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Abstract

The purpose of this article is to review the author’s results on the existence and structure of minimal sets and attractors of
conformal foliations. Results on strong transversal equivalence of conformal foliations are also presented. Connections
with works of other authors are indicated. Examples of conformal foliations with exceptional, exotic and regular minimal
sets which are attractors are constructed.
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1 Introduction

The purpose of this article is to review the author’s results on the existence and structure of minimal sets
and attractors conformal foliations. The results are illustrated by various examples. Connections with works of
other authors are indicated.

Remind that two Riemannian metrics 4 and g on a manifold M are called conformally equivalent if there
exists a positive smooth function f on M with h = fg. A conformal equivalence class [g] of Riemannian metrics
on M is called a conformal structure on M, and the pair (M, [g]) is said to be a conformal manifold.

A group of conformal transformations of a Riemannian manifold (M, g) is called inessential if it is a group
of isometries of a Riemannian manifold (M, &) with some & € [g]. Otherwise, it is called essential.

Lichnerowicz conjectured that for n > 3 every n-dimensional compact Riemannian manifold admitting an
essential group of conformal transformations is conformally equivalent to the standard n-dimensional sphere S".
The articles by M. Obata [22], D.V. Alekseevskii [1,2], J. Ferrand [13] and others are devoted to this conjecture.
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It was also established that if a group of conformal transformations of a non-compact Riemannian manifold M
is essential then M is conformally equivalent to the n-dimensional Euclidean space. In 1996 J. Ferrand [13] gave
a complete proof of the Lichnerowicz conjecture, including the case of non-compact manifolds.

C. Tarquini [26] and then C. Tarquini and C. Frances [14] posed the following question about conformal
foliations:

Is every codimension q > 3 conformal foliation on a compact manifold either a Riemannian foliation or a
(Conf(S?),S?)-foliation?

C. Frances and C. Tarquini called the question a foliated analog of the Lichnerowicz conjecture. For g > 3
a conformal foliation is a (Conf(S?),S?)-foliation if and only if it is transversally conformally flat. C. Frances
and C. Tarquini [14] gave a positive answer to this question under some additional assumptions. We proved that
in general the answer to the C. Frances and C. Tarquini question is positive (Theorem 7).

Our main results included in this article are as follows:

1) Different interpretations for the germ holonomy group of a leaf of a conformal foliation (Theorem 2).
2) A criterion for a conformal foliation to be Riemannian (Theorem 3).

3) The existence of an attractor which is a minimal set for every non-Riemannian conformal foliation of
codimension g > 3 (Theorem 4).

4) A structure theorem for conformal and transversely similar foliations on closed manifolds (Theorems 7
and 8).

5) Generalization of the results of P. Molino on the closures of leaves of Riemannian foliations (Theorem
10) and equivalence of completeness and existence of an Ehresmann connection for a conformal foliation
(Theorem 9).

6) The existence of a global transitive attractor for every complete non-Riemannian conformal foliation of
codimension g > 3 (Theorem 12) and description of the structure of such foliations (Theorem 13).

7) Properties of global holonomy groups of conformal foliations (Theorems 13, 14.)

8) The global holonomy group defined up to conjugacy in the group Conf(S?) is a complete invariant of the
class of strong transversely equivalent conformal foliations (Theorem 15). An analogous result for strong
transversely equivalent similar foliations (Theorem 16).

9) The existence of a two-dimensional suspension conformal foliation in every class of transversely equiva-
lent non-Riemannian conformal foliations (Theorem 18).

In Section 3.5 we compare our results with some results of B. Deroin and V. Kleptsyn [11].

Section 7 contains examples of conformal foliations with global attractors. In particular, we construct a con-
formal foliation with two global attractors, one of which is a transitive attractor but not a minimal set (Example
22).

Notations In this article we denote by M a smooth manifold of dimension n and by C*(M) the space of
smooth functions on M. Let X(M) be the C*(M)-module of smooth vector fields on M. Also, we denote by
X.(M) the C*(M)-module of compactly supported smooth vector fields on M.

2 Conformal foliations and associated constructions

2.1 Conformal foliations

First, we recall some basic notions.
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A diffeomorphism f : N; — N, of Riemannian manifolds (Ny,g;) and (N,,g>) is called conformal if there
exists a smooth function A on Ny with f*g, = Ag;. A conformal diffeomorphism f from a Riemannian manifold
(N, g) to itself is also called a conformal transformation. A conformal transformation f of (N, g) is said to be a
similarity, if f*g, = Ag for a constant A.

Conformal foliations were studied by some authors as foliations admitting a transverse conformal structure.

Definition 1. A codimension ¢ > 3 smooth foliation (M, F) is called conformal, if there are:
* a possibly disconnected Riemannian manifold (N, g);
* an open cover {U;|i € J} of M;
e submersions f; : U; — V; with connected fibers, V; C N,

such that: if U;NU; # 0, then there exists a conformal diffeomorphism ¥; : f;(UiNU;) — f;(U;NU;) satisfying
the condition f; = ¥;;0 fj on U;NU;.

Definition 2. A maximal (with respect to inclusion) N-cocycle {U;, fi, ¥ij }i,jes satisfying the above properties,
determines a new topology on M, whose base is the set of fibers of all submersions f;. This topology is called
the leaf topology and denoted by 7.

Path-connected components of the topological space (M, 1) form a partition F = {Ly | € A} of M, and
(M, F) is called the conformal foliation with leaves L, determined by the N-cocycle {U;, fi, ¥ij }i, jes-

It is also said that (M, F) is modeled on the conformal geometry (N, [g]).

Definition 3. If each ¥;; is a local similar transformation of (N, g), then (M, F) is called a transversely similar
Riemannian foliation.

Definition 4. If each ¥ is an isometry, then (M, F) is called a Riemannian foliation.
Let Conf(S?) be the Lie group of all conformal transformations of the g-dimensional sphere S?.

