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Abstract
In this article, the study of qualitative properties of a special type of non-autonomous nonlinear second order ordinary
differential equations containing Rayleigh damping and generalized Duffing functions is considered. General conditions
for the stability and periodicity of solutions are deduced via fixed point theorems and the Lyapunov function method.
A gyro dynamic application represented by the motion of axi-symmetric gyro mounted on a sinusoidal vibrating base
is analyzed by the interpretation of its dynamical motion in terms of Euler’s angles via the deduced theoretical results.
Moreover, the existence of homoclinic bifurcation and the transition to chaotic behaviour of the gyro motion in terms of
main gyro parameters are proved. Numerical verifications of theoretical results are also considered.

Keywords: Nonlinear Ordinary Differential Equations; Stability Theory; Periodic Solutions; Bifurcation; Chaotic Dynamic; Gyro-
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1 Introduction

Many applied problems represented by dynamical systems have many difficulties to obtain their solutions in
explicit forms definitely when these problems are modelled by (non-autonomous)nonlinear systems, cf. [5,7,12].
Therefore, the directions of progress to analyze qualitatively for obtaining the main mathematical properties now
become must. Most of these properties are stuck in the presence of periodic solutions, the bifurcations and the
route to the chaotic behaviours or more less based on their dynamics as well. One of these celebrated applied
problems is the general planar motion of a particle exerted by conservative and nonconservative fields that can
be represented by the following system:

ẋ = X(x,y, t), ẏ = Y (x,y, t). (1)
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A special case of this system (Eq.1) is the general second order (non-autonomous)nonlinear ordinary differential
equation of the form

ẋ = y, ẏ+ f (t,x,y) = 0, (2)

where f is a nonlinear function satisfying certain conditions specified in the tackled problem.
The nonlinear system represented by Eq.2 is mostly used for mathematical modelling of various engineering
phenomena and it is attracting engineers and mathematical researchers due to its rich applications. A great deal
of papers and books published during the last decades have extensively studied the qualitative properties of Eq.2
in directions of existence and uniqueness, stability, periodicity(quasi-periodicity), bifurcation, chaos and some
numerous particular properties, cf. [2, 3, 15, 21, 25, 27].
In particular, one of the fruitful special cases of Eq.2 tackled in numerous applications for their qualitative
constant interests is the following non-autonomous undamped duffing equation

ẍ+ f (x, t) = 0. (3)

Ortega in [22] initiated the study of Eq.3 for the stability of periodic solutions of using the relation between
topological degree and stability. In the other hand, regarding the driven damped duffing equation

ẍ+ cẋ+ f (x, t) = r(t), (4)

where c is the coefficient of linear damping and r(t) is the driven function. Chen et al. [11] studied it to ob-
tain the exact multiplicity of periodic solutions with f (x, t) and r(t) as continuous and 2π periodic functions
of time. In [29], it is studied the existence, uniqueness and asymptotic stability of periodic solutions of some
special type of Van Der Pol oscillators under periodic time excitation is studied. However, so many litera-
tures have been discussed on the qualitative analysis of Eq.2 and its periodic solutions by different techniques,
cf. [1, 8–10, 14, 23, 24, 26].

Motivated by this argument, in this work, we discuss the stability and the existence of periodic solutions as
well as the transition to chaos for very specific type of non-autonomous nonlinear ODEs, so-called the Rayleigh–
Duffing equation

ẍ+h(ẋ)+ f (x, t) = r(t), (5)

where h(ẋ) and f (x, t) are nonlinear continuous functions and r(t) is a continuous periodically driven function.
In general, the most general engineering applications of the Rayleigh–Duffing equation (Eq.5) are modelling of
RLC circuits with actual voltage, the planar motion of a particle under the exciting and dissipative forces and
some of gyro motions under external torques, cf. [19].
Here, the function h(ẋ) represents the dissipative forces that are considered as a general bounded function or
have the generalized form of Rayleigh damping and f (x, t) represents the conservative and nonconservative
forces of duffing type.
Using a dimensionless small parameter, denoted by ε , the Rayleigh–Duffing equation can be transformed to the
following perturbed form:

