
Open Access. © 2020 Yuri N. Skiba, published by Sciendo.
This work is licensed under the Creative Commons Attribution alone 4.0 License.

Applied Mathematics and Nonlinear Sciences 5(2) (2020) 229–238

Applied Mathematics and Nonlinear Sciences
https://www.sciendo.com

Asymptotic behavior of solutions to barotropic vorticity equation on a sphere

Yuri N. Skiba †

Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México.
Av. Universidad 3000, CU/UNAM, Coyoacán Mexico City, C.P. 04510, Mexico

Submission Info

Communicated by Lyudmila Sergeevna Efremova
Received January 13th 2020

Accepted February 18th 2020
Available online November 10th 2020

Abstract
The behavior of a viscous incompressible fluid on a rotating sphere is described by the nonlinear barotropic vorticity
equation (BVE). Conditions for the existence of a bounded set that attracts all BVE solutions are given. In addition,
sufficient conditions are obtained for a BVE solution to be a global attractor. It is shown that, in contrast to the stationary
forcing, the dimension of the global BVE attractor under quasiperiodic forcing is not limited from above by the generalized
Grashof number.
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1 Introduction

Let us denote by C∞
0 (S) the space of infinitely differentiable functions on the unit sphere S = {x ∈ R3

: |x|= 1} which are orthogonal to any constant, and by

〈 f ,g〉=
ˆ

S
f (x)g(x)dS and ‖ f‖= 〈 f , f 〉1/2 (1)

the inner product and the norm of functions of C∞
0 (S), respectively. Denote by Y m

n (λ ,µ) the spherical harmonics
(n ≥ 1, |m| ≤ n) that form the orthonormal system in C∞

0 (S):
〈
Y m

n ,Y k
l

〉
= δmkδnl where δmk is the Kronecker

delta. Each spherical harmonic Y m
n is the eigenfunction of the eigenvalue problem

−∆Y m
n = χnY m

n , |m| ≤ n

for symmetric and positive definite spherical Laplace operator, where
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χn = n(n+1) (2)

Lemma 1. [10] Let n be a natural, and Kn =
[2n+1

4π

]1/2
. Then

n

∑
m= −n

|Y m
n (x)|2 = K2

n and
n

∑
m= −n

|∇Y m
n (x)|2 = χn K2

n .

Let n≥ 1. Denote by

Hn = {ψ :−∆ψ = χnψ}

the (2n+1)-dimensional eigensubspace of homogeneous spherical polynomials of degree n, which corresponds
to the eigenvalue (2) [8]. The set 2n+1 of spherical harmonics Y m

n (λ ,µ) (−n < m ≤ n) form the orthonormal
basis in Hn. The Hilbert space L2

0(S) = ⊕∞
n=1Hn being the direct orthogonal sum of the subspaces Hn is the

closure of C∞
0 (S) in the norm (1). We denote by Yn (ψ) the projection of function ψ ∈ L2

0(S) onto Hn. Thus,
ψ = ∑

∞
n=1 Yn (ψ) for every function ψ(x) ∈ L2

0(S).
Let ψ(x) ∈C∞

0 (S), and χn = n(n+1). We introduce the derivative Λs = (−∆)s/2 of real degree s of ψ(x) as

Λ
s
ψ(x) =

∞

∑
n=1

χ
s/2
n Yn (ψ(x)) (3)

[11, 12].
Let s be a real. Denote by Hs

0 the Hilbert space obtained by closing the space C∞
0 (S) in the norm

‖ψ‖s =

{
∞

∑
n=1

χ
s
n ‖Yn (ψ)‖2

}1/2

.

The inner product in Hs
0 is defined as 〈ψ,h〉s = 〈Λsψ,Λsh〉. Thus, ‖ψ‖s = 〈ψ,ψ〉1/2

s . It can be shown that
‖∇ψ‖= ‖Λψ‖ [10].

Lemma 2. [11] Let r,s and t be real numbers, r < t , a =
√

2, and ψ ∈Hs+t
0 . Then

‖Λr
ψ‖s ≤ ar−t

∥∥Λ
t
ψ
∥∥

s and ‖ψ‖s+t =
∥∥Λ

t
ψ
∥∥

s .