Definition 5. If a foliation (M, F) is defined by the N-cocycle {U;, fi, % }i jes, where N = S? and each 7;; is the
restriction of a transformation f € Conf(S?), then (M, F) is referred to as a (Conf(S9),S9)-foliation.

A conformal transformation of the complex plane is conformal in the above sense. Therefore, every trans-
versely complex analytic foliation of complex codimension one is a conformal foliation of real codimension two
in the sense of Definition 1. The converse is also true, i.e., every conformal foliation of codimension two can be
considered as a transversely complex analytic foliation of complex codimension one.

Conformal foliations of codimension two have been studied by several authors, using methods of complex
analysis. For example, in [6] P. Baird and M. Eastwood gave a detailed twistor description of conformal folia-
tions of codimension two in the 3-dimensional Euclidean space. Holonomy diffeomorphisms of these foliations
preserve the conformal equivalence class of Riemannian metrics on orthogonal complements to their leaves.

Since every 2-dimensional manifold is locally conformally flat, every conformal foliation of codimension
two is transversely conformally flat. A transversal conformal manifold (N,[g]) is locally conformally flat if
and only if, in codimension g > 3, its Weyl conformal curvature tensor vanishes or, in codimension g = 3, its
Schouten tensor vanishes.

Like S. Morita [21], in contrast to the case of conformal foliations of codimension two, we study conformal
foliations of codimension ¢, g > 3, by differential geometric methods, considering them as Cartan foliations.
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2.2 The foliated bundle over a conformal foliation

The construction of the foliated bundle is essentially used by us. Foliated bundles were introduced in works
of P. Molino, F. Kamber and Ph. Tondeur.

Recall that a foliation admitting an effective Cartan geometry of type (G,H) [10] as a transverse structure
is said to be a Cartan foliation of the same type. Remark that any conformal foliation may be considered as a
Cartan foliation of type (G,H), where G = Conf(S9) is the full group of conformal transformations of S¢ and
H is the stabilizer of G at an arbitrary point b € S9. Let g and h) be the Lie algebras of the Lie groups G and H,
respectively. Then we have the following statement [27].

Proposition 1. Let (M, F) be a conformal foliation of codimension q > 3. Then there are the following objects:
1. a principal H-bundle © : % — M;
2. an H-invariant foliation (% ,.# ) which is mapped by @ into (M, F);

3. a g-valued 1-form @ on %, satisfying the properties:
(i) ®(A*) = A for any A € ), where A* is the fundamental vector field corresponding to A;

(ii) R, = Adg(a=")o for any a € H, where Adg is the adjoint representation of the Lie group G in its
Lie algebra g;

(iii) the Lie derivative Ly @ vanishes for every vector field X tangent to the leaves of (%#,.F).

The H-bundle 7 : #Z — M is said to be foliated. The foliation (%,.%) is called the lifted foliation, and
(%,.%) is a transversely parallelizable foliation, i.e., an e-foliation.

2.3 Holonomy groups of a conformal foliation

We consider conformal foliations as Cartan foliations and use the construction of the principal foliated
bundle. Due to this, we can apply the results of our previous work [27].

In foliation theory, the germ holonomy groups are usually used. By analogy with [27], we give the following
interpretations for the germ holonomy group of a leaf of a conformal foliation.

As above, let G = Conf(S?) be the Lie group of conformal transformations of the sphere S7 and let H be
the stabilizer of G at an arbitrary point in S9.

Theorem 2. Let (M, F) be a conformal foliation of codimension q > 3, % be the foliated H-bundle over (M, F)
with the projection m : % — M and (Z,F) be the lifted foliation. Then, for every leaf L = L(x), x € M, of
(M,F) the restriction T|y : £ — L to the leaf £ = £ (u), u € ©~'(x), of the lifted foliation (%,.F) is a
regular covering map, and the germ holonomy group T'(L,x) of L is isomorphic to each of the following groups:

(i) the subgroup H(.X) :={a € H|R,(L) =L} of H;
(ii) the group of deck transformations of the covering mt| ¢ : £ — L.

Note that the group H(.Z) is defined up to conjugacy in the group H.

3 Minimal sets and attractors of conformal foliations

3.1 Minimal sets of foliations

A saturated set of a foliation is a union of leaves. Recall that a minimal set of a foliation (M,F) is a
nonempty closed saturated subset of M without proper subsets satisfying these properties.
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Existence of minimal sets and description of their structure are one of the central problems in the foliation
theory. A. H. Aranson, V. Z. Grines [4, 5] and J. Levitt [19] obtained a topological classification of nontrivial
minimal sets of flows and foliations on closed surfaces of genus p > 2. Minimal sets of Riemannian foliations
were studied by P. Molino [20], A. Haefliger [15] and E. Salem [23] without using the term minimal set.

Every foliation on a compact manifold has a minimal set. This is wrong for non-compact manifolds. Foli-
ations without minimal sets (on non-compact manifolds) are constructed in the works of J.-C. Beniere and G.
Meigniez [7], T. Inaba [16] and M. Kulikov [18]. Moreover, J.-C. Beniere and G. Meigniez proved the existence
of foliations without minimal sets on every non-compact manifold of dimension n > 2, different from surfaces
of finite kind [7].

A minimal set .# is called regular, if it is a submanifold of M. Let {U;|i € N} be an at most countable locally
finite open cover of M by foliated coordinate neighborhoods. Let 7; be a submanifold in U;, which intersects
transversely each leaf of the induced foliation (U;,Fy,), and let T = LenT; be the complete transversal. A
minimal set .#, having no interior points, is called:

e exceptional if /4 NT is a Cantor set;

e exotic if .4 NT is not a totally disconnected topological space.

In Section 7 we construct examples of conformal foliations with exotic, exceptional, and regular minimal
sets.

3.2 A criterion for a conformal foliation to be Riemannian

Definition 6. The holonomy group of a leaf L of a conformal foliation is said to be relatively compact or
inessential if the corresponding subgroup H(.Z) of the Lie group H is relatively compact.