ẍ+ω
2
n x = εF(x, ẋ, t), (6)

where ωn represents the natural frequency of the system and F represents a perturbed force on the system.
The concept of chaotic behaviour is important due to its existence profusely in complex systems; therefore, the
dynamic application of Eq.5 will concern some what a part of this study. In this work, an interesting application
of Eq.5 being the motion of axi-symmetric gyroscope mounted on a vibrating base with periodic excitation is
considered, cf. [28]. The general treatment of the governing equation is handled by sides of stability analysis and
existence of periodic solutions. Moreover, the theoretical results are applied to the tackled application besides
the study of bifurcation and transition to chaos using the perturbed form of the differential equation. Melnikov’s
method is used to clarify the range of chaotic behaviour affected by the change in main parameters of the sys-
tem. Numerical verification by using numerical solution diagrams and phase plane trajectories for proving the
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deduced theoretical results of the gyro motion are considered.

This work is organized as follows: In section 2, some theoretical results for the Rayleigh–Duffing equation
are presented. Section 3 is concerned with a dynamic application using an example of gyro motion governed by
the Rayleigh–Duffing equation to verify the theoretical results. In the last section, the conclusion is given.

2 Theoretical results

Let us assume that, the Rayleigh–Duffing equation possesses a T -periodic solution in the presence of con-
tinuous functions h(ẋ), f (x, t) and r(t), with the later two T-periodic with respect to time. In addition to, it is
assumed that the following identity at the equilibrium point x∗ = 0

h(0)+ f (0, t) = 0, (7)

holds and the only solution of h(0)+ f (x, t) = 0 is x = x∗. Hence, rewriting Eq.5

ẍ+ f (x, t) = r(t)−h(ẋ), (8)

where the RHS represents the absorption and the supply of system energy. Thus, the total energy(E) of the
system is non-conservative and reads

E=
1
2

y2 +F(x, t), where F(x, t) =
ˆ x

0
f (u, t)du. (9)

Then, the energy rate is
dE
dt

=
∂F
∂ t
−h(y)y. (10)

From Eq.10, it is easy to obtain the general conditions for energy decaying, but on the other hand one can obtain
a general representation of energy function (i.e. Lyapunov’s function) as

V(x,y, t) = e
√

y2+F(x,t)+k−
´ t

0 |r(t)|−kt , (11)

on the domain |x|< ∞, |y|< ∞, 0≤ t ≤ T and x2 + y2 ≥ k2 where k ∈ R+.
Thus, the following theorem gives general imposed conditions based on Eq.5 to obtain asymptotically stable
solutions.

Theorem 1. The Rayleigh-Duffing equation has an asymptotically continuable stable solution if the following
conditions are satisfied:
i) h(y) and f (x, t) are locally Lipschitzian in y and x respectively, and r(t) is continuous on R.
ii) f (x, t) and r(t) are periodic in t of period T .
iii) F(x, t) =

´ x
0 f (u, t)du >−k for all t and x and Ft√

F(x,t)+k
is bounded.

Proof. For the domain t ∈ [0,T ], |x| < ∞, |y| < ∞ and x2 + y2 ≥ k2, and by considering the function V using
Eq.11, we have

V̇ ≤ 0, (12)

only if the three conditions i, ii and iii are satisfied. Then, the conclusion holds. �
The existence of periodic solutions of the Rayleigh–Duffing equation can be proved on the basis of Schauder’s

fixed-point theorem. General conditions to obtain at least one limit cycle are stated and proved in the following
theorem.
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Theorem 2. The Rayleigh–Duffing equation has at least one T -periodic solution if the following conditions are
satisfied,
i) f (x, t) is locally Lipschitzian in x and r(t) is a continuous on R.
ii) f (x, t) and r(t) are periodic in t of period T and

´ T
0 r(t)dt = 0.

iii) | f (x, t)| ≤ |r(t)| uniformly in t.
iv) the function h(y) is bounded, i.e |h(y)|< L.
v) f (x, t)sgnx≥ 0.

