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Abstract
Let X be a dendrite, f : X → X be a monotone map. In the papers by I. Naghmouchi (2011, 2012) it is shown that ω-limit
set ω(x, f ) of any point x ∈ X has the next properties:
(1) ω(x, f )⊆ Per( f ), where Per( f ) is the set of periodic points of f ;
(2) ω(x, f ) is either a periodic orbit or a minimal Cantor set.
In the paper by E. Makhrova, K. Vaniukova (2016 ) it is proved that
(3) Ω( f ) = Per( f ), where Ω( f ) is the set of non-wandering points of f .
The aim of this note is to show that the above results (1) – (3) do not hold for monotone maps on dendroids.
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1 Introduction

We use N and C to denote the set of natural numbers and a complex plane, respectively. The simbol i means
an imaginary unit.

By continuum we mean a compact connected metric space. A topological space X is unicoherent provided
that whenever A and B are closed, connected subsets of X such that X = A∪B, then A∩B is connected. A
topological space is hereditarily unicoherent provided that each of its closed, connected subset is unicoherent.
By a dendroid we mean an arcwise connected hereditarily unicoherent continuum. A dendrite is a locally
connected continuum without subsets homeomorphic to a circle. We note that a dendrite is a locally connected
dendroid. Also we notice that a circle is not a unicoherent continuum. So a dendroid and a dendrite do not
contain subsets homeomorphic to the circle and they are one-dimensional continua.

Let X be a dendroid with a metric d. An arc is any set homeomorphic to the closed interval [0,1]. We notice
that any two distinct points x,y ∈ X can be joined by a unique arc with endpoints x, y (see, e.g., [1], [2]). We
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denote by [x,y] an arc joining x and y and containing these points, (x,y) = [x,y]\{x,y}, (x,y] = [x,y]\{x} and
[x,y) = [x,y]\{y}.

The set X \{p} consists of one or more connected set. Each such set is called a component of a point p.

Definition 1. A point p ∈ X is called to be
– an end point of X if the set X \{p} is connected;
– a branch point of X if the set X \{p} has at least three components.

If X is a dendrite then the set of branch points and the number of components of any point p ∈ X are at most
countable (see [1, §51]). These statements are not true for dendroids.

Let f : X → X be a continuous map of a dendroid X . ω-limit set of a point x ∈ X is the set

ω(x, f ) = {z ∈ X : ∃n j ∈ N,n j→ ∞, lim
j→∞

f n j(x) = z}.

Definition 2. A point x ∈ X is said to be
– a periodic point of f if f n(x) = x for some n ∈ N. When n = 1, we say that x is a fixed point of f ;
– a recurrent point of f if x ∈ ω(x, f );
– a non-wandering point of f if for any neighborhood U(x) of a point x there is a number n ∈ N so that
f n(U(x))∩U(x) 6= /0.

Let Fix( f ), Per( f ), Rec( f ), Ω( f ) denote the set of fixed points of f , the set of periodic points of f , the set
of recurrent points of f , the set of non-wandering points of f respectively. It is well known that

Fix( f )⊆ Per( f )⊆ Rec( f )⊆
⋃
x∈X

ω(x, f )⊆Ω( f ).

Definition 3. [1, §46] Let f : X → X be a continuous map of a dendroid X . A map f is said to be monotone if
for any connected subset C ⊂ f (X), f−1(C) is connected.

Let f : X → X be a monotone map. Denote by f n the n-iterate of f ; that is, f 0 = identity and f n = f ◦ f n−1

if n≥ 1. We note that f n is monotone for every n ∈ N.
For monotone maps on dendrites the next statements are true.

Theorem 1. [3] Let f : D→D be a monotone map of a dendrite D. Then for any point x∈D, ω(x, f )⊆ Per( f ).

Theorem 2. [4] Let f : D→ D be a monotone map of a dendrite D. Then Ω( f ) = Per( f ).

Theorem 3. [5] Let f : D→ D be a monotone map of a dendrite D. Then for any point x ∈ D, ω(x, f ) is either
a periodic orbit or a minimal Cantor set.

In the note we show that Theorems 1 – 3 do not true for monotone maps on dendroids. Theorem 4 shows
that Theorems 1, 2 do not hold for such maps.