Since H(.Z) is defined up to conjugacy in H, then this definition is correct.
We established the following criterion for a conformal foliation to be Riemannian [29, Theorem 3].

Theorem 3. Let (M, F) be a codimension q > 3 conformal foliation modeled on a conformal geometry (N, [g]).
Then there exists a Riemannian metric d € [g| such that (M, F) is a Riemannian foliation modeled on (N,d) if
and only if every holonomy group of this foliation is relatively compact, i.e. inessential.

Remark 1. According to [31, Theorem 3], Theorem 3 holds for transversely similar Riemannian foliations of
codimension g > 2. Note that it is true also for g = 1.

3.3 The existence of attractors of conformal foliations

Let (M, F) be a foliation.

Definition 7. A nonempty closed saturated subset .# of M is called an attractor of (M,F) if there exists a
saturated open neighborhood Artr(.#') of .# such that the closure of every leaf belonging to Attr(.# )\ A
contains ./ .

If, in addition, Attr(.#) = M, then the attractor .# is called global.

In the case when there exists a dense leaf in .Z, the attractor ./ is referred to be transitive.

Using the criterion for conformal foliation to be Riemannian (Theorem 3) and some results from local
conformal geometry, we prove the following theorem on two alternative possibilities for conformal foliations.

Theorem 4. Let (M, F) be a codimension g > 3 conformal foliation. Then:

o either it is Riemannian,
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e or it has an attractor .# which is the closure of a leaf L with essential holonomy group, .# = L,
and a minimal set. Moreover, the restriction (/ttr(.#),F) of the foliation to the attraction basin is
a (Conf(S1),S4)-foliation.

Recall that a foliation (M, F) is called proper if all its leaves are embedded submanifolds of M. A leaf L is
called closed if L is a closed subset of M.

Corollary 5. Every proper non-Riemannian conformal foliation of codimension q > 3 has a closed leaf with
essential holonomy group that is an attractor.

Corollary 6. A non-Riemannian conformal foliation (M, F) of codimension q > 3 has a minimal set that is an
attractor of this foliation.

Remark 2. Theorem 4 is proved without assumption that the foliated manifold M is compact.
3.4 An analog of the Lichnerowicz conjecture for conformal foliations

The following theorem [28, Theorem 4] gives a positive answer to the C. Frances and C. Tarquini question
stated in Introduction in the general case.

Theorem 7. Any codimension q > 3 conformal foliation (M, F) on a compact manifold M is
e cither a Riemannian foliation;

e or a (Conf(S7),S%)-foliation with finitely many minimal sets. All these sets are attractors given by the
closures of leaves with essential holonomy group, and each leaf of F belongs to the basin of at least one
of these attractors.

For the proof of Theorem 7, we applied the results of D.V. Alekseevskii [1] and J. Ferrand [12] concerning
with local differential geometry as well as Riemannian geometry on non-Hausdorff manifolds.

Let us emphasize that transversely similar foliations form a subclass of conformal foliations. Since any
Riemannian manifold of dimension 1 or 2 is locally conformally flat, every transversely similar Riemannian
foliation of codimension ¢ = 1 or 2 is a (Sim(E?), E?)-foliation. By using similar arguments as in the proof
of [28, Theorem 4], we prove the following statement.

Theorem 8. Every transversely similar Riemannian foliation (M, F) of codimension g > 1 on a compact man-
ifold M is

e cither a Riemannian foliation

* ora (Sim(E9),E?)-foliation with finitely many minimal sets. They are all attractors formed by the closures
of leaves with essential holonomy group, and each leaf of the foliation belongs to the basin of at least one
of them.

3.5 Comparison with the results B. Deroin and V. Kleptsyn [11]

Theorem 7 strengthens (in an appropriate smoothness class and for ¢ > 3) the first part of the main theorem
of B. Deroin and V. Kleptsyn [11], which claims that every conformal foliation of arbitrary codimension g > 1
on a compact manifold either admits a transversal invariant measure or has finitely many minimal sets satisfying
some properties. As emphasized in the introduction of [11], E. Ghys conjectured that in the absence of attractors
of the conformal foliation, the invariant transverse measure is given by a Riemannian metric. It follows from
our Theorem 7 that this conjecture of E. Ghys holds for conformal foliations of codimension g > 3.

It is known (see, for example [1]) that there are nontrivial second order conformal diffeomorphisms f of the
sphere SY, g > 2, such that the differential f,, at a fixed point x is an orthogonal transformation of the tangent

§ sciendo


https://www.sciendo.com

Dynamics of conformal foliations 285

Euclidean vector space 7,.S? at x. These conformal transformations are essential. The 1-dimensional conformal
foliation (M, F') formed by the suspension of such a conformal diffeomorphism f does not admit a transversely
invariant measure and does not have hyperbolic holonomy; therefore, (M, F) does not satisfy [11, Cor. 1.3].
Thus, unlike us, in [11] the authors do not consider conformal foliations with such holonomies.

Note that in [28,29] we use the methods of local and global differential geometry, including foliated prin-
cipal bundles, geometries on non-Hausdorff manifolds as well as Ehresmann connections for foliations. While
B. Deroin and V. Kleptsyn apply methods of random dynamical systems, including Lyapunov exponents of
harmonic measures. In [11], a Laplace operator along leaves is considered and the existence of a transverse
invariant measure is investigated.

4 Completeness and Ehresmann connections for conformal foliations

4.1 Smooth distributions on manifolds

We will use the definition of a smooth distribution given by I. Androulidakis and G. Skandalis [3, §1.1]. Let
us recall this definition.

Let 9 be a C* (M )-submodule of X.(M) and let U be an open subset of M. Set iy : U — M the inclusion
map. For any vector field X € X(M) we denote X |y := X oiy. The restriction of 91 to U is the C**(M)-submodule
of X.(M) generated by the vector fields f - X|y, where f € C*(U) and X € 9. This restriction is denoted by
M|y.

