

ˆ t

0

∂

∂τ
u(x,τ)exp

[
−α

(t− τ)

1−α

]
dτ, (2)

where M(α) is a normalization function satisfying M(0) = M(1) = 1.

From [10], we recall that if the function u does not belong to H1(a;b) then, CF derivative can be writted as

CFDα
t u(x, t) =

αM(α)

1−α

ˆ t

0
(u(x, t)−u(x,τ))exp

[
−α

(t− τ)

1−α

]
dτ. (3)
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The fractional integral operator associated to the CF fractional derivative is expressed as

CF Iα
t u(x, t) =

1−α

M(α)
u(x, t)+

α

M(α)

ˆ t

0
u(x,τ)dτ. (4)

It’s clear that the Caputo-Fabrizio derivative has no singular kernel, since the kernel is based on exponential
function.
Recently, Atangana and Baleanu proposed a new fractional derivative wich has non-local and non-singular
kernel based on the generalized Mittag-Leffler function. More recently, they claimed that there is two general
definitions of their derivative in the Riemann-Liouville and Caputo sense. Moreover, this fractional derivative
has a fractional integral as an anti-derivative of their operators.
The Atangana-Baleanu fractional derivative in Caputo sense (ABC) is given by

Definition 3. The AB fractional derivative of order α in Caputo sense is given by [11]

ABCDα
t u(x, t) =

B(α)

1−α

ˆ t

0

∂

∂τ
u(x,τ)Eα

[
−α

(t− τ)α

1−α

]
dτ, (5)

where B(α) is a normalization function and B(0) = B(1) = 1 and 0 < α < 1.

The AB fractional integral operator of order α is given by [11]

Definition 4. The Atangana-Baleanu fractional integral of order α is defined as [11]

ABIα
t u(x, t) =

1−α

B(α)
u(x, t)+

α

B(α)Γ(α)

ˆ t

0
u(x,τ)(t− τ)α−1dτ. (6)

3 Description of the Modified Method

This section is devoted to descrive the invariant subspace method. Such method has been firstly used in [17]
to construct particular exact solutions for partial differential equations of the form

∂u
∂ t

= F(u,u1x,u2x, ...,ukx), k ∈ N, (7)

where u = u(x, t), uix =
∂ iu
∂xi is the ith order derivative of u with respect to the space variable x and F is a nonlinear

differential operator.
Recently, Gazizov and Kasatkin [22] showed that the invariant subspace method can be applied also to equations
with time fractional derivative.
In fact, consider the time fractional partial differential equation of the form

Dα
t u(x, t) = F [u], (8)

where F [u] = F(u,u1x,u2x, ...,ukx) and Dα
t is the time fractional derivative.

The modified invariant subspace method is based on the following basic definitions and results [22].

Definition 5. Let f1(x), ..., fn(x) be an n linearly independent functions and Wn is the n-dimensional linear space
namely Wn = 〈 f1(x), ..., fn(x)〉. Wn is said to be invariant under the given operator F if F [u] ∈Wn whenever
u ∈Wn.

https://www.sciendo.com


38 K. Ait Touchent, Z. Hammouch and T. Mekkaoui. Applied Mathematics and Nonlinear Sciences 5(2020) 35–48

Proposition 1. Let Wn be an invariant subspace of F. A function u(x, t)=∑
n
i=1 fi(x)ui(t) is a solution of equation

(8) if and only if the expansion coeffcients ui(t) satisfy the following system of fractional ordinary differential
equations 

Dα
t u1 = F1(u1, ...,un),

Dα
t u2 = F2(u1, ...,un),

.

.

.
Dα

t un = Fn(u1, ...,un),

where F1, ...,Fn are given by

F(c1 f1(x)+ ...+ cn fn(x)) = F1(c1, ...,cn) f1(x)+ ...+Fn(c1, ...,cn) fn(x). (9)

Remark 1. The important question concerning the modified invariant subspace method was how to obtain the
corresponding invariant subspace of a given differential operator. The answer of this question is given by the
following proposition, for more details we refer the reader to [22].