Proof. Let us rewrite Eq.5 in its perturbed form as follows,

ẍ+ω
2
n x = ε(r̃(t)− h̃(ẋ)− f̃ (t,x)+(1− ε)ω2

n x), (13)

where ωn here represents an arbitrary positive constant. Hence, if ε ≈ 0 then we obtain a homogenous equation
with ωn periodic solution but for 0< ε < 1 all periodic solutions and their first derivative are uniformly bounded.
So that, let x(t) = x(t +T ) be a solution of Eq.13 and

max
0≤t<∞

|x(t)|= R, max
0≤t<∞

|ẋ(t)|= R̃, max
0≤t<∞

|r(t)|= Γ. (14)

Hence, this equation can be written as
ẍ+ω

2
n x = q(t), (15)

with the following periodic boundary conditions

x(0) = x(T ), y(0) = y(T ). (16)

Green function(G) of the boundary value problem of Eq.15 with periodic boundary conditions of Eq.16 reads

G(s; t) =
1

2ωn sin ωnT
2

{
cosωn(s− t + T

2 ) if 0≤ s≤ t ≤ T,
cosωn(t− s+ T

2 ) if 0≤ t ≤ s≤ T,
(17)

with the identity Gs(t +0, t)−Gs(t−0, t) = 1. This implies that q(t +T ) = q(t), then we obtain the following
representation of the solution x(t)

x(t) =
ˆ T

0
G(s; t)q(s)ds. (18)

Hence, by inserting the explicit expression for q(t) to derive the following estimates

|x(t)| ≤ ρ(2Γ+L+ω
2
n R), ρ = max(1,

1
ω2

n
) (19)

Now, let us integrate term by term of Eq.13 to yield

[y−P(t)]T0 +

ˆ T

0
[ω2

n (1− ε)x(t)+ f (x, t)+h(y)]dt = 0, (20)

or ˆ T

0
[ω2

n (1− ε)x(t)+ f (x, t)+h(y)]dt = 0, (21)

then, we have
ω

2
n (1− ε)|x(t)|+ f (x, t)sgnx+ |h(y)|> 0. (22)

This leads to
f (x, t)sgnx > 0. (23)
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For |x| > xo, t ∈ [0,T ] it follows that |x(t)| ≥ xo for 0 ≤ t ≤ T is excluded, therefore there exits τ such that
0 < τ < T then x(τ)< xo. Applying the mean value theorem to an arbitrary interval [τ, t]⊂ [τ,T ], then we have

|y(τ +θ(t− τ)|= |x(t)− x(τ)|
|t− τ|

, (24)

then

|y(τ +θ(t− τ)| ≤ (2Γ+L+ωnR)
T ρ

, (25)

so we have

|y(t)| ≤ ρ(2Γ+L+ωnR)
T ρ

, (26)

it is easily to get

R̃≤ 2Γ+L+ωnR
T

, (27)

for R→ 0, then we have the following priori estimates

|x(t)| ≤ xo +T ρ(2Γ+L), |y(t)| ≤ 2Γ+L
T

, (28)

These estimates ensure at least the existence of one periodic solution in future, then the conclusion holds. �
The following theorem ensures the existence of periodic solutions if the damping function is a Rayleigh

damping term h(y) = cy+ ey3 where c and e are real constants under the following stated conditions.

Theorem 3. The Rayleigh-Duffing equation under the Rayleigh damping term for t ∈ R+ and x ∈ [a,b] has at
least one periodic solution of period T if the following condition are satisfied,
i) h(y) and f (x, t) are locally Lipschitzian in y and x respectively and r(t) is a continuous on R.
ii) f (x, t) and r(t) are periodic in t of period T ,
iii) F(x, t) =

´ x
0 f (u, t)du >−k for all t and Ft√

F(x,t)+k
is bounded.

iv) h(y)y > 0 for c, e ∈ R.
v) There exists a,b, a < b, f (a, t)− r(t)≥ 0 and f (b, t)− r(t)≤ 0.
vi) | f (t,x)|+ |r(t)| ≤ `.

