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Abstract

We study behavior of the topological entropy as the function of parameters for two-parameter family of symmetric Lorenz
maps T, ¢(x) = (=1 +c|x|'~#) - sgn(x). This is the normal form for splitting the homoclinic loop in systems which have
a saddle equilibrium with one-dimensional unstable manifold and zero saddle value. Due to L.P. Shilnikov results, such
a bifurcation corresponds to the birth of Lorenz attractor (when the saddle value becomes positive). We indicate those
regions in the bifurcation plane where the topological entropy depends monotonically on the parameter c, as well as those
for which the monotonicity does not take place. Also, we indicate the corresponding bifurcations for the Lorenz attractors.

Keywords: topological entropy, Lorenz attractor, homoclinic bifurcation, jump of entropy
AMS 2010 codes: 37B40, 37D45, 37G20

1 Introduction

The paper is devoted to the study of one-dimensional factor map for the geometric model of Lorenz attractors
in the form of two-parameter family of Lorenz maps on the interval / = [—1, 1] given by

Te(x)=(—1+c- x|17€) - sgn(x) (D
Here the parameters c, € satisfy the inequalities
1. 0 < ¢ <2, which guarantees the invariance of the interval /;

2. 0 < € < 1, which corresponds to positive saddle value in the geometric Lorenz model (see below) and
implies infinite one-sided derivatives at the discontinuity point.
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Fig. 1 Afraimovich-Bykov-Shilnikov geometric model of Lorenz attractor

Such families of maps appear naturally in the studies of bifurcations related to the birth of Lorenz attrac-
tor from the separatrix loop with zero saddle value. Based on the geometric model of Lorenz attractor by
Afraimovich, Bykov and Shilnikov [1], consider a system of (n+ 1) differential equations with the saddle O
having one-dimensional unstable manifold for the eigenvalue y > 0; we also assume that among other eigen-
values, the smallest one (with respect to the absolute value), say A, is real, so that we have Re A; < 4; <0
(i=2,...,n). The next assumption is the following: there is a section D which is transverse to the stable mani-
fold W*(0) and invariant under the Poincaré map T : D — D. If one introduces the coordinates (x,y) on D such
that the line y = 0 corresponds to the trace of the stable manifold D NW?#(0), the map T can be written as

f:l:(va> = Xl +B:|:|y’v +¢:|:(Xay)7

g+ (x,y) =yi +AL|" +ye(x,y),

where v = —-L < 1 is the saddle index of O and (x%,y%), (x*,y*) are the points of intersection of unstable
manifolds w1th D (see the cusps in fig. 1); Ay, By are nonzero coefficients and ¢4 (X,y), Wi (xX,y) are smaller
remainder terms.

The main conditions in the above geometric model are the hyperbolic ones for the section D: namely, the
following is supposed to hold

a) | %) <1, b) |(%)7 ) <1,
) 1= %1 1(%2) 11> 2+ /0%~ 211 1)~ 182 2
d) [[(%) 71 2 %] < (1= 1% D (= 11(%2) 1)),

These conditions imply the existence of invariant stable foliation on D whose leaves are Lipschitz of the
form y = h(x). The factor map 7 (y) for the Poincaré map along the leaves y = h(x) of the stable foliation
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is a one-dimensional map with the single discontinuity point y = 0 and two monotonicity intervals for y > 0
and y < 0. The factor one-dimensional map is usually called the Lorenz map (or Lorenz-like map). More
precisely, it is an interval map with one discontinuity point and two continuous, monotone increasing branches.
By appropriate scaling one may assume that the interval is [—1, 1], the discontinuity point is 0, and

lim 7(x) =T(0+)=—1, lim T(x) =T(0—) =1°

x—0+ x—0—
Symmetry of Lorenz map (like in the original Lorenz equation and in the family under consideration) means
that 7 (x) = =T (—x).

One of the criteria for the birth of Lorenz attractor (see [2, 3]) is the presence of the homoclinic butterfly to
the equilibrium state with zero saddle value. In more details, assume that the unstable separatrices I'; and I, of
the saddle O tend to O as t — oo, so that they are tangent to the leading stable direction (which corresponds to
the eigenvalue A,) touching it from the same side with respect to the strong stable manifold, and the following
equality holds; Y+ A; = 0. This bifurcation is related to the Poincaré map of the form

fi(xvy) = Xj:_'_Bi‘y‘lis +¢i‘(xay7.ui78)7
gi(xvy):“i+Ai’y’178+Wi(X7y7.ui78)' (3)

The above assumptions imply the following result on the birth of Lorenz attractors.