Theorem 4. There are a dendroid X1 and a monotone map f1 : X1→ X1 such that
(4.1) ω(x, f1)* Per( f1) for some point x ∈ X1;
(4.2) Ω( f1) 6= Per( f1).

The next Theorem shows that Theorem 3 does not true for monotone maps on dendroids.

Theorem 5. There are a dendroid X2 and a monotone map f2 : X2→ X2 such that for some point x∈ X2, ω(x, f2)
is a nondegenerate closed interval belonging to the set Fix( f2).

We note that there are continuous skew products of maps of an interval with a closed set of periodic points
such that some their trajectories have a nondegenerate closed intervals as ω-limits sets (see, e.g., [6] – [11]).
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2 Proof of Theorem 4

I. Construction of the dendroid X1.
Let K be a Cantor set on the closed interval [0,1], a point p(1

2 ,
1
2 + i) ∈ C. We set

X1 =
⋃
e∈K

[p,e].

Note that X1 is a dendroid which is not a locally connected continuum in any point x ∈ X1 \{p}.
II. Construction of the map f1 : X1→ X1.
We need the auxiliary map named binary adding machine.

Definition 4. Let Σ = {( j1, j2, . . .)} be the set of sequences, where ji ∈ {0,1}. We put a metric dΣ on Σ given
by

dΣ((k1,k2, . . .),( j1, j2, . . .)) =
+∞

∑
i=1

δ (ki, ji)
2

,

where δ (ki, ji) = 1, if ki 6= ji and δ (ki, ji) = 0, if ki = ji. The addition in Σ is defined as follows:

(k1,k2, . . .)+( j1, j2, . . .) = (l1, l2, . . .),

where l1 = k1 + j1 (mod 2) and l2 = k2 + j2 + r1 (mod 2), with r1 = 0, if k1 + j1 < 2 and r1 = 1, if k1 + j1 = 2.
We continue adding the sequences in this way.

The adding machine map σ : Σ→ Σ is defined as follows: for any ( j1, j2, j3, . . .) ∈ Σ,

σ(( j1, j2, j3, . . .)) = ( j1, j2, j3, . . .)+(1,0,0, . . .).

Lemma 6. [12], [13] 1. Σ is a Cantor set;
2. σ : Σ→ Σ is a homeomorphism;
3. Per(σ) = /0;
4. Rec(σ) = Σ.

To define a map f1 : X1→ X1 we need two auxiliary maps.
1. Let h : K→ Σ be any homeomorphism. We define a map τ : X1→ X1 as follows:

τ : [p,e]→ [p,h−1 ◦σ ◦h(e)] be a linear homeomorphism so that τ(p) = p , τ(e) = h−1 ◦σ ◦h(e).
According to lemma 6 we get the next properties of τ:

1.1. τ is a homeomorphism;
1.2. Per(τ) = Fix(τ) = {p};
1.3. x ∈ Rec(τ)\Per(τ) for any point x ∈ X1 \{p}.

2. Let e be any point from K and ϕ : [p,e]→ [0,1] be any linear homeomorphism so that ϕ(p) = 1, ϕ(e) = 0.
We define a second auxiliary map g : X1→ X1 by the following way: for any point e ∈ K

g : [p,e]→ [p,e] be a homeomorphism such that g(x) = ϕ−1 ◦ x2 ◦ϕ(x) for any point x ∈ [p,e]. Then a map g
has the next properties:
2.1. g is a homeomorphism;
2.2. Per(g) = Fix(g) = {p}∪K;
2.3. for any point e ∈ K and an arbitrary point x ∈ (p,e], ω(x,g) = {e}.

Now we set f1 = g◦ τ : X1→ X1. By properties of maps τ and g, we get the following statements:
1) f1 is a homeomorphism and so f1 is a monotone map;
2) Per( f1) = Fix( f1) = {p};
3) for any point x∈ X1 \{p}, ω(x, f1) is a minimal Cantor set K, that is ω(x, f1) = K. Hence, ω(x, f1)* Per( f1).
4) Ω( f1) = {p}∪K. So Ω( f1) 6= Per( f1).