Proof. For the domain t ∈ [0,T ], |x| < ∞, |y| < ∞ and x2 + y2 ≥ k2, and by considering the following two
function V1 and V2 as follow

V1 = ex+
´ y

k
u

h(u)+`du
, V2 = ex+

´ y
−k

u
h(u)+`du

. (29)

where
h(u) = cu+ eu3. (30)

The two Liapunov’s functions satisfy the following conditions

V1 ≤ B(|y|), V2 ≤ B(|y|), B(|y|)> 0. (31)

and V1→ ∞ and V2→ ∞ uniformly for (x, t) as |y| → ∞.
Thus, there exist in the interior of two domains D1 and D2 such that

V̇1 ≥ 0, V̇2 ≤ 0. (32)

Then, the equation has a solution x(t) such that |x(t)|+ |y(t)| is bounded for all t ≥ 0, so that all solutions exist
in future and one of them is bounded then there exists at least a periodic solution of period T in future. �
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3 Gyro dynamic application

The Rayleigh–Duffing equation has rich applications in the gyro dynamics, cf. [6, 13, 19]. In our case, the
application represents the motion of axi-symmetric gyroscope(Lagrange’s gyroscope) mounted on a vibrating
base exerted by a sinusoidal periodic force along the vertical fixed axis(OZ) as shown in Fig.1.

The motion can be described by the Routhian’s function(R) as a function of the Euler’s angles θ (nutation),

Fig. 1 Motion of Lagrange’s gyroscope represented by a cylindrical body mounted on a vibrating base with periodic
excitation(d(t) = do sinωt).
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ψ(precession), and φ (spin), cf. [16–18, 28],

R= L− pψ ψ̇(pψ , pφ ,θ)− pφ φ̇(pψ , pφ ,θ), (33)

where L is the Lagrangian function

L=
1
2

I(θ̇ + ψ̇
2 sin2

θ)+
1
2

I3(φ̇ + ψ̇ cosθ)2−mrḋθ̇ sinθ −mgr cosθ , (34)

pφ and pψ are the corresponding conserved angular momenta to the cyclic coordinates φ and ψ , respectively.

pφ = I3(φ̇ + ψ̇ cosθ) = const., pψ = Iψ̇ sin2
θ + pφ cosθ = const. (35)

Let us define m as the mass of the gyroscope, I = A+mz2
c is the principle equatorial moment of inertia, A, B and

C are the principal moments of inertia along the moving axes Ox, Oy and Oz respectively, zc is the distance along
the polar axis(Oz) of the centre of gravity(C.G.) of the gyro from its point of support(O) and d(t) = d0 sinωt is
time varying amplitude of the vertical support motion that has constant amplitude do and forced frequency ω

along the vertical fixed axis (OZ).
Then, the governing equation reads

d
dt
(
∂R

∂ θ̇
)− ∂R

∂θ
=−D(θ̇), (36)

where −D(θ̇) is the nonconservative force of damping, which has the following generalized Rayleigh damping
form

D(θ̇) = c1θ̇ + c2θ̇
3, c1,c2 ∈ R. (37)

If pψ = pφ = po, then the governing equation reads

θ̈ +
1
I

D(θ̇)+
p2

o(1− cosθ)2

I2 sin3
θ

− mgzc

I
sinθ − mzc

I
sinθ d̈(t) = 0. (38)

If θ = x, θ̇ = y, then we get the following system

ẋ = y, (39a)

ẏ =−1
I

D(y)− p2
o(1− cosx)2

I2 sin3 x
+

mgzc

I
sinx+

mzc

I
sinxd̈(t). (39b)

The vibrating axi-symmetric gyro equation(Eq.38) can be drawn into the following general form:

θ̈ +h(θ̇)+ f (θ , t) = 0, (40)

where,

f (θ , t) =
p2

o

I2
(1− cosθ)2

sin3
θ

− mgzc

I
sinθ +

1
I

ω
2mzcdo sinωt sinθ , (41)

and
h(θ̇) = cθ̇ + eθ̇

3, c =
c1

I
, e =

c2

I
. (42)