Proposition 2. Let f1(x), ..., fn(x) form the fundamental set of solutions of a linear nth-order ordinary differen-
tial equation

T [y] = y(n)+a1(x)y(n−1)+ ...+an−1(x)y′+an(x)y = 0, (10)

and F [y] = F(x,y,y′, ...,yk) a given differential operator of order k ≤ n − 1, then the subspace Wn =
〈 f1(x), ..., fn(x)〉 is invariant with respect to F if and only if

T [F [y]] = 0, (11)

whenever y satisfies the equation (10).

4 Applications

4.1 Fractional partial differential equations with Caputo-Fabrizio derivative

In this section, we apply the modified invariant subspace method to construct exact solutions of some partial
differential equations with Caputo-Fabrizio derivative in time.

• Example 1:

Consider the following time-fractional partial differential equation

CFDα
t u(x, t) = uxx(x, t)+ t2ux(x, t), (12)

where t > 0,x ∈ R and 0 < α < 1.
Setting F [u] := CFDα

t u(x, t), it is obvious that Eq.(12) admits the following invariant subspace

W1 = L{1,x}, (13)

Since
F [c1(t)+ c2(t)x] = c2(t)t2 ∈W1. (14)

Therefore, the exact solution of Eq.(12) can be written as

u(x, t) = c1(t)+ c2(t)x, (15)
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where c1(t) and c2(t) satisfy the following system of FDEs{CFDα
t c1(t) = c2(t)t2,

CFDα
t c2(t) = 0.

(16)

From the second equation of (16), we find that the function c2(t) is a constant and then we assume that c2(t) = 1.
Thus, the first equation of (16) has the following solution

c1(t) =
(1−α) t2

M(α)
+

1
3

α t3

M(α)
. (17)

Therefore, Eq.(12) has an exact solution of the form

u(x, t) =
(1−α) t2

M(α)
+

1
3

α t3

M(α)
+ x. (18)

Fig. 1 Profile of the solution (18) for α = 0.9.

• Example 2:

Consider now, the following time-fractional partial differential equation

CFDα
t u(x, t) = sin(t)uxx(x, t), (19)

where t > 0,x ∈ R and 0 < α < 1.
It is easy to check that

W2 = L{1,x2}, (20)

is an invariant subspace of Eq(19), seeing that

F [c1(t)+ c2(t)x2] = 2c2(t)sin(t) ∈W2. (21)

consequently, an exact solution of Eq.(19) can be written as

u(x, t) = c1(t)+ c2(t)x2, (22)
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where c1(t) end c2(t) are unknown functions to be determined.
Substituting Eq.(22) in Eq.(19) yields: {CFDα

t c1(t) = 2c2(t)sin(t),
CFDα

t c2(t) = 0.
(23)

The second equation of (23) shows that the function c2(t) is a constant and we infer that c2(t) = 1
2 .

AAccordingly, the first equation of (23) can be expressed as

c1(t) =
(1−α)sin(t)

M (α)
+

α (1− cos(t))
M (α)

. (24)

Finally, we obtain an exact solution of Eq.(19) as

u(x, t) =
(1−α)sin(t)

M (α)
+

α (1− cos(t))
M (α)

+
1
2

x2. (25)

Fig. 2 Profile of the solution (25) for α = 0.9.