2 Existence and uniqueness of the BVE solutions

Let us consider the non-stationary nonlinear BVE problem on S [11]:

∆ψt + J (ψ,∆ψ +2µ)+σ∆ψ−ν(−∆)s+1
ψ = F (4)

∆ψ (0,x) = ∆ψ0 (x) . (5)

Here ψ is the stream function, ∆ψ is the relative vorticity, ∆ψ + 2µ is the absolute vorticity, F(t,x) is the
forcing, σ∆ψ is the Rayleigh friction in the planetary boundary layer,

J(ψ,h) = (−→n ×∇ψ) ·∇h
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is the Jacobian determinant, −→n is the outward unit normal vector to the surface of the sphere S, while the
nonlinear term J(ψ,∆ψ) and linear term J (ψ,2µ) = 2ψλ represent the advection and the rotation of sphere,
respectively. The velocity vector −→v = −→n ×∇ψ is nondivergent: ∇ · −→v = 0. The viscosity is modeled by the
term ν(−∆)s+1ψ , where −∆ is the spherical Laplace operator and s > 1 is a real number.

Note that if ψ is a BVE solution then ψ + const is also the solution. We ignore this constant by searching a
solution in spaces of functions orthogonal to a constant on the sphere. Spaces of functions in which a solution
exists are important in many applications, and, in particular, in studying the stability of solutions.

In this section, we formulate two theorems proved in [11].

Theorem 1. [11] Let s ≥ 1, ν > 0 and σ ≥ 0. Suppose that ∆ψ0 ∈ L2
0(S) at initial moment, and F(t,x) ∈

L2(0,T ;Hs
0). Then the non-stationary BVE problem (4)-(5) has a unique weak solution ψ(t,x) ∈ L∞(0,T ;H2

0)
such that

ψ(t,x) ∈ L∞(0,T ;H0)∩L2(0,T ;Hs
0),

∆ψt ∈ L2(0,T ;H−s
0 ) , ∆ψ (0,x) = ∆ψ0 (x)

and ˆ t

0
[〈∆ψt ,h〉−〈J(ψ,h),∆ψ +2µ〉+σ 〈∆ψ,h〉]dt−ν

ˆ t

0

〈
Λ

s+2
ψ,Λsh

〉
dt =

ˆ t

0
〈F,h〉dt

holds for all t ∈ (0,T ) and h ∈ L2(0,T ;Hs
0).

Theorem 2. [11] Let s ≥ 1, ν > 0 and σ ≥ 0. Suppose that F(x) ∈ Hs
0. Then there exists at least one weak

solution ψ(x) ∈Hs+2
0 of the stationary equation

J (ψ,∆ψ +2µ)+σ∆ψ−ν(−∆)s+1
ψ = F(x) (6)

such that
ν
〈
Λ

s+2
ψ,Λsh

〉
−σ 〈∆ψ,h〉+ 〈J(ψ,h),∆ψ +2µ〉= 〈F,h〉

holds for all h ∈Hs
0. If additionally

ν
2 > 21−sM ‖F(x)‖−s

then the problem solution is unique.

Here M is the constant from the estimate |J(ψ,h)| ≤M ‖∆ψ‖‖∆h‖ (see [11]). The case s = 1 and σ = 0 was
proved in [4, 5], whilst the cases s = 1 and s = 2 (σ 6= 0) were proved in [10]. Theorem 2 considers the general
case when s≥ 1 is a real number.

3 Existence of a limited attractive set

Let us study the asymptotic behavior of the BVE solutions as t→ ∞.

Theorem 3. Let s≥ 1, and let F(x) ∈Hr
0 be a stationary forcing of equation (4), r ≥ 1. Then there is a limited

set B in a space X that attracts all BVE solutions ψ(t,x), besides,

1. if r ≥ 0 then X =H2
0 and

B = {ψ ∈H2
0 : ‖ψ‖2 ≤C1(r,s)‖F‖r . (7)

2. if r ∈ [−1,0) then X =H1
0 and

B = {ψ ∈H1
0 : ‖ψ‖1 ≤C2(r,s)‖F‖r (8)

https://www.sciendo.com


232 Yuri N. Skiba. Applied Mathematics and Nonlinear Sciences 5(2020) 229–238

where

C1(r,s) =
a−r

σ +2sν
, C2(r,s) =

a−r−1

σ +2sν
, a =

√
2 .