The approximate form of Eq.38 under the following approximations

sinθ = θ − θ 3

6
,

(1− cosθ)2

sin3
θ

=
θ

4
+

θ 3

12
, ω

2
n =

α

4
−β ,

α =
p2

o

I2 , β =
mgzc

I
, Γ =

1
I

ω
2mzcdo, Ω =

α

12
+

β

6
, (43)
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reads

θ̈ + cθ̇ + eθ̇
3 +(ω2

n +Γsinωt)θ +(Ω− Γ

6
sinωt)θ 3 = 0. (44)

With the following choices,

Γ = εΓ̄, c = ε c̄, e = ε ē, Ω = εΩ̄, (45)

Eq.44 can be put in the following perturbed form

θ̈ +ω
2
n θ = ε(−c̄θ̇ − ēθ̇

3− Γ̄sinωtθ +(−Ω̄+
Γ̄

6
sinωt)θ 3). (46)

The theoretical results can be applied to the equation of the vibrating axi-symmetric gyro model (Eq.38) to
obtain the following theorems

Theorem 4. According to the conditions of theorem 1, the solution of the vibrating axi-symmetric gyro equation
is globally asymptotically stable.

Theorem 5. According to the conditions of theorem 3, the vibrating axi-symmetric gyro equation has at least
one periodic solution.

3.1 Approximate form of the periodic solution

In [20], it is found that the straightforward expansion methods fails sometime to obtain a form of periodic
solution for the linear problem with periodic coefficient, for instance Mathieu’s equation. Therefore, it is sug-
gested to use the method of strained parameters by expanding the solution(θ ) and the natural frequency(ωn) in
powers of ε by using the perturbed form of vibrating axi-symmetric gyro equation(Eq.46). Thus, we seek the
periodic solution by using the following uniform expansions:

ω
2
n = n2 + εω1 + ε

2
ω2 + ... (47a)

θ = θ0 + εθ1 + ε
2
θ2 + .... (47b)

Comparing coefficients of ε0,ε1,ε2, we get the following differential equations,

d2θ0

dt2 +n2
θ0 = 0, (48)

d2θ1

dt2 +n2
θ1 =−ω1θ0− c̄θ̇0− ēθ̇

3
0 − Γ̄sinωtθ0 +(−Ω̄+

1
6

Γ̄sinωt)θ 3
0 , (49)

d2θ2

dt2 +n2
θ2 =−ω1θ1−ω2θ0− c̄θ̇1−2ēθ̇

2
0 θ̇1− Γ̄sinωtθ1 +2(−Ω+

1
6

Γ̄sinωt)θ 2
0 θ1. (50)

By solving these equations, we obtain,

θ0 = acos(nt +φ), (51)

θ1 =−
−1

ω2−2ωn
5
12

Γ̄asin((ω−n)t +φ)+
1

ω2 +2ωn+2n2
5
12

Γ̄asin((ω +n)t +φ)

− 1
8n2 ēa3n3 sin(3nt +3φ), (52)
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θ2 =
−1

ω2 +2ωn−n2 D(ω1 + Ω̄)sin((ω−n)t +φ)

− 1
ω2 +2ωn

M(ω1 + Ω̄)sin((ω +n)t +φ)

− 1
64n2 (ω1 + Ω̄)sin(3nt +3φ)

+
1

4ω(n−ω)
cos((2ω−n)t +φ)

+
1

n2− (ω−3n2)2
Γ̄

16n2 cos((ω−3n)t−3φ)− 3c̄
64n3 cos(3nt +3φ)

− 1
n2− (ω +3n2)2

Γ̄

16n2 cos((ω +3n)t +3φ)

− 1
ω(2n−ω)

c̄Dcos((ω−n)t +φ)

− 1
ω(ω +2n)

c̄M(ω +n)cos((ω−n)t +φ)