• Example 3:

Now we deal with the nonlinear time-fractional partial differential equation

CFDα
t u(x, t) = tu2

x(x, t)+uxx(x, t), (26)

where t > 0,x ∈ R and 0 < α < 1.
Eq.(26) admits an invariant subspace defined through

W3 = L{1,x}, (27)

as
F [c1(t)+ c2(t)x] = tc2

2(t) ∈W3. (28)

As a deduction, an exact solution of Eq.(26) can take the form

u(x, t) = c1(t)+ c2(t)x, (29)
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Substituting Eq.(29) in Eq.(26) and equating coefficients of different powers of x, we get{CFDα
t c1(t) = tc2

2(t),
CFDα

t c2(t) = 0.
(30)

Solving second equation of (30) gives c2(t) = 1.Therefore, the solution of the first equation of (30) is given by:

c1(t) =
(1−α) t

M (α)
+

1
2

α t2

M (α)
. (31)

it then follows that an exact solution of Eq.(26) is given by

u(x, t) =
(1−α) t

M (α)
+

1
2

α t2

M (α)
+ x. (32)

Fig. 3 Profile of the solution (32) for α = 0.9.

• Example 4:

Let us consider the following equation

CFD2α
t u(x, t) =

1
2

x2u2
xx(x, t)+ tux(x, t), (33)

where t > 0,x ∈ R, α ∈ [0,1] and α 6= 1
2 .

It is clear that the above equation Eq.(33) admits an invariant subspace

W4 = L{1,x}, (34)

by cause of
F [c1(t)+ c2(t)x] = c2(t)t ∈W4. (35)

In an analogous way, the exact solution of Eq.(33) has the form

u(x, t) = c1(t)+ c2(t)x, (36)
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where c1(t) and c2(t) satisfy the following system of FDEs{CFD2α
t c1(t) = c2(t)t,

CFD2α
t c2(t) = 0.

(37)

Similarly, we find that the function c2(t) is a constant and then we assume that c2(t) = 1.
Therefore, the first equation of (37) has the following solution:

c1(t) =
(1−2α) t

M (α)
+

α t2

M (α)
. (38)

This is leads eventually to an exact solution to the system Eq.(33) as:

u(x, t) =
(1−2α) t

M (α)
+

α t2

M (α)
+ x. (39)

Fig. 4 Profile of the solution (39) for α = 0.9.

4.2 Fractional partial differential equations with Atangana-Baleanu derivative

In what follows, we discuss four examples of getting exact solutions to some partial differential equations
with Atangana-Baleanu fractional derivative.

• Example 1:

Consider the time-fractional partial differential equation:

ABCDα
t u(x, t) = uxx(x, t)+ t2ux(x, t), (40)

where t > 0,x ∈ R and 0 < α < 1.
which admits an invariant subspace defined through

W1 = L{1,x}, (41)

by virtue of
F [c1(t)+ c2(t)x] = c2(t)t2 ∈W1.
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It then follows that the form of exact solution for Eq.(40) is

u(x, t) = c1(t)+ c2(t)x, (42)

Substituting Eq.(42) in Eq.(40) and equating different powers of x to zero yields{ABCDα
t c1(t) = c2(t)t2,

ABCDα
t c2(t) = 0.

(43)

From the second equation of (43), we find that the function c2(t) is a constant, then we assume that c2(t) = 1.
WWe then conclude that the solution of the first equation of (43) is expressed as

c1(t) =
(1−α) t2

B(α)
+

2αtα+2

Γ(α)B(α)(α2 +2α +2)
. (44)

Consequently, the exact solution of Eq.(40) reads

u(x, t) =
(1−α) t2

B(α)
+

2αtα+2

Γ(α)B(α)(α2 +2α +2)
+ x. (45)

Fig. 5 Profile of the solution (45) for α = 0.9.

• Example 2:

Let us second consider the following time-fractional partial differential equation

ABCDα
t u(x, t) = sin(t)uxx(x, t), (46)

where t > 0,x ∈ R,0 < α < 1.
It is easy to check that Eq.(46) admits an invariant subspace as

W2 = L{1,x2}, (47)

Since
F [c1(t)+ c2(t)x2] = 2c2(t)sin(t) ∈W2. (48)
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Hence, an exact solution of Eq(46) has the following form

u(x, t) = c1(t)+ c2(t)x2, (49)

In a similar way, substitution of Eq.(49) in Eq.(46) gives{ABCDα
t c1(t) = 2c2(t)sin(t),

ABCDα
t c2(t) = 0.