Theorem 4 is proved.
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3 Proof of Theorem 5

I. Construction of the dendroid X2.
We define a sequence {sk}k≥1 by the following way:

s0 = 0, sk = sk−1 +2(2k−1), for k ≥ 1. (1)

We set

I j =

[
1
2 j ;

1
2 j + i

]
, for j ∈ {sk}k≥0. (2)

For any number n ∈ N\{sk}k≥1 there is a natural number k ≥ 0 such that sk < n < sk+1. It follows from (1)
that for any k ≥ 0 every interval (sk;sk+1) contains 2k+2−3 natural numbers. For every k ≥ 0 and any number
1≤ j ≤ 2k+2−3 we define a vertical segmet Isk+ j by the following way:

Isk+ j =


[

1
2sk+ j ;

1
2sk+ j +(1− j

2k+1 )i
]
, if 1≤ j ≤ 2k+1−1;[

1
2sk+ j ;

1
2sk+ j +

j+2−2k+1

2k+1 i
]
, if 2k+1 ≤ j ≤ 2k+2−3.

(3)

It follows from (2) and (3), that for any number n ∈ N∪{0} we defined a segment In. Now we set

X2 = [0,1]∪ [0, i]∪
∞⋃

n=0

In.

A continuum X2 is a dendroid, but it is not a dendrite because X2 is not a locally connected continuum in any
point x ∈ (0, i]. You can see a dendroid homeomorphic to X2 on figure 1.

Fig. 1 Dendroid homeomorphic to X2.

II. Construction of the map f2 : X2→ X2.
We define a monotone map f2 : X2→ X2 as follows:

(i) f2(z) = z, if z ∈ [0, i];
(ii) f2(z) = z/2, if z ∈ [0,1];
(iii) f2 : I j→ I j+1 be a linear homeomorphism such that f2(I j) = I j+1 for any number j ≥ 0.
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III. Properties of f2.
1. f2 is a homeomorphism.
2. Per( f2) = Fix( f2) = [0, i].
3. We show that f2 is a continuous map.
It is evident that f2 is a continuous map in any point z ∈ X2 \ [0, i]. We’ll prove a continuity of f2 in any point

z ∈ [0, i]. Let U(z) be an arbitrary neighborhood of a point z and let ε > 0 be a diameter of U(z). We take any
number k ≥ 1 so that Isk ∩U(z) 6= /0. Then by (3) and (iii) for any j ≥ sk and for any point x ∈ I j

|Im f2(x)− Imx| ≤ 1
2k+1 , (4)

where Im∗ is the imaginary part of a complex number *. By (ii) and (iii),

|Re f2(x)−Rex|= 1
2 j+1 ≤

1
2k+1 , (5)

where Re∗ is a the real part of a complex number *.
It follows from (4) and (5) that for any j ≥ sk and any point x ∈ I j

| f2(x)− x| ≤
√

1
22(k+1) +

1
22(k+1) =

1
22k+1 . (6)

Let U1(z) ⊂U(z) be a neighborhood of a point x with diameter ε/2k+1. Then by (6) f2(U1(z)) ⊆U(z), that is
f2 is a continuous map in a point z.

4. We show that ω(1+ i, f2) = [0, i].
Let z be any point from [0, i] and U(z) be an arbitrary neighborhood of a point z of diameter d. We take any

natural number k1 so that
1

2k1
<

d
2
.

Now we take any natural number K ≥ k1 such that IsK ∩U(z) 6= /0. According to the choice of k1 and (4) there is
a natural number j ≥ 1 so that

Im f j
2

(
1

2sK
+ i
)
∈
(

Imz− d
2
, Imz+

d
2

)
.

It follows from here that f sK+ j
2 (1+ i) ∈U(z). So, z ∈ ω(1+ i, f2).

Thus, ω(1+ i, f2) = [0, i] = Fix( f2). Theorem 5 is proved.
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[7] Balibrea F., García Guirao J.L., Muñoz Casado J.I. (2002) A triangular map on I2 whose ω-limit sets are all compact

interval of 0× I Discrete Contin. Dyn. Syst. 8 983–994.
[8] Efremova L.S. (2017) Dynamics of skew products of interval maps Russian Math. Surveys 72 101–178.

https://www.sciendo.com


316 E.N. Makhrova Applied Mathematics and Nonlinear Sciences 5(2020) 311–316

[9] Efremova L. S. (2010) Differential properties and attracting sets of a simplest skew product of interval maps Sb. Math.
201 873–907.
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