+
1

ω−3n
3
2

ēaDsin(2n−ω)t

− 1
ω +n

3
2

ēaDsin(ωt +2φ)− 1
ω−n

3
2

ēaM sinωt

+
1

3n+ω

3
2

ēaDsin((ω +2n)t +2φ)− 3
16n3 ēasin(2nt +2φ)

− 80
3n3 ēsin(4nt +φ)− 1

16ω(ω +n)
Γ̄M cos((2ω +n)t +φ)

− 1
(4n−ω)(2n−ω)

3
16n

Γ̄sin((ω−3n)t−3φ)

− 1
(4n+ω)(2n+ω)

3
16n

Γ̄sin((ω +3n)t +3φ), (53)

where a and φ are arbitrary constants, D =− 5
12

1
ω(ω−2n) Γ̄a and M = 5

12
1

(ω+n)2 Γ̄a. Then, the general approximate
solution reads

θ = θ0 + εθ1 + ε
2
θ2 +O(ε3). (54)

The gyro system generates a periodic solution under the following conditions which come from deleting the
secular terms

a =
1
n

√
− c̄

ē
, ω1 =−Ω̄, ω2 =

−7
12

Γ̄

aD
− 1

4
Γ̄M. (55)

3.2 Stability of the approximate periodic solution

By rewriting the perturbed form of vibrating axi-symmetric gyro equation(Eq.46) to have the form

θ̈ +ω
2
n θ = εF(θ , θ̇ , t), (56)

where

F=−c̄θ̇ − ēθ̇
3− Γ̄sinωtθ +(−Ω̄+

Γ̄

6
sinωt)θ 3. (57)

Hence, the solution of the unperturbed problem has the form

θ = a(t)sin(ωnt +φ(t)) (58)

https://www.sciendo.com


102 M. El-Borhamy, N. Mosalam Applied Mathematics and Nonlinear Sciences 5(2020) 93–108

Following Krylov and Bogoliubov approximations in [20], a and φ are replaced with their average values over
the period T = 2π

ωn
. By considering that, a and φ are constants in taking the values of average and apply the

method of averaging, we obtain

ȧ =−ε
1

2π

ˆ T

0
cos(ψ)F(asin(ψ),aωn cosψ, t)dt, (59a)

φ̇ = ε
1

2πa

ˆ T

0
sin(ψ)F(asin(ψ),aωn cosψ, t)dt. (59b)

where ψ = ωnt +φ .
Once the integrals have been evaluated, then we have first order differential equations to obtain the amplitude
and the phase angle and an approximate solution is obtained. In the case of existence of limit cycles, then the
amplitudes of possible ones can be obtained from

G(a) =
ˆ T

0
cos(ψ)F(asin(ψ),aωn cosψ, t)dt = 0. (60)

By considering the existence of roots(a=a1,a2,a3,...), then we obtain the amplitudes of the periodic solutions,
consequently to get the condition of stability of the limit cycle, the following condition must be satisfied

dG(a)
da
|a=ai < 0, i = 1,2,3, .... (61)

By applying, we have
G(a) = ρ1a4−ρ2a2, (62)

then we obtain

a1 = 0, a2 =

√
ρ2

ρ1
, (63)

where,

ρ1 =−
Γ̄ωn

96
[− 1

(2ωn−ω)
sin

2π(2ωn−ω)

ωn
+

1
(2ωn +ω)

sin
2π(2ωn +ω)

ωn

− 1
(4ωn +ω)

sin
2π(4ωn +ω)

ωn
+

1
(4ωn−ω)

sin
2π(4ωn−ω)

ωn
]− 3π

4
ēω

3
n (64a)

ρ2 = c̄πωn−
Γ̄ωn

4
[

1
2ωn−ω

sin(2ωn−ω)
2π

ωn
+

1
2ωn +ω

sin
2π(2ωn +ω)

ωn
]. (64b)

By considering a special case to verify the theoretical result of Eq.63, we compare it with the following numerical
results by plotting the solution and the phase plane of the continuous governing equation of gyro(Eq.39). As
shown in Fig.2 for α = 10, β = 1, c = 0.1, e = 0.05, Γ = 1 and ω = 3, a stable limit cycle is obtained with
radius around one, which roughly fits the theoretical result.