(50)

From second equation of (50) it comes c2(t) is a constant then we assume that c2(t) = 1
2 .

Therefore, the solution of the first equation of (50) is

c1(t) =
(1−α)sin(t)

B(α)
+
−
√

tLommelS1
(3

2 +α, 1
2 , t
)
+ t1+α

Γ(α)B(α)(1+α)
. (51)

Finally, we obtain an exact solution of Eq.(46) as

u(x, t) =
(1−α)sin(t)

B(α)
+
−
√

tLommelS1
(3

2 +α, 1
2 , t
)
+ t1+α

Γ(α)B(α)(1+α)
+

1
2

x2. (52)

Fig. 6 Profile of the solution (52) for α = 0.9.

• Example 3:

Consider now the partial differential equation

ABCDα
t u(x, t) = tu2

x(x, t)+uxx(x, t), (53)

where t > 0,x ∈ R and 0 < α < 1.
Equation (26) admits an invariant subspace of the form

W3 = L{1,x}, (54)

as far as
F [c1(t)+ c2(t)x] = tc2

2(t) ∈W3. (55)
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Then we can form an exact solution of Eq.(26) as

u(x, t) = c1(t)+ c2(t)x, (56)

where c1(t) and c2(t) satisfy the following system of FDEs{ABCDα
t c1(t) = tc2

2(t),
ABCDα

t c2(t) = 0.
(57)

Solving second equation of (30), we get c2(t) = 1. Therefore, the solution of the first equation of (57) is
constructed as

c1(t) =
(1−α) t

B(α)
+

t1+α

Γ(α)B(α)(1+α)
. (58)

We finally obtain an exact solution of Eq.(53) as

u(x, t) =
(1−α) t

B(α)
+

t1+α

Γ(α)B(α)(1+α)
+ x. (59)

Fig. 7 Profile of the solution (59) for α = 0.9.

• Example 4:

WWe finally consider the nonlinear time-fractional partial differential equation

ABCD2α
t u(x, t) =

1
2

x2u2
xx(x, t)+ tux(x, t), (60)

where t > 0,x ∈ R,α ∈ [0,1] and α 6= 1
2 .

It is easy to check that the above Eq.(60) admits an invariant subspace as

W4 = L{1,x}, (61)

Since
F [c1(t)+ c2(t)x] = c2(t)t ∈W4. (62)
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Therefore, the exact solution of Eq.(33) has the form

u(x, t) = c1(t)+ c2(t)x. (63)

The functions c1(t) and c2(t) satisfy the following system of FDEs{CFD2α
t c1(t) = c2(t)t,

CFD2α
t c2(t) = 0.

(64)

From (64), it can be infered that c2(t) is a constant, let us assume that c2(t) = 1.
The first equation of (64) has then the following solution

c1(t) =
(1−2α) t

B(α)
+

1
2

t2α+1

Γ(α)B(α)(2α +1)
. (65)

Accordingly, we get an exact solution of Eq.(60) as

u(x, t) =
(1−2α) t

B(α)
+

1
2

t2α+1

Γ(α)B(α)(2α +1)
+ x. (66)

Fig. 8 Profile of the solution (66) for α = 0.9.

5 Conclusion

The modifed invariant subspace method was used to seek exact solutions to a class of nonlinear equations
with fractional derivatives having nonsingular kernels. Several examples illustrated the effectiveness of the
invariant subspace theory for exploring solution of various structures. It is also worth mentionning that the
present method does not need any use of laplace transform. Furthermore, some graphical reprensentations are
given to show the profiles of the obtained solutions. We stress here that those solutions are very useful to test the
efficiency of newly suggested numerical methods for solving partial differential equations with Caputo-Fabrizio
or Atangana-Baleanu fractional derivatives.
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