The module 901 is said to be locally finitely generated if, for every x € M there exist an open neighbourhood
U of x and a finite number of vector fields &, ..., & belonging to X(M) such that M|y = C*(U).- &1 + ... +
C=(U), - &. Tt is said that the vector fields &, ..., & generate the restriction 9|y of 91 to U.

Definition 8. ( [3]) A smooth distribution on M is a locally finitely generated C*°(M)-submodule I of the
C(M)-module X.(M). It is also denoted by the pair (M, ).

If 9t is a constant rank distribution, then 9 is a projective submodule of the C**(M)-module X.(M), i.e.,
the space of smooth sections of some vector bundle. We consider constant rank distributions.

Remark 3. A foliation (M,F) in the sense of [3] is a smooth involutive distribution on M, i.e. F is a locally
finitely generated C=(M)-submodule of X.(M) for which [F, F| C F. Due to the Frobenius theorem, this defini-
tion is equivalent to the commonly used definition of C*-smooth foliation [25].

4.2 Completeness of conformal foliations

Let (M, F) be a smooth foliation of codimension ¢ > 1 on an n-dimensional manifold M. Let 9t be a ¢-
dimensional distribution on M. We say that 9 is transverse to (M,F) if the distributions 9t and TF define
transverse subbundles of the tangent bundle to M.

Let (M, F) be a conformal foliation of codimension ¢ > 3 on a smooth n-dimensional manifold M. We keep
notation introduced in Section 2.2. Denote by Z the foliated bundle over (M, F) with the projection & : Z — M
and by w the g-valued 1-form on Z. Let (%,.%) be the lifted e-foliation. Consider a g-dimensional distribution
2t on M. Denote by 7*9t the distribution on % generated by vector fields Y € X(#) for which .Y € 9.

Definition 9. A conformal foliation (M, F) of codimension g > 3 is referred to as complete, if there exists a
smooth transverse ¢g-dimensional distribution 9t on M such that every vector field Y € 7*9, for which o(Y) =
const € g, is complete.

4.3 Ehresmann connection for foliations

The notion of an Ehresmann connection for foliations was introduced by R.A. Blumenthal and J.J. Hebda
in [8]. R.A. Blumenthal and J.J. Hebda [8] considered a smooth distribution on a smooth manifold M as a
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smooth subbundle of the tangent bundle 7M. We clarify the notion of Ehresmann connection for foliations due
to the new definition of a distribution in sense I. Androulidakis and G. Skandalis which we have accepted.

Consider a smooth foliation (M, F) of codimension ¢, ¢ > 1. Let 9t be a smooth g-dimansional distribution
in sense I. Androulidakis and G. Skandalis, and 91 is transverse to (M, F).

All maps considered here are assumed to be piecewise smooth. The integral curves of the foliation (M, F)
are called vertical; the integral curves of the distribution 97 are called horizontal. Emphasize that a vertical curve
lies in some leaf of (M, F).

Amap H : I) x I, - M, where I, = I, = [0,1], is called a vertical-horizontal homotopy if for each fixed
t € L, the curve H;, 1 is horizontal, and for each fixed s € I, the curve H|(,)y, is vertical. The pair of curves
(Hj1, {0}, H|{oyxp,) is called the base of H.

A pair of curves (o0, h) with a common starting point 6(0) = h(0), where o : I; — M is a horizontal curve,
and h : I, — M is a vertical curve, is called admissible. If for each admissible pair of curves (o, /) there exists a
vertical-horizontal homotopy with the base (o, &), then the distribution 91 is called an Ehresmann connection for
the foliation (M, F'). Note that there exists an at most one vertical-horizontal homotopy with a given base. Let
H be a vertical-horizontal homotopy with the base (o, /). We say that G = H|j, (1} is the result of the transfer
of the horizontal curve o along the vertical curve h with respect to the Ehresmann connection 9. Similarly
the curve h = H|(1}xy, is called the transfer of the curve & along ¢ with respect to 9. Thus, an Ehresmann
connection allows us to transfer horizontal curves along respective vertical curves.

The following theorem is proved in [29, Theorem 4].

Theorem 9. For any non-Riemannian conformal foliation (M, F) of codimension q > 3 the following two con-
ditions are equivalent:

(i) There exists an Ehresmann connection for (M, F).
(ii) The conformal foliation (M, F) is complete.

Remark 4. Like Theorem 8, Theorem 9 holds for transversely similar Riemannian foliations of codimension
qg=>1.

5 Minimal sets and global attractors of conformal foliations

5.1 Minimal sets of Riemannian foliations

The following theorem was proved by us in [29, Theorem 1], see also [32]. For compact manifolds this
theorem was earlier proved by P. Molino [20]. In the case when a bundle-like Riemannian metric on M with
respect to (M, F) is complete, it was proved by E. Salem [23] without using the term "minimal set".

Theorem 10. Let (M, F) be a Riemannian foliation with an Ehresmann connection. Then the closure L of any
leaf L is a smooth embedded submanifold of M which is a minimal set of the foliation. The closures of leaves of
the foliation (M, F) form a Riemannian foliation with singularities.

In particular, if (M,F) is a proper foliation, then all its leaves are closed, and the leaf space is a smooth
q-dimensional orbifold.

5.2 Global attractors of a countable subgroup of Conf(S?)

Let W be a homeomorphism group of a topological space B. A nonempty closed invariant subset . C B is
called an attractor of W if there exists an open invariant subset W C B such that the orbit closure CI(¥.z) of any
point z € W\ ¥ contains #". An attractor %" of ¥ is global if W = B.

We recall that a minimal set of a homeomorphism group ¥ of a topological space B is a nonempty closed
invariant subset .~ with respect to W containing no proper subsets with this property. A finite minimal set is
called trivial.

§ sciendo


https://www.sciendo.com

Dynamics of conformal foliations 287

Let #" be a minimal set of a diffeomorphism group ¥ of a manifold B. The minimal set .#~ with empty
interior is called exceptional if ¢ is a Cantor set, and exotic if £ is not a totally disconnected topological
subspace of B.