Proof. Part 1. Let r ≥ 0 and F(x) ∈ Hr
0. The inner product (1) of equation (4) with ∆ψ and the use of

relations

〈J(g, µ),Λrg〉= 0 and 〈J(g,h),g〉= 0 (9)

valid for real functions due to relations

〈J(ψ, g),h〉= 〈J(g,h),ψ〉=−〈J(ψ, h), g〉

[12], imply

〈∆ψt ,∆ψ〉 = −σ 〈∆ψ,∆ψ〉+ν
〈
(−∆)s+1

ψ,∆ψ
〉
+ 〈F,∆ψ〉

= −σ ‖∆ψ‖2−ν
∥∥Λ

s+2
ψ
∥∥2

+ 〈F,∆ψ〉 . (10)

Due to Lemma 2,

|〈F,∆ψ〉| ≤ ‖F‖‖∆ψ‖ ≤ a−r ‖F‖r ‖∆ψ‖ and ν
∥∥Λ

s+2
ψ
∥∥2 ≥ 2s

ν ‖∆ψ‖2 .

We denote
ρ = σ +2s

ν . (11)

The use of the obtained inequalities in (10) leads to

∂

∂ t
‖∆ψ‖ ≤ −ρ ‖∆ψ‖+a−r ‖F‖r .

The last inequality gives

‖∆ψ(t)‖ ≤ ‖∆ψ(0)‖exp(−ρt)+
a−r

ρ
‖F‖r [1− exp(−ρt)] (12)

and hence,
‖ψ(t)‖2→C1(r,s)‖F‖r as t→ ∞ .

Part 2. Let r ∈ [−1,0) and F(x) ∈Hr
0. The inner product (1) of equation (4) with ψ and the use of (9) give

〈Λψt ,Λψ〉=−σ ‖Λψ‖2−ν
∥∥Λ

s+1
ψ
∥∥2−〈F,ψ〉 . (13)

Applying Lemma 2 to the terms 〈F,ψ〉 and ν
∥∥Λs+1ψ

∥∥2 leads to

|〈F,ψ〉|=
∣∣〈ΛrF,Λ−r

ψ
〉∣∣≤ ‖ΛrF‖

∥∥Λ
−r

ψ
∥∥≤ a−r−1 ‖F‖r ‖Λψ‖ (14)

and
ν
∥∥Λ

s+1
ψ
∥∥2 ≥ 2s

ν ‖Λψ‖2 . (15)

Then (13) implies
∂

∂ t
‖Λψ‖ ≤ −ρ ‖Λψ‖+a−r−1 ‖F‖r (16)
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where ρ is defined by (11), or

‖Λψ(t)‖ ≤ ‖Λψ(0)‖exp(−ρt)+
a−r−1

ρ
‖F‖r [1− exp(−ρt)] . (17)

Since ‖Λψ‖= ‖ψ‖1, we obtain

‖ψ(t)‖1→C2(r,s)‖F‖r as t→ ∞ .

Q.E.D.
According to (12) and (17), if some solution ψ belongs to the set B at time t0 then it will belong to B for all

t > t0. Hence, all steady and periodic solutions (if they exist) belong to the set B. Evidently, the set B contains
the maximal BVE attractor [14]. Theorem 3 is also valid if F(t,x) ∈C(0,ω;Hr

0) where ω is the period. In this
case, one should only replace in (7) and (8) the norms ‖F‖r by the norms max

t∈[0,ω]
‖F‖r.

4 A functional for the stability study

We now introduce a positive functional for estimating arbitrary perturbations of the BVE solution. Let
ψ̃(t,λ ,µ) be a real BVE solution. Then a perturbation ψ ′(t,λ ,µ) of the solution ψ̃ satisfies the equation