3.3 Stability analysis of gyro relative equilibria

From Eq.38
θ̈ = P(t)θ +Q(t)θ 3− cθ̇ − eθ̇

3, (65)

where
P(t) =−ω

2
n −Γsinωt, Q(t) =−Ω+

Γsinωt
6

, (66)
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Fig. 2 Existence of stable limit cycle with α = 10, β = 1, c = 0.1, e = 0.05, Γ = 1 and ω = 3.

By using the following assumptions
θ = x, θ̇ = y. (67)

Then, Eq.65 reads

ẋ = y, ẏ = P(t)x+Q(t)x3− cy− ey3. (68)

Following the Lyapunov stability analysis in [4] at the equilibrium points (0,0) and (0,±π), let the disturbance
of motion be at (0,0) and using Lyapunov function,

V (t,x,y) =
1
2

P(t)x2 +0.5y2 + xy. (69)

Then, this function is positive definite under condition of V > 0 P(t) > 1 and 1 + Γ + ω2
n < 0. To obtain

asymptotic stability conditions where −V̇ > 0,

V̇ (t,x,y) = (P(t)− Γω cosωt
2

)x2 +(2P(t)− c)xy+(1− c)y2− ey4. (70)

Thus, the requirements to obtain asymptotically stable node at the zero position are

c > 1, c > 2P(t) (71a)

ω
2
n +Γsinωt +

1
2

Γω cosωt > 0 (71b)

(c−2P(t))2

4(1− c)
> ω

2
n + f

√
1+

ω2

4
. (71c)

The inequalities in Eq.71 are conditions for the asymptotic stable solution of the vibrating axi-symmetric gyro
equation at the fixed point (0,0). We can verify this condition by the following numerical case: α = 10, β = 1,
c = 0.5, e = 0.2, ω = 3 and Γ = 1 as shown in Fig.3 to assure the theoretical conditions at (0,0).
The second relative equilibrium points are at (θ , θ̇) = (±π,0) where the gyro is inverted to down or up respec-
tively. Considering the downward position,

θ = x+π, θ̇ = y. (72)

Then, the system reads
ẋ = y, ẏ = P(t)(x+π)− cy− ey3 +Q(t)(x+π)3. (73)
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Similarly, we use Lyapunov function

V (t,x,y) =
1
2
(P(t)−3π

2Q(t))x2 +
1
2

y2 + xy. (74)

This equation verifies Lyapunov function condition where V (t,x,y)> 0 under the condition P(t)−3π2Q(t)> 0.
If we test the conditions for stability where −V̇ > 0, then we obtain

c > 1, c > 2P(t)−3π
2Q(t) (75a)

P(t)<
1
2
(1+

π2

2
)Γω cosωt (75b)

α

4
(1−π

2)+β (1+
π2

2
)− (c−2P(t)+3π2Q(t))2

4(c−1)
> (1+

π2

2
)Γ

√
1+

ω2

4
. (75c)

By using the Lyapunov theorem, the inequalities in Eq.75 are sufficient conditions for asymptotic stability at the
fixed points (−π,0).
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Fig. 3 Solution and phase plane in case of a stable motion at α = 10, β = 1, c = 0.5, e = 0.2, Γ = 1 and ω = 3.

3.4 Homoclinic bifurcation and transition to chaos

To investigate the existence of the homoclinic bifurcation, we use firstly the following approximate or per-
turbed equation of the gyro system to deduce such critical values using Melnikov’s function,

θ̈ +ω
2
n θ +Ωθ

3 = εH(θ , θ̇ , t), (76)

where

H=−c̄θ̇ − ēθ̇
3− Γ̄sinωtθ +

Γ̄

6
sin(ωt)θ 3, (77)

Theorem 6. Eq.76 admits a homoclinic bifurcation if ω2
n < 0 or β > 1+ α

4 .