Theorem 1. (Shilnikov, [2]) If 0 < |Ay| < 2 for the map (3), then in the parameter plane (I, €) there is a region
Via such that (0,0) belongs to the closure Vi, and for every point (1,€) € Vya, the initial flow has Lorenz
attractor.

Consider a system of differential equations which admits some involution R. Moreover, assume that the
equilibrium state O satisfies R(O) = O. Then, according to the Bochner-Montgomery theorem, one may consider
that the involution acts linearly in a neighborhood of O. Denote by ey and e; the eigenvectors corresponding to
the eigenvalues y and A;, respectively, and assume that R(ep) = —ep and R(e;) = e;. In this case, in the space
of dynamical systems having the symmetries with the above properties, the bifurcation described in Theorem
1 belongs to a codimesion-2 bifurcation set, and thus, it may appear in two-parameter families of differential
equations. In particular, the well-known Shimizu-Morioka equations provide an example of such a system:

X=y,
y=x-(1-z)—Ay, 4)
f=—a-z 2%

In [4], the system (4) is shown to appear as the normal form in studying the local bifurcations of the equi-
librium state which has zero eigenvalue with multiplicity 3. Also the parameter values corresponding to the
existence of the Lorenz attractor in this system have been found numerically. Later, A. Shilnikov studied the
Shimizu-Morioka system in more details ( [5, 6]). Note that in [6] the kneading technique was applied for
studying the system (4) (see the section 3 below for definitions and some results of the kneading theory). In
particular, one of the results of those studies is the following fact: in the parameter plane (¢, 1), the boundary
of the region corresponding to the existence of Lorenz attractor, contains the system having homoclinic figure-8
loop at a saddle with zero saddle value (see fig. 2). Presence of this bifurcation in the system (4) has been
proven analytically in [7]; however, the problem on finding the estimate on the separatrix value A, which would
allow to apply theorem 1, remained open, until recently it was obtained in [8] that 0.625 < A < 0.627 (using the
computer assisted proof).

2 The latter conditions could be assumed without loss of generality because outside the interval [T (0+), 7 (0—)] each point is wandering
and dynamics is trivial.
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Fig. 2 Bifurcation diagram for the Shimizu-Morioka system near the point Q(o = 0.608, 4 = 1.044) which corresponds
to the homoclinic figure-8 bifurcation to a saddle with zero saddle value. (The green region corresponds to parameter
values where the Lorenz attractor exists.)

Further we will assume that the system under consideration possesses symmetry and that Ay > 0. In this
case the region where attractor V4 exists, lies in the half-plane u < 0, and the factor map with respect to the
stable foliation is of the form

F=(—u+Ap["E+o(ly]'*)) - sgn(y).

Consider the truncated factor map obtained by omitting small terms

F=(—u+Ap"%) sgn(y).

Denoting the coordinate y = px (1 > 0) we get the formula for the map under consideration in the present
paper
ux = (—p+Ap'E x| €) - sgn(x),
%= (—1+4clx|' %) -sgn(x), where c = Au¢.

Note that this change of coordinates is degenerate at 4 = 0 and so, the line g = 0 in the parameter plane
(1, €), which corresponds to systems with homoclinic loops, is transformed to ¢ = o in the parameter plane
(c,€). Since the value 1 ¢ can attain any number from 1 to e as ¢, € — 0, it follows that the point (1 = 0,& =0),
which corresponds to the homoclinic butterfly bifurcation of the saddle with zero saddle value in the initial
system, is transformed into the whole straight line € = 0. Therefore the map 7. ¢ with € small is related to the
bifurcation of birth of attractor from the separatrix loop with zero saddle value.

The paper is organised as follows. Section 2 contains the construction of bifurcation diagram in the parame-
ter space (c, €). We indicate the bifurcation curves which divides the parameter plane into regions with different
number of connected components of attractor and indicate some other dynamical features. We also add the lines
of constant topological entropy (the kneading charts) to this diagram.
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Fig. 3 The graph of topological entropy for the logistic map f,(x) = ax(1 —x).