∂

∂ t
∆ψ
′+ J

(
ψ
′,∆ψ̃

)
+ J(ψ̃,∆ψ

′)+2
∂ψ ′

∂λ
+ J
(
ψ
′,∆ψ

′)=−[σ +νΛ
2s]∆ψ

′ (18)

where s ≥ 1, ν > 0 and σ ≥ 0. Taking the inner product (1) of equation (18) in series with ψ ′ and ∆ψ ′, then
using (9), we obtain the integral equations

d
dt

K +
〈
J(ψ ′,∆ψ

′), ψ̃
〉
+2σK +ν

∥∥Λ
s+1

ψ
′∥∥2

= 0 (19)

and
d
dt

η−
〈
J(ψ ′,∆ψ

′),∆ψ̃
〉
+2ση +ν

∥∥Λ
s+2

ψ
′∥∥2

= 0 (20)

for the kinetic energy K(t) = 1
2 ‖∇ψ ′(t,x)‖2 = 1

2 ‖Λψ ′(t,x)‖2 and enstrophy η(t) = 1
2 ‖∆ψ ′(t,x)‖2 of perturba-

tion ψ ′, respectively.
One can see from (19) and (20) that the first Jacobian in (18) does not affect the behavior of the perturbation

energy K(t), while the second Jacobian in (18) does not affect the perturbation enstrophy η(t). Moreover, the
sphere rotation and nonlinear term (the last two terms in the LHS of (18)) do not affect the behavior of K(t) and
η(t).

We will estimate the behavior of perturbations ψ ′(t,λ ,µ) of a basic flow ψ̃(t,λ ,µ) using the functional

Q(t) = pK(t)+qη(t) =
1
2
(p
∥∥∇ψ

′∥∥2
+q
∥∥∆ψ

′∥∥2
)

where p and q are non-negative real numbers, not equal to zero simultaneously. Multiplying (19) and (20) by p
and q, respectively, and combining the results, we obtain

d
dt

Q(t) =−2σQ(t)−R(t)−ν p
∥∥Λ

s+1
ψ
′∥∥2−νq

∥∥Λ
s+2

ψ
′∥∥2

(21)

where
R(t) =

〈
J(ψ ′,∆ψ

′), pψ̃−q∆ψ̃
〉

. (22)

Applying Lemma 2 we get

−
∥∥Λ

s+1
ψ
′∥∥2 ≤−2s

∥∥∇ψ
′∥∥2 , −

∥∥Λ
s+2

ψ
′∥∥2 ≤−2s

∥∥∆ψ
′∥∥2

.
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Therefore, (21) leads to

d
dt

Q(t)≤−2ρQ(t)−R(t) (23)

where ρ is defined by (11).
Let us consider three examples when the basic solution is zero or represents meteorologically important

flows, such as super-rotation, or a homogeneous spherical polynomial. Each basic solution is assumed to be
supported by appropriate forcing.

Example 1. Let ψ̃ = 0 (this solution exists if F(x) ≡ 0). Then 〈J(ψ ′,∆ψ ′), ψ̃〉 = 0 and 〈J(ψ ′,∆ψ ′),∆ψ̃〉 = 0
in (19) and (20). Therefore, in the non-dissipative case (σ = ν = 0), the zero solution is stable, since the
perturbation energy and enstrophy are constant. In the dissipative case (σ 6= 0 and/or ν 6= 0), the zero solution
is globally asymptotically stable, because the energy and enstrophy of any perturbation decrease exponentially
with time.

Example 2. The basic flow is a super-rotation: ψ̃ ≡ ψ̃(µ) = Cµ , where C = const. Then R(t) = 0 due to (9),
while Q(t) is the Lyapunov function. Thus, the super-rotation flow is Lyapunov stable if σ = ν = 0, and is the
global BVE attractor (asymptotically Lyapunov stable) if ρ > 0. It is easy to prove that the same is true for any
flow from subspace H1, since it represents a super-rotation flow about some axis of a sphere [10].

Example 3. The basic flow is a homogeneous spherical polynomial: ψ̃ ∈Hn (n≥ 2):

ψ̃(t,λ ,µ) =
n

∑
m=−n

ψ̃
m
n (t)Y

m
n (λ ,µ) . (24)

Then J(ψ ′,∆ψ ′) = 0 for any initial perturbation ψ ′ from the subspace Hn, and R(t) ≡ 0. Besides, such a
perturbation will never leave Hn, i.e., the subspace Hn is the invariant set of perturbations to the polynomial
flow (24). Moreover, due to (23), Q(t) ≤ Q(0) exp(−2ρt), and therefore any initial perturbation ψ ′(0,λ ,µ)
from Hn will exponentially tend to zero with time, without leaving Hn. In other words, the invariant set Hn

belongs to the domain of attraction of solution (24).