It is well known that the conformal group Con f(S?), g > 2, is isomorphic to the Mobius group Mob,(R) [24].

The limit set A(W) of an arbitrary subgroup ¥ of Conf(S?) coincides with the intersection of the closures of
all non-one-point orbits of this group, that is, A(¥) = (" CI(¥.z), where z € S¥ and W.z # z. If the limit set A('¥)
is finite, then either it is empty or it consists of one or two points. In this case, the group W is called elementary.

Using some facts about subgroups of Conf(S?) [17], we get the following statement.

Proposition 11. Let ¥ be a countable essential subgroup of Conf(S?). Then ¥ has a global attractor which
coincides with the limit set A(P) of W.

5.3 Global attractors of complete conformal foliations

The following theorem is the main result of our works [28] and [29]. Emphasize that the Ehresmann con-
nection for (M, F) is one of the main technical tools used in the proof.

Theorem 12. A complete non-Riemannian conformal foliation (M,F) of codimension q, q > 3, has a global
attractor M such that one of the following conditions holds:

o M is either a closed leaf or a union of two leaves.

» M is either a nontrivial minimal set, or contains a closed leaf. The induced foliation (Mo, Fy,) on
My = M\ .# is Riemannian with Ehresmann connection. The closure L in M of any L C My is equal to
LI M, where L is an embedded submanifold of M, and £ coincides with the closure of L in M.

Remark 5. Sufficient conditions for the existence of a global attractor for transversely similar pseudo-
Riemannian foliations are obtained in [31].

5.4 The global holonomy group

The following theorem [29, Theorem 5] describes the global structure of the foliated manifold and estab-
lishes a relationship between the attractors of conformal and transversely similar foliations and the attractors of
their global holonomy groups.

Theorem 13. Let (M, F) be a non-Riemannian complete conformal foliation (M, F). Then one of the following
two statements holds.

1) The foliation (M, F) is a complete transversely similar foliation with the only minimal set ., which is a
global attractor and contains all leaves with essential holonomy group.

2) The foliation (M, F) is covered by a bundle r : M — S$4, where f: M—Misa regular covering map. A
group homomorphism
X m(M,x) — Conf(S7)

of the fundamental group 1 (M,x) to the group Conf(S?) of conformal transformations of S is induced,
and the group of covering transformations of the covering f : M — M is isomorphic to the group ¥ :=
x (7w (M,x)). Moreover, in this case one of the following two statements holds.
(i) The foliation (M, F) has a global attractor ./ which is either one closed leaf or two closed leaves.
(ii) There exists a global attractor # that coincides with the closure of a leaf with essential holonomy

group, and M = f(r~1 (X)) where # = A(P) is the limit set of V.
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In both cases 1) and 2) the induced foliation (Mo, Fy,) on the complement My := M \ .# is a Riemannian folia-
tion with Ehresmann connection. The closures of its leaves in My form a Riemannian foliation with singularities,
and the closure L in M of a leaf L of (Mo, Fy,) equals £U 4, where £ is an embedded submanifold of M. The
set £ coincides with the closure of the leaf L in M.

Remark 6. Just like Theorem 8, the statement of the Theorem 13 holds for transversely similar Riemannian
foliations of every codimension g > 1.

Definition 10. The group W := x(m;(M,x)) specified in Theorem 13, is called the global holonomy group of
the conformal foliation (M, F).

The following statement is proved in a constructive way for g > 3 [29, Theorem 7]. For g = 2, the proof is
similar.

Theorem 14. Every countable subgroup ¥ of Conf(S?), where g > 2, can be realized as the global holonomy
group of some two-dimensional conformal foliation (M, F) of codimension q.
If ¥ is finitely generated, then such a foliation (M, F) exists on a closed manifold M of dimension (q+2).

6 Strong transverse equivalence of foliations

6.1 Invariants with respect to strong transverse equivalence of conformal foliations

The notion of strong transverse equivalence of foliations was introduced and investigated by us in [30] under
the name "transverse equivalence".

A continuous map p : X — Y has the covering homotopy property with respect to a topological space K if,
for any continuous map Gy : K — X and any homotopy H; : K — Y, t € [0, 1], such that p o Gy = Hy, there exists
an extension of Gy to a homotopy G; : K — X satisfying the equality po G, = H,, t € [0,1].

We recall that a Serre fibration is a continuous surjective map having the covering homotopy property with
respect to any finite polyhedron. It is known that for Serre fibrations it is possible to construct the exact homotopy
sequence for a fibration. It is also well known that any locally trivial fibration is a Serre fibration. If a Serre
fibration is a submersion, then it is called a smooth Serre fibration.

Definition 11. Foliations (M, F) and (M’, F") are strong transversely equivalent if there exist a foliation (M, F)
and surjective submersions p : M — M and p’ : Ml — M’, which are Serre fibrations, with connected fibers such
that

Fi={p'(L)|Le F}={p~'(L')|L' e F'}. (D

In comparison with the notion of transverse equivalence introduced by P. Molino [20, p. 63], Definition 11
contains an additional requirement that the submersions p : M — M and p’ : Ml — M’ are Serre fibrations, i.e.,
have the covering homotopy property. As shown in [30, Proposition 4.1], the strong transverse equivalence is
indeed an equivalence relation.

Using this additional requirement, we proved that the strong transverse equivalence of foliations covered by
fibrations can be realized by a foliation covered by a fibration. This fact was used in the proofs of the following
theorems in [30]. As we have shown, in general, this is not true for transverse equivalent foliations in the sense
of P. Molino.

Theorem 15. Two complete conformal, but not transversally similar foliations (My,F;) and (M, F,) of codi-
mension q > 3 are strong transversely equivalent if and only if their global holonomy groups ¥, and ¥, coincide
(up to conjugacy in Conf(S9)).