In Section 3 we consider the entropy and kneading aspects of dynamics of the family 7. .. We study the
problems of continuity and monotonicity of topological entropy as the function of the parameter c. Note that
the problems of monotonicity of topological entropy was considered for specific families of one dimensional
maps by several authors. In [9], [10] it has been proven that for quadratic maps x* + ¢, the topological entropy
is a monotone (non strictly) increasing function of ¢ (see fig. 3 for the logistic family, which is actually the
same after change of coordinates). In recent paper [1 1], the monotonicity result was proven for the family x’ + ¢
with ¢ large (not necessarily integer). Our family of maps is different from those families in the sense that we
allow infinite derivatives at the discontinuity point, which makes the problem even more complicated because
the complex analysis technique doesn’t work here.

We show that for € fixed, in the one-parameter family 7;. = T. ¢, the topological entropy is not monotone. We
show numerically that the topological entropy as the function of ¢ has a single minimum in certain region. Also
we show that in the case when T, ¢ is expanding ( (DT > g > 1), the topological entropy is monotone increasing
inc.

2 Bifurcation diagram

In this section we study principal bifurcations of the map 7. ¢ in the region 1 <c¢ <2 ,0<¢e <1 of the
parameter plane. Note that we consider the map 7. not only for € small, and hence, some of our results lie
beyond the applications in the geometric Lorenz model (in particular, the condition b) in (2) is satisfied not for
all regions we consider here)

The figure 4 presents the bifurcation diagram. It makes sense to consider this diagram together with the
chart of the kneading invariants presented in figure 5. The notion of the kneading invariant is discussed in details
below in section 3. Now we only stress that under some natural assumptions (like expanding ones) the kneading
invariant is the complete invariant of topological conjugation, and in more general case, the points with the
same kneading invariant have similar orbits (up to so-called combinatorial equivalence). Thus, the kneading
chart along with the bifurcation diagram allow to realize fairly complete picture of dynamical and topological
structure.

Further we will describe the regions in the bifurcation diagram as well as the curves which partition these
regions. First we explain the reason for considering the values ¢ just from the interval [1,2].

The case when ¢>2. If ¢ > 2, the dynamical behavior is as follows. The interval I is no longer invariant
under 7;. .. Indeed, for such c¢ two unstable fixed point x* > 0 and —x" belong to the interval / (see fig. 6)
and any point from subintervals (x*,1) and (—1,—x") tends to the stable fixed points x* or —x*, respectively,
outside the interval I (here we consider the map 7. ¢ on the whole real line; note that 7. ¢ is well defined on R
due to formula (1)). The same happens to every preimage of these two subintervals. The restriction of 7; ¢ to
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Fig. 4 The bifurcation diagram for map 7; ¢. Green region correspond to the existence of Lorenz attractor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 €
Fig. 5 The kneading chart for map 7. ¢ shows that the topological entropy as the function of ¢ has a single minimum for €

in the interval [0,0.6] (more precise calculation gives € € [0,0.76]). Above the red line one has that 7 ¢ is expanding
(DT.¢ > 1), and there the topological entropy is monotone increasing in c.
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the interval [—x",x"] is an expanding map because, due to monotonicity of the derivative, one has the inequality
DT (x) > DT (x") > 1. So almost all points (with respect to Lebesgue measure) tend to the two stable fixed
points. By standard arguments using the expanding condition, the nonwandwering set NW (T, ¢) consists of a
Cantor set (the set of points not escaping from the interval I), and moreover, the map 7. , restricted to this set is
conjugate to the one-sided Bernoulli shift with two symbols.

=X’ -x”/ .
1 a /x” 1 x5

c=2.2,¢=04

Fig. 6 The graph of T . and the trajectory of the discontinuity point for ¢ > 2.

The case when 0<c<1. If 0 < ¢ < 1, the dynamics of T, ¢ is trivial: all orbits converge to the stable periodic
orbit of period two, which will be denoted by

(P’,q°), where p* <0< ¢’.
It follows from uniqueness of stable period-2 orbit along with the symmetry of the map that
—14c-x'"7f=—x.