5 Global Asymptotic Stability of BVE solutions

Let us obtain sufficient conditions for the BVE solution to be a global attractor.
First, assume that the basic solution ψ̃(t,λ ,µ) of equation (4) is rather smooth, such that

p = sup
t≥0

max
(λ ,µ)∈S

|∇∆ψ̃(t,λ ,µ)| and q = sup
t≥0

max
(λ ,µ)∈S

|∇ψ̃(t,λ ,µ)| (25)

are bounded. Then using the inequality |J(ψ,h)| ≤ |∇ψ| · |∇h| we get

|R(t)|=
∣∣〈J(pψ̃−q∆ψ̃,ψ ′),∆ψ

′〉∣∣≤ 2pq
∥∥∇ψ

′∥∥∥∥∆ψ
′∥∥≤ 2

√
pqQ(t) . (26)

The use of inequality (26) in (23) leads to

Theorem 4. Let s≥ 1, ν > 0 and σ ≥ 0. If

σ +2s
ν >
√

pq (27)

where p and q are defined by (25), then Q(t) is the Lyapunov function, and solution ψ̃(t,λ ,µ) is a global BVE
attractor, besides, any its perturbation ψ ′ will exponentially decrease with time.
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Note that in a limited domain on the plane, the condition for the global asymptotic stability of a smooth BVE
solution was earlier obtained in [13] under the condition that rotation and linear drag are not taken into account
(σ = 0) and s = 1. Theorem 4 extends this result to smooth flows on a rotating sphere when s≥ 1, and the linear
drag is also taken into account (σ 6= 0).

It should be emphasized that in both assertions, the basic solution ψ̃(t,λ ,µ) must have continuous deriva-
tives up to the third order. But Theorems 1 and 2 guarantee the existence of a solution that has continuous
derivatives only up to the second order. Theorem 5 of this section gives new global asymptotic stability con-
ditions for smooth solution of equation (4), in which the requirement on the smoothness is weakened. These
instability conditions are in full accordance with Theorem 1.

We now show that the restriction (25) on the smoothness of the basic solution can be weakened to be
consistent with the solvability theorem (Theorem 1). To this end, let us consider a smooth solution ψ̃(t,λ ,µ)
such that

p = sup
t

max
(λ ,µ)∈S

|∆ψ̃(t,λ ,µ)| and q = sup
t

max
(λ ,µ)∈S

|ψ̃(t,λ ,µ)| (28)

are bounded. Using the ε-inequality one can estimate R(t) as:

|R(t)| ≤ 2pq
∥∥∇ψ

′∥∥∥∥∇∆ψ
′∥∥= 2pq

∥∥∇ψ
′∥∥∥∥Λ

3
ψ
′∥∥≤ 2pq

∥∥∇ψ
′∥∥∥∥ψ

′∥∥
3

=
(√

pq
∥∥ψ
′∥∥

1

)(
2
√

pq
∥∥ψ
′∥∥

3

)
≤ 2qε

2Q(t)+
pq
ε2

∥∥ψ
′∥∥2

3 .
(29)

In addition, the use of Lemma 2 in (21) leads to

d
dt

Q(t)≤−2ρQ(t)−R(t)−ν p
∥∥ψ
′∥∥2

s+1−νq
∥∥ψ
′∥∥2

s+2 ≤−2ρQ(t)−R(t)−νq
∥∥ψ
′∥∥2

s+2

≤−2ρQ(t)−R(t)−νqa1−s
∥∥ψ
′∥∥2

3

(30)

where a=
√

2. Combining (29) with (30) and setting ε2 = pas−1/ν in order to eliminate the two terms containing
‖ψ ′‖2

3, we prove the following assertion:

Theorem 5. Let s≥ 1, ν > 0 and σ ≥ 0. And let ψ̃(t,λ ,µ) be such a solution of equation (4) that the numbers
p and q defined by (28) are limited. If

ν(σ +2s
ν)> 2(s−1)/2 pq (31)

then Q(t) is the Lyapunov function, and the solution ψ̃ is a global BVE attractor, besides, any its perturbation
will exponentially decrease with time.