Theorem 16. Two complete non-Riemannian transversally similar foliations (M, Fy) and (M, F) of codimen-
sion q > 1 are strong transversely equivalent if and only if their global holonomy groups ¥, and ¥, coincide
(up to conjugacy in Sim(E%)).
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The structure Lie algebra gg of a complete non-Riemannian conformal foliation (M, F') of codimension g > 3
is isomorphic to the Lie algebra of the Lie group ¥, where W is the closure of the global holonomy group ¥ of
this foliation in the Lie group Conf(S?). If (M, F) is a transversally similar Riemannian foliation of codimension
g > 1, then g is the Lie algebra of the closure ¥ of W in the Lie group Sim(IE). In particular, the structure Lie
algebra g is equal to zero if and only if W is a discrete subgroup.

From Theorems 15 and 16 we obtain the following assertion.

Proposition 17. The Lie group ¥, the structure Lie algebra gy and the limit set A(¥) of the global holonomy
group ¥ of a complete non-Riemannian conformal foliation (M,F) are invariants with respect to the strong
transverse equivalence.

6.2 Suspension foliations

A. Haefliger introduced the construction of a suspension foliation. Let B and T be smooth connected man-
ifolds, and p : 7y (B,b) — Diff(T) be a group homomorphism. Let G := m;(B,b) and ¥ := p(G). Consider a
universal covering map p : B — B. Define a right action of the group G on the product B x T as

@:BxTxG—BxT, Oxtg)=(xgp(g ")),

where B— B :x — xg is the deck transformation of the covering p induced by an element g € G, which acts on
B on the right. The map p: M := (BxT)/G — B = B/G is a locally trivial bundle over B with standard fiber T'.
It is associated with the principal bundle p: B — B with the structural group G. Let @ := O|5, Ixg’ Since

©,(Bxt)=Bxp(g')(1) VreT,

the action of G preserves the trivial foliation F := {§ x t|t € T} on the product B x T. Therefore the quotient
map
fo:BxT - (BxT)/G=M

induces a smooth foliation F on M whose leaves are transversal to fibers of the bundle p : M — B. The pair (M, F)
is called a suspension foliation and is denoted by Sus(T,B,p). The group ¥ := p(G) of diffeomorphisms of the
manifold 7 is said to be the structural group of the suspension foliation (M, F). When T is simply connected,
Y is called the global holonomy group of (M,F).

Using suspension foliations, we proved the following theorem. Note that the same method is used in the
construction of Example 21.

Theorem 18. Every strong transverse equivalence class of a non-Riemannian conformal foliation contains a
two-dimensional conformal foliation, which is a suspension foliation.

7 Examples

Let By be a smooth closed 3-manifold, which is homeomorphic to the connected sum ljﬁ-‘zlS ' x 82 of k copies
of §' x 2. Its fundamental group 7y (By,b) =< g1,...,8 > is the free group of rank .

Example 19. Recall first the definition of the Menger curve. Let S = I X I be the unit square. Let us divide it into
9 squares of size 1/3 x 1/3, then remove the open square (1/3,2/3) x (1/3,2/3). Then repeat this procedure
with each of the remaining eight squares and continue by induction. As a result, a countable family of open
squares will be removed from S and we get a compact subset of S, called the Sierpinski carpet. Let Q =1 x 1 x 1
be the unit cube. Consider a copy ./ of the Sierpinski carpet on each face Pj of Q, j = 1,6. Let pj:Q—P;
be the orthogonal projection. Then the set M = ﬂp;l(%) is called the Menger curve. As well-known, the
topological dimension of the Menger curve M is equal to 1.
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For k > 6 and m > 3, consider the group
Ty =< s3,i = 1,...,k|s;n = 1,[S,',S,'+1] =1>.

Bourdon proved [9] that if sin Tt /k < 1/+/m, then there is an exact representation Oy, : U,y — Conf(S*2) such
that the group W, = O (Ui ) is a Fuchsian group (i.e. a finitely generated discrete subgroup of Conf(S?"=2)),
and the limit set A(Wiy) of Pim is homeomorphic to the Menger curve. Thus y; := o(s;) are generators of Wy,

Using the fact that sinx < x for all x > 0, it is easy to check that the condition sinw/k < 1/\/m holds if
k > m\/m. Let k(m) = [m\/m] be the integer part of m\/m. Then, for any fixed natural m > 3, there exists a
countable family of Fuchsian groups Wi, k > k(m), such that A(Wy,,) is homeomorphic to the Menger curve.
For example k(3) =5, k(4) =6, k(5) = k(6) =7, k(7) = k(8) =8, k(9) = k(10) =09.

Thus, A(Wy.,) is an exotic minimal set of the group Wy, in S*" 2.

Let By := ﬁf.‘zlS 'x 82 be as above. Consider a group homomorphism P, : Tt (B,b) — W, defined on
generators by Pim(gi) 1= Gun(si), i = 1,k. Let (Mion, Fun) := Sus(S* 2, B, Pum), m > 3, be the corresponding
suspension foliation. Since Wy, is a subgroup of Conf(S*"=2), (M, Fim) is a complete conformal foliation of
codimension q = 2m—2 > 4. Hence, according to Theorem 13, # := f(r ' (A(Win))) is an exotic minimum
set and a global attractor of the foliation (M, Fim)-

Example 20. Let B ,..., B, B, ,...,B; be a finite set of disjoint closed topological balls with smooth
boundary in the sphere S9, and q # 4. Let y; € Conf(S?) be a conformal transformation such that
Vi(int (%)) = ext (). The group ¥ generated by V..., is called the Schottky group. As well-known
(see, for example, [17]), the Schottky group Y is the free group of rank k, i.e. ¥ =< y1,..., W, >, and ¥ has a
minimal set A(¥) homeomorphic to a Cantor subset of the segment [0, 1]. Therefore, the topological dimension
A(Y) is equal to zero.

Let By := t*_S' x §? be as above. Define a group isomorphism py : 7 (By,b) — ¥, setting pr(g:) = Wi,
i = 1,k. The suspension foliation (M, F) := Sus(S4, By, px) is a complete conformal foliation and, according to
Theorems 13, (M, Fy) has a global attractor, representing an exceptional minimal set.