The case when c=1. If ¢ = 1 (see fig. 7), the point x = 1 is mapped into T} (1) = 0, i.e., the discontinuity
point is of period 2. This bifurcation line ¢ = 1 corresponds to the presence of a pair of two-round homoclinic
loops in the three dimensional flow. The yellow region adjacent to the axis ¢ = 1 in fig. 4 corresponds to the birth
(from the discontinuity point) of two unstable period-2 points which will be denoted by (p{,q}) and (p4,45).
We have

Pi<p <p;<0<qi<q <q,

and the trajectory of the discontinuity point gets into the basin of the stable point. Since
T2[0,q1) = Toe[-1,P1] O [P5:4i];

T2 [P%:0] = T..elq5, 1] O [p5:41],

it follows (it is enough to apply the same arguments as in the case ¢ > 2 for the second iteration 7}%8) that the
nonwandering set consists of a stable periodic orbit and a Cantor set, the dynamics on which is conjugate to the
Bernoulli shift with two symbols.
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a) c=1 b) c=1.1

Fig. 7 The second iteration of the map T; ¢ for € = 0.7 with ¢ = 1 (fig. a) and ¢ = 1.1 (fig.b). In fig. b, a magnified
fragment near the discontinuity point is shown.

Pitchfork bifurcation. The curve PF in fig. 4 corresponds to the fusion of three periodic orbits of period 2
(see the case above) into a single unstable orbit of period two. The equation of this curve can be obtained from

—14c-x'"¢ = —x (period-2 condition),
c(l—¢€)-x"¥ =1 (the tangency condition),

here for the tangency condition we used the symmetry of period-2 orbit. So we get the equation for the bifurca-

tion curve PF .
1 1-e 1 (5)
c(l-2)-{ 53—

Saddle-node bifurcation. In the upper yellow region (in [0,1] x [1,2]) in fig. 4 , the map acts similarly to
the one for ¢ > 2: namely, the nonwandering set consists of two stable fixed points and a Cantor set, so that
the dynamics on this Cantor set is conjugate to the Bernoulli shift with two symbols. Other (wandering) points
converge to the two stable fixed points. The boundary of this region is the saddle-node bifurcation curve, which
is given by

—1+c-x"t=x,

c(l—g)-x¢=1.
The fixed point at which this bifurcation takes place is the following

_1—8 6
x=— (6)

so the equation of the curve is of the form

c(l—e)-<1;8> _1

1
Note that the boundary of the yellow region is that part of the curve for which x < 1, i.e., € > 3 (see (6)).

The region where the attractor exists.In the green region in fig. 4 the map 7. . has a nontrivial attractor
(numerical evidence). By attractor A we mean a closed invariant set which has an absorbing open domain U D A
with

fU)cU, A= f"(U).
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a) c=1.8 b) c=1.842 c)c=19
Fig. 8 Saddle-node bifurcation for € = 0.7

In the region LA, the map T ¢ is transitive, i.e., there is a dense orbit in /, and hence the attractor coincides
with the whole /. One of the connected boundaries of the region LA is the bifurcation curve, which corresponds

. /

a) c=1.084 b) c=1.324
Fig. 9 Trajectory of the discontinuity point at the boundary of the LA; region for € = 0.4.

to the case when the discontinuity point is eventually periodic (pre-periodic) to the period-2 orbit. Its equation

is
2—c

1—-e
(e—1)'7F="—. 7)

Consider in more details, what happens when passing this curve. While passing from the region LA; to the
region LA, the interval [—p, p|, where the points {—p, p} form the single period-2 orbit, becomes invariant
under Tc%e, and the restriction TC%S |(—p,p] becomes now (after scaling) a Lorenz map with the (same) discontinuity
point x = 0. The map Tc%g is no longer transitive, and the attractor comprises now of three subintervals (connected
components)

A=[-1,—a)U[—a,ad]U(a,1], where a = TC%E(O—).

Note that the periodic orbit {—p, p} ceases to belong the attractor. The corresponding trajectory in the initial
flow is the saddle cycle whose stable manifolds do not intersect unstable manifolds of the attractor.

The maximal wandering intervals whose boundary contains this unstable orbit is usually called the trivial
lacunae and similar definition is used for initial flow. Fig. 10 shows schematically the appearance of the trivial
lacuna and the corresponding reconstructing of the attractor.

By passing from LA, to LA3, a similar bifurcation for the restriction TC%E on appropriate interval takes place.
Here, another trivial lacuna appear which corresponds to the period-4 orbit, and so on: this scenario (renormal-
ization) appears infinitely many times. Thus, in LA; the nonwandering set except for the attractor, contains trivial
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Fig. 10 Sketch of creation of the trivial lacuna

lacunae. There are countably many such regions, and they accumulate at (0,0). The boundary between L;_;
and L; (see red lines in fig. 4) is the bifurcation curve which corresponds to the moment when the discontinuity
point becomes eventually periodic to unstable 2/-periodic orbit. In other words, unstable separatrices of the
equilibrium O are heteroclinic to the same many-round saddle cycle.