In contrast to Theorem 4, Theorem 5 requires a non-zero viscosity coefficient ν . According to conditions
(28), the basic solution must have continuous derivatives only up to the second order. Therefore, (31) can be
applied to a wider class of BVE solutions. For example, the main solution to problem (4)-(5) can be one of
the non-stationary modons [7, 15] supported, despite the dissipation, by the corresponding external forcing. As
it is known, ∇∆ψ̃(t,λ ,µ) is discontinuous at the boundary between the inner and outer regions of the modon.
Therefore, condition (31) is applicable, while condition (27) is not.

Example 4. Let σ = 0 and s = 1 in equation (4), and let ψ̃(λ ,µ) be a stationary solution from the subspace Hn

of homogeneous spherical polynomials (n ≥ 2):

ψ̃(λ ,µ) =
n

∑
m=−n

ψ̃
m
n Y m

n (λ ,µ) . (32)

The solution (32) is supported by a steady forcing whose Fourier coefficients Fm
n are

Fm
n = (−νχ

2
n + i2m)ψ̃m

n
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where i =
√
−1 and χn = n(n+1). According to Example 3, subspace Hn is the domain of attraction of solution

(32) for any ν 6= 0. Moreover, it follows from (28) that p = χnq, and due to Theorem 5, solution (32) is the global
attractor of equation (4) if

ν ≥ q

√
n(n+1)

2
.

Thus, in order for basic flow (32) to be a global BVE attractor, the viscosity coefficient ν must increase with
increasing velocity (q) and degree n of the flow (32).

6 Dimension of global spiral BVE attractor

It was shown in [3] that in the case of a stationary forcing, the Hausdorff dimension of the global attractor
of the barotropic vorticity equation (4) on a sphere for s = 1 and s = 2 is limited by the generalized Grashof
number

G(s) = ‖F(x)‖/χ
2s−1
1 ν

2(s) (33)

where χ1 = 2 is the smallest positive eigenvalue of the spherical Laplace operator (see (2)).
This is an important hydrodynamic result. However doubts arise about its applicability to the dynamics

of large-scale barotropic processes in the atmosphere. Indeed, the BVE forcing represents the influence of
small-scale baroclinic processes (convection, etc.) on the large-scale dynamics of the barotropic atmosphere,
and therefore is essentially nonstationary with rather complex spatio-temporal behavior. In order to show that
the dimension of the global BVE attractor crucially depends on the space-time structure of the forcing, we now
estimate the dimension of the global BVE attractor provided that the forcing of the BVE model is a quasiperiodic
function in time and a homogeneous spherical polynomial of degree n in space:

F(t,x) =
n

∑
m=−n

Fm(t)Y m
n (x) (34)

where
Fm(t) = fm exp{imωmt} , |m| ≤ n , (35)

each fm is a constant, and the frequencies ωm are incommensurate. Thus, F(t,x) ∈ Hn. Note that

‖F(t,x)‖=

(
n

∑
m=−n

| fm|2
)1/2

≡Const (36)

i.e., the norm (36) of forcing and the generalized Grashof number (33) are time-independent constants. Ob-
viously, there are many quasiperiodic forcings of the form (34) which have the same norm (36), or the same
Grashof number (33), but differ in degrees n or/and amplitudes fm.

Since J(ψ,∆ψ) = 0 for any function ψ ∈Hn, there exists an exact BVE solution ψ̃(t,x) =
n
∑

m=−n
ψ̃m(t)Y m

n (x)

from the subspace Hn defined by the Fourier coefficients

ψ̃m(t) = AmFm(t)≡−{[σ +νχ
s
n]χn + im(χnωm−2)}−1 Fm(t), |m| ≤ n . (37)

Besides, it was shown in Example 3 that the subspace Hn is the domain of attraction of this solution.
Since the frequencies ωm are rationally independent, the solution ψ̃(t,x) is quasiperiodic, and its path is an

open endless spiral densely wound around a 2n-dimensional torus in the (2n+ 1)-dimensional complex space
Hn. According to Theorem 3 in [9], the closure of this trajectory coincides with the torus. Hence, the Hausdorff
dimension of the attractive set, that is solution (37), coincides with that of the torus and equals 2n.
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Sufficient conditions for the global asymptotic stability of smooth solution (37) are given by Theorem 4. In
our case ψ̃(t,x) ∈Hn, and (25) gives p = χnq = n(n+1)q. Therefore, condition (27) for the global asymptotic
stability of solution (37) accepts the form