Proof. Under the condition of β = 1+ α

4 , the unperturbed equation can be represented as

θ̈ +ω
2
n θ +Ωθ

3 = 0, (78)

then, at the point (0,0) for ω2
n < 0 and Ω > 0, the unperturbed system has homoclinic paths meeting at the

origin. Consequently, the perturbed system has a homoclinic bifurcation at the origin. �
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When we take the assumed values of ωn = −1, Ω = 1 as a special case to deduce the critical values of the
system that generates the homoclinic bifurcation of vibrating axi-symmetric gyro equation, then the following
unperturbed equation of the system(ε ≈ 0) reads

ẋo = yo, ẏo = xo− x3
o. (79)

Then, the solution reads

xo(t) =
√

2sech(t− to), yot =−
√

2sech(t− to) tanh(t− to). (80)

Melnikov’s function can be expressed as

M(to) =
ˆ

∞

−∞

yo(t− to)H(xo,yo, t)dt. (81)

Using the theory of residues, we obtain

M(to) = Γ̄π(ω4 +
5
6

ω
2− 35

36
)cosech

ωπ

2
− 4

3
c̄+

16
63

ē. (82)

To calculate the critical value of Γ̄ as M(to) = 0, we have

Γ̄c =
4
3 c̄− 16

36 ē

π(ω4 + 5
6 ω2− 35

36)
sinh

ωπ

2
. (83)

The critical values of the amplitude can be verified numerically when we take c = 0.5, ω = 1, e = 0 and e = 0.1
then it is around Γ̄c = 0.522 and Γ̄c = 0.529 respectively. These results can be shown in Fig.4 of bifurcation
diagrams. It is obviously from the pre-analysis of bifurcation diagrams for varying values of revealed parameter
Γ that, there is one chaotic region found without windows of periodicity in the region of Γ≥ 0.522 and Γ≥ 0.529
corresponding to e = 0 and e = 0.1 respectively.

Γ

0 10 20 30 40 50

x
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-0.5

0

0.5

1

Γ

0 10 20 30 40 50

x

-0.05

0

0.05

Fig. 4 Bifurcation diagrams in case of c = 0.5, ω = 1, e = 0 (left) and e = 0.1 (right).

To obtain a large insight of the chaotic behaviour, we analyze the nonlinear behavior of the vibrating axi-
symmetric gyro equation numerically by using the Range–kutta fourth-order method solver to determine the
transition to chaotic stages using the phase plane trajectories. In Fig.5 and Fig.6, it can be easily noticed that the
output of the system transit from double route bifurcation to complex chaotic behaviour when the normalized
amplitude Γ is increased further. By the way, one can also notice that the damping coefficient e has an effect to
delay or to slow down the transition to the chaos region.
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Fig. 5 Chaos diagrams in case of c = 0.5, ω = 1, e = 0 at Γ=0.522,1,25 and 50 from to left to right.

Fig. 6 Chaos diagrams in case of c = 0.5, ω = 1, e = 0.1 at Γ=0.529,1,25 and 50 from to left to right.

4 Conclusion

In this work, special type of nonlinear ordinary differential equations called the Rayleigh–Duffing equation
is qualitatively studied by seeking the stability of solutions and existence of periodic solutions via the fixed
point method and the second method of Lyapunov. An engineering application governed by the Rayleigh–
Duffing equation represented by a motion of vibrating axi-symmetric gyro is investigated based on the deduced
theoretical results. In general, it is concluded that the gyro motion under a driven periodic force is affected by
the variation of the normalized excitation amplitude from stable or periodic to a complex chaotic dynamic. An
approximate measure of the periodic solution and its amplitude using the perturbed forms is deduced. The sta-
bility of equilibria of the gyro motion have been explicated using Lyapunov stability analysis. The existence of
the homoclinic bifurcation and the transition to chaos by obtaining the range of chaotic behaviour with respect
to the normalized value of excitation amplitude are shown. Lastly, all theoretical results are verified and fit well
with the numerical ones.
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