Note that the set of points corresponding to the moments when the discontinuity point is eventually periodic
to the period-2 orbit, is the union of two curves (see two thick red lines in fig. 4). It is not only the boundary
between the regions LA and LA,, but also the boundary corresponding to the presence of the attractor. Through
the point of intersection of these curves, the curve PF passes as well; this corresponds to the moment when a
single period-2 orbit exists, and its multiplicator equals 1. In this bifurcation moment the map 7 is transitive,
and the attractor coincides with the whole /.

3 Non-monotonicity of the topological entropy

First recall the main concepts and some results of the kneading theory. The kneading theory was introduced
in [12] for continuous piecewise monotone maps of the interval. In [13], the kneading theory was developed for
(discontinuous) Lorenz maps and in [14] for unimodal maps along with their Lorenz models.

Let T be a Lorenz map and consider a point x € /, which is not a preimage of the discontinuity point. Then
the kneading sequence of x is the symbolic sequence of symbols {+1,—1} define by

o(x) = @y ®; @ ..., where @; = sgn(T'(x)). (8)

Let us supply the set of one-sided sequences of symbols {+1,—1} with the lexicographical order and the prod-
uct topology (it is consistent with the distance |® — ©| = Y77, M) Further, one can define the kneading
sequences for preimages of the discontinuity points: namely, to each preimage one associates two symbolic
sequences

o (x)= lim o), o (x)= lim oy
y—x+0 y—x—0

The most important are the kneading sequences of the discontinuity point x =0

Kl = lim o K: = lim o
r =i ob) Kr = lin, 00)

Note that in the symmetric case (like for symmetric Lorenz map in the geometric model of Lorenz attractor) one
has K = —K;.

Based on the results by M. Misiurewicz, (see, e.g. [15] ), the topological entropy for a piecewise monotone
map f can be calculated as the limit

. _logl
hiop () = Jim ==,

(&)
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where /; is the number of monotonicity intervals of fk . As was shown in [12, 13], there is an important relation
between kneading invariants and the topological entropy. Namely, let us associate each symbolic sequence ®
with the formal power series with the same coefficients (the generating function)

o(t):=Y -1
n=0

The following relation holds.

Theorem 2. For a Lorenz map T (not necessarily symmetric) with positive topological entropy (hy,,(T) > 0),
the value e "or(T) is the minimal positive root of the function

D(t) := K} (t) — Ky (1).

In fact, the problem on monotonicity of topological entropy for symmetric Lorenz maps is equivalent to the
problem on monotonicity of the kneading invariant K;i (with respect to the lexicographical order).

Along with monotonicity of the topological entropy for the family of maps T, . we discuss here the problem
of continuity of entropy as the function of the parameters. The next result is a generalization of the theorem
from [13], it provides a criterion for continuity/discontinuity of the topological entropy of Lorenz maps with
respect to C’-topology.

Theorem 3. (Malkin, Safonov, [16]) The topological entropy may have a jump at the Lorenz map T in the
space of Lorenz maps (not necessarily, symmetric) equipped with the C*-topology if and only if the following
two conditions hold:

1. there is a natural number p > 1 such that TP~'(1) = TP~ (=1) = 0 and T'(1) # 0, T'(—1) # 0 for all
O<i<p—1,

2. h[()p(T) == 0

Moreover, under the above conditions, the maximal possible jump of the topological entropy at T equals

limsup A, (f) = 1logZ.
f—T p

Note that for our family 7. . with ¢ > 1, the topological entropy is positive (it can be shown analytically; the
numerical calculation see in the graph of entropy in fig. 11). Thus, it follows from the above theorem that in the
whole rectangle with ¢ > 1 (in fig. 4), the topological entropy changes continuously.

If 0 < ¢ < 1, then the topological entropy equals 0, and the kneading invariant is of the form

Kf=+—+—4—....=(+-)~.

log2
In the green region (in fig. 4) near the axis ¢ = 1, the entropy equals Tg and the kneading invariant

is Kf =+ — (—+)™. So the topological entropy has jumps as the parameter ¢ varies at the points (1,€) for
0 < € < 1. In these cases the jumps due to theorem 3 has maximal possible value. In the rest of the yellow
region, the kneading does not change and it equals K;* = +(—)~. For these maps the topological entropy
coincides with that of the Bernoulli shift on two symbols, i.e., it equals log?2.