If fr: My — My, is the universal covering map, then the induced foliation F = fi Fi is given by the fibers
of a locally trivial bundle ry, Mk — $9. As (My, Fy) is a suspended foliation, (My,Fy) admits an Ehresmann
connection My.

Let MY := My \ 4. Therefore, M? = fi(r; ' (SI\A(P))). Since the group ¥ acts freely and properly dis-
continuously on the open dense subset ST\A(W) in S, the set M,? is an open saturated dense submanifold of
the compact manifold M. Hence, the leaf space M,? / FM;; is the smooth g-dimensional manifold which is home-

omorphic to (S9\ A(¥)) /Y. The induced foliation (M,?,FM?) is Riemannian, and the restriction 9| Mo is an

Ehresmann connection for (M,?,FMI?). Therefore, Theorem 10 implies that (M,?,FMI?) is formed by fibres of a

Riemannian submersion h : MY — Ny, where Ny as well as (S7\ A(¥))/¥ is homeomorphic to the connected
sum of k copies of ST x S,
Note that the closure Lo in M of a leaf Ly, C M,? is equal to Lo U A , what agrees with Theorem 12.

Example 21. Let E? be the g-dimensional Euclidean space and B¥, 2 < k < gq, be its k-dimensional subspace. Let
e, i = 1,k, be a basis of vector space RF corresponding to EX. Consider a subgroup ¥ of the group of similarities
Sim(E?) generated by transformations yj, j = 1,k+1, where y;(z) :=z+e;j for j =1,k and Y1 1(2) ==L -z
for some number A € (0,1) and all z € E9. Note that ¥ is essential group of similar transformations, and the
limit set A(¥) of ¥ is equal to E¥. Moreover, A(¥) is a minimal set and a global attractor of V.

Denote by S2, the smooth two-dimensional sphere with m, m := k+ 1, handles. The fundamental group of S,
is equal to {a;,b;|i=1,m; alblaflbfl...ambma;llb;ll =1}.

Let B:=S2, T :=EY and define the group homomorphism p : 7t (B, b) — Sim(E9) by setting it on generators:
p(a) == w;,i = 1,m, p(b;) := Idgs where Idgs is the identical map of E4. Then (M,F):=Sus(E4,S2,p) is
a suspension two-dimensional non-Riemannian transversely similar foliation. Let f : R*> x E9 — M be the
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universal covering map. Then (M,F) is covered by the trivial bundle r : R*> x EY — E and has the global
holonomy group Y. By properties of suspension foliations, the (q+ 2)-dimensional manifold M is the space of
a locally trivial bundle p : M — S2, with a standard fibre B9 over the base S2,. Therefore M is not compact.

Thus, we get a transversely similar foliation (M, F) of codimension g, q > 3, with a regular minimal set
M = f(r~Y(EX)), and .4 is a global attractor and a minimal set of (M, F). According to [27, Theorem 9], .4
and M are homotopy equivalent.

Let My := M\ A and Ly, be an arbitrary leaf in My. Emphasize that the induced foliation (Mo, Fy,) is an
improper Riemannian foliation without holonomy, admitting an Ehresmann connection. According to Theorem
12, the closure Ly is equal to Ly U M, where £y is the closure of Ly in My. Note that if k < q— 1, then M,
is connected and dense in M. In the case when k = q — 1, the submanifold My is dense and has two connected
components denoted by Mar and My, hence £y belongs to Mar or My, respectively. We emphasize that all £y
are pairwise diffeomorphic, that is, £, does not depend on o. Therefore, the closure Ly, of any leaf Lo, C My is
also independent of «.

Example 22. Fix a point a € S9. Let f: S — R7U {0} be the homeomorphism defined via the stereographic
projection S\ {a} — RY, and f(a) = {eo}. Identify S? with R?U {eo} through f. The map f induces a group
isomorphism f : Conf,(S?) — Sim(E?) of the stationary subgroup Conf,(S?) of the group Conf(S?) at point a
onto the similarity group Sim(E7). N

Let\¥ C Sim(IE?) be the similarity group defined in Example 21. Hence V¥ := ! (W) is a countable subgroup
of Confo(S7), and y; := ]’&1(%), Jj = 1,k+1, are generators of V.

Let B := S2, be as above, T := S? and define the group homomorphism p : m(B,b) — Conf(S?) by
setting it on generators: p(a;) := Y;,i = L,k+1, p(b;) := Idsq. Then we get the suspension foliation
(M, F):=Sus(S4,82,p) which is non-Riemannian conformal foliation of codimension q, and P is its global
holonomy group.

The universal covering manifold for M is the product R* x S1. Denote by h : R?> x S — M the universal
covering map. Let r: R* x S — S4 be the canonical projection.

Since the global holonomy group ¥ of (M, F) has a fixed point a, the leaf L := h(r~'(a)) is a unique closed
leaf and a global regular attractor of (M, F). Emphasize that L is diffeomorphic to the base B := S2.

According to the definition of a limit set, A(¥) = f~'(RKU {e}). Therefore, A(¥) is the canonically
embedded k-dimensional sphere in S? containing the point a. As it was shown in Example 21, A(P) is the

global attractor of the respective transversely similar foliation, hence A(¥) is a global attractor of the conformal

foliation (M, F). Since A(W) contains a fixed point a, A(W') is not a minimal set. We emphasize that for every
point z € A(W) \ {a} the orbit .z is dense in A(¥). This implies that

M = h(r  (A(P))

is a global transitive regular attractor of the conformal foliation (M, F).
Thus we construct a conformal foliation having two global regular attractors L and #, L C #, such that
L is a closed leaf and . is transitive attractor which is not a minimal set.

Acknowledgements The work was supported by the grant 17-11-01041 of the Russian Science Foundation with
the exception of Sections 6 and 7. The work on Sections 6 and 7 is supported by Laboratory of Dynamical
Systems and Applications NRU HSE, of the Ministry of science and higher education of the RF grant ag. N
075-15-2019-1931.