σ +2s
ν > q

√
χn (38)

where
q = sup

t ≥ 0
max

(λ ,µ)∈S
|∇ψ̃(t,λ ,µ)| . (39)

Due to Lemma 1,

|∇ψ̃(t,x)|2 =

∣∣∣∣∣ n

∑
m=−n

ψ̃
m
n (t)∇Y m

n (x)

∣∣∣∣∣
2

≤ ‖ψ̃(t,x)‖2

{
n

∑
m=−n

|∇Y m
n (x)|2

}
= χn K2

n ‖ψ̃(t,x)‖2
. (40)

Also, according to (37),

‖ψ̃(t,x)‖ ≤ 1
(σ +νχs

n)χn
‖F‖ (41)

where the norm ‖F‖ of forcing (34), (35) is time-independent (see (36)). Due to (39)-(41),

q
√

χn ≤
Kn

σ +νχs
n
‖F‖

and hence condition (38) is satisfied if

σ +2s
ν >

Kn

[σ +νχs
n]
‖F‖

and also if
2s

ν >
Kn

νχs
n
‖F‖ .

Using the definition (33) where χ1 = 2, the last inequality can be written in terms of the generalized Grashof
number:

22−s
χ

s
n

√
π

2n+1
> G(s) . (42)

Since
χ

s
n

1√
2n+1

= ns(n+1)s 1√
2
√

n+1
≥ 1√

2
n2s−1/2

condition (42) holds if
23/2−s√

πn2s−1/2 > G(s) . (43)

Thus, we prove the following assertion:

Theorem 6. Let s ≥ 1, ν > 0, σ ≥ 0, and let F(t,x) ∈ Hn be a quasiperiodic forcing (34)-(35) of the BVE
equation (4). Then solution (37) from the subspace Hn is a global attractor provided that condition (43) is
satisfied.

In particular, for s = 2 and s = 1, solution (37) is the global BVE attractor if

2−1/2√
πn7/2 > G(2) and 21/2√

πn3/2 > G(1) , (44)

respectively. Note that s = 1 corresponds to the Navier-Stokes equations.
It follows from (44) that for a fixed finite value of the generalized Grashof number G, it is always possible

to determine such an integer n(G) that the spiral solution generated by any quasiperiodic forcing (34)-(35) from
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subspace Hn with n≥ n(G) is a global BVE attractor. For example, if we take G(2) = ‖F(x)‖/χ3
1 ν2(2) = 1500

for the barotropic atmosphere (this value was used in [3]), then condition (44) is satisfied for any forcing (34)-
(35) whose degree n is equal to or greater than 8.

The result obtained is not unexpected. Indeed, for a fixed coefficient v(s), the number G(s) is fixed if the
L2-norm (36) of the forcing is a constant independent of n. Let the amplitudes | fm| of oscillations of forcing be
nonzero for all m. Then they must decrease as n grows, and for a sufficiently large number n (or for sufficiently
small amplitudes | fm|), the viscosity v(s) can become sufficient to satisfy condition (27) for the global asymptotic
stability of the quasiperiodic solution (37).

Thus, unlike the case of stationary forcing when the Hausdorff dimension of the global BVE attractor is lim-
ited above by the generalized Grashof number G [3], in the case of the quasiperiodic forcing (34), the Hausdorff
dimension 2n of the global spiral attractor (37) is not limited by the generalized Grashof number G and can
become arbitrarily large as the degree n of the BVE forcing increases.

This result is of particular meteorological interest, since it shows that the dimension of the global attractor
in the barotropic atmosphere can be unlimited, even if the generalized Grashof number (33) is bounded. Thus,
the dimension of the global attractor crucially depends not only on the generalized Grashof number, but also
on the time-space structure of the BVE forcing. This also shows that the search for a global attractor of small
dimension in the barotropic atmosphere [1] is theoretically unjustified due to the fact that forcing usually has a
very complex structure with a huge number of degrees of freedom.
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