For the two red thick lines in fig. 4 (given by formula 7) the kneading invariant is the same as in the yellow
region below, i.e., Ki=+— (—4)*. Thus, if one fixes € and considers the one-parameter family 7, = T,
then there is an entire interval of € (approximately € € [0,0.76]) at which the topological entropy changes non-
monotonically. Numerical results suggest the conjecture that in this case the topological entropy has a single
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Fig. 11 The graph of topological entropy with respect
to parameter ¢

minimum. The graphs for several € are shown in fig. 11. This conjecture is also consistent with the kneading
chart (see fig. 5), because every vertical line € = const intersects the line of constant kneading no more than
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Fig. 12 The graph of topological entropy with respect
to parameter €

twice. Notice that at this minimum points, the line of constant kneading is tangent to the line € = const.

There are numerical results (and also analytical arguments) that the region in the (c,€)-plane, where the
topological entropy /., (7: ¢ ) depends monotonically on ¢, contains the points satisfying inequalities (see fig. 5)

c>1,0<e<l,c(l—¢)>1.

At this region the map 7. is expanding. Indeed, ||DT¢(x)||co) = DTig(1) = c(1 — €) > 1 because DT ¢(x)

has minimum at x = +1.

Now we want to remark that even without the expanding condition above the map still can possess chaotic
attractor. In particular, the next result shows that there are no stable periodic points not only in the region (10)

but also in wider region, namely, above the curve PF and satisfying DT?(1) > 1 (see figures 4 and 13).

1.6 A ’
1.5 4 g

1.4 4
1.3 4 e

1.2 A /

DT(1)=1

PF

Fig. 13 Illustration to theorem 4: above the dotted line one has the expanding condition, and in the whole green region
there are no stable periodic orbits. PF curve indicates the pitchfork bifurcation.
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Theorem 4. For points (c,€) in the parameters space (1 < ¢ <2, 0 < € < 1) lying above the curve PF

1—¢g) *
c(l—¢g)- (2_8> > 1

and satisfying the condition DT*(1) > 1, i.e., satisfying
c(1—g)> (c—1)%2,
the map T, ¢ has no stable periodic points.

Proof. In the proof we omit for simplicity the indexes c, € for the map T = T. . Consider the second iteration
T?(x) and find point x € I, for which the derivative DT?(x) takes the minimum value. For positive x > 0, we
have

log DT?(x) = log DT (T (x)) +log DT (x) = 2logc(1 — &) — € - (log | T (x)| + logx),

d 2N sgn(T (x)) - DT (x) n_ DT (x) 1
alogDT (x) =—¢ ( 70| +x> =—¢ (T(x) +x>.

Let a be the positive preimage of 0. Then 7(x) > 0 for x > a and the expression (11) takes positive value for
x > a. Hence,

Y

n%inl]DTz(x) =DT*(1) > lifc(1—g) > (c—1)¢/?
x€(a,

For x € (0,a) the point x of minimum log DT? satisfies the equation
DT (x)-x=—T(x),

which has the unique solution

1/1—¢
i (b ith 7'( *)__5
T c(2—¢) A s

From the uniqueness of the point x* it follows that the map 7. . can have at most one stable orbit of period two

within the interval (—a,a). Denote
—&
1—¢
l—¢) — =a
el ) (2 — e) ’

DTZ(X*) — a(Z—e)/(l—e)'

Let us check that

Indeed,
DTz(x*) =DT(x*)-DT(T(x*)) =c(l—&)(x*) "¢ -c(1—¢€)|T(x")| ¢ =

—g/l—¢ —£
1 1-—
=c(1-¢) (C(z_g)> c(1—¢) (2_3 =2 (1 gy e (2 g)" > 70

Recall that o = 1 corresponds to the bifurcation curve PE. Thus, for the values of the parameters (c, €) for which
a > 1 we have DT?(x) > 1 for all x € I. It follows from this fact that we have no stable periodic points: indeed,
if, by contrary, T had a stable periodic point xy of period m then xy would be the stable periodic point of period
2m, i.e. T*(xg) = (T?)"(xo). On the other hand, DT?"(xo) = DT?(xy) - DT?(x2) - ...- DT*(x2_2) > 1. The
contradiction proves the theorem.
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