References

[1] D.V. Alekseevskii (1972), Groups of conformal transformations of Riemannian spaces, Math. USSR-Sb., 18(2), 285—
301.

§ sciendo


https://www.sciendo.com

292

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]

[32]

N.I. Zhukova Applied Mathematics and Nonlinear Sciences 5(2020) 279-292

D.V. Alekseevskii (1973), §" and E" are the only Riemannian spaces that admit an essential conformal transformation,
Uspekhi Mat. Nauk, 28(5), 225-226.

I. Androulidakis and G. Skandalis (2009), The holonomy groupoid of a singular foliation, J. Reine Angew. Math., 626,
1-37.

S.Kh. Aranson, V.Z. Grines (1978), On the representation of minimal sets of currents on two-dimensional manifolds
by geodesics, Math. USSR-Izv., 12(1), 103-124.

S.Kh. Aranson, V.Z. Grines (1986), Topological classification of flows on closed two-dimensional manifolds, Russian
Math. Surveys, 41(1), 183-208.

P. Baird and M. Eastwood (2013), CR geometry and conformal foliations, Ann. Global Anal. Geom., 44(1), 73-90.
J.-C. Beniere, G. Meigniez (1999), Flows without minimal set, Erg. Th. and Dyn. Sys., 19(1), 1-30.

R.A. Blumenthal, J.J. Hebda (1984), Ehresmann connections for foliations, Indiana Univ. Math. J., 33(4), 597-611.
M. Bourdon (1997), Sur la dimension de Hausdorff de I’ensemble limite d’une famille de sous-groupes convexes
co-compacts, C. R. Acad. Sci. Paris Ser. I Math., 325(10), 1097-1100.

A. Cap, J. Slovak (2009), Parabolic Geometries I: Background and General Theory, AMS Publishing House, Math.
Surveys Monogr., 154, 1— 628.

B. Deroin, V. Kleptsy(2007), Random Conformal Dynamical Systems. Geometric and functional analysis, 17(4), 1043—
1105.

J. Ferrand (1977), Sur un lemme d’Alekseevskii relatif aux transformations conformes, C. R. Acad. Sc. Paris, 284,
121-123.

J. Ferrand (1996), The action of conformal transformations on a Riemannian manifold, Math. Ann., 304(2), 277-291.
C. Frances, C. Tarquini (2007), Autour du theoreme de Ferrand-Obata, Ann. Glob. Anal. Geom., 21(1), 51-62.

A. Haefliger (1985), Pseudogroups of local isometries, Research Notes in Math., 131, 174-197.

T. Inaba (1999), An example of a flow on a non-compact surface without minimal set, Erg. Th. and Dyn. Sys., 19(1),
31-33.

M. Kapovich (2007), Kleinian groups in higher dimensions, Geometry and dynamics of groups and spaces, Progr.
Math., 265, Birkhauser, Basel 2007, 487-564.

M.S. Kulikov (2004), Schottky-type groups and minimal sets of horocycle and geodesic flows, Sb. Math., 195(1),
35-64.

G. Levitt (1983), Foliations and laminations on hyperbolic surfaces, Topology, 22(2), 119-135.

P. Molino (1988), Riemannian Foliations, Progr. Math., 263, Birkhauser, Boston, MA.

S. Morita (1979), On characteristic classes of conformal and projective foliations, J. Math. Soc. Japan, 31(4), 693-718.
M. Obata (1971), The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom., 6(2),
247-258.

E. Salem (1988), Riemannian foliations and pseudogroups of isometries, Application D in: P. Molino, Riemannian
foliations, Progr. Math., 263, Birkhauser, Boston, MA, 1988.

R.W. Sharpe (1997), Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Progpam, Grad. Texts in
Math. 166, New York: Springer-Verlag.

I. Tamura (1992), Topology of foliations: An Introduction, Transl. of Math. Monographs, 97, Publisher: AMS.

C. Tarquini (2004), Feuilletages conformes, Ann. Inst. Fourier, 52(2), 453-480.

N.I. Zhukova (2007), Minimal sets of Cartan foliations, Proc. Steklov Inst. Math., 256(1), 105-135.

N.I. Zhukova (2011), Attractors and an analog of the Lichnerowicz conjecture for conformal foliations, Siberian Math.
1., 52(3), 436-450.

N.I. Zhukova (2012), Global attractors of complete conformal foliations. Sb. Math., 203(3), 380—405.

N.I. Zhukova (2015), Transverse Equivalence of Complete Conformal Foliations J. Math. Sci., 208(1), 115-130.

N.I. Zhukova (2018), The existence of attractors of Weyl foliations modelled on pseudo-Riemannian manifolds, JPCS,
990(1), 1-15.

N.I. Zhukova (2018), The structure of Riemannian foliations with Ehresmann connection, Zh. Sredn. Mat. Obshch.,
20(4), 395-407 (in Russian).

§ sciendo


https://www.sciendo.com

	Introduction
	Conformal foliations and associated constructions
	Conformal foliations
	The foliated bundle over a conformal foliation
	Holonomy groups of a conformal foliation

	Minimal sets and attractors of conformal foliations
	Minimal sets of foliations
	A criterion for a conformal foliation to be Riemannian
	The existence of attractors of conformal foliations
	An analog of the Lichnerowicz conjecture for conformal foliations
	Comparison with the results B. Deroin and V. Kleptsyn DK

	Completeness and Ehresmann connections for conformal foliations
	Smooth distributions on manifolds
	Completeness of conformal foliations
	Ehresmann connection for foliations

	Minimal sets and global attractors of conformal foliations
	Minimal sets of Riemannian foliations
	 Global attractors of a countable subgroup of Conf(Sq)
	 Global attractors of complete conformal foliations
	The global holonomy group

	Strong transverse equivalence of foliations
	Invariants with respect to strong transverse equivalence of conformal foliations
	Suspension foliations

	Examples

