

Applied Mathematics and Nonlinear Sciences 5(1) (2020) 461-474

Applied Mathematics and Nonlinear Sciences

https://www.sciendo.com

Evaluation of Investment Opportunities With Interval-Valued Fuzzy Topsis Method

Naiyer Mohammadi Lanbaran¹, Ercan Celik², Muhammed Yiğider³

Submission Info

Communicated by Hacı Mehmet Baskonus.

Received May 29th 2019

Accepted June 13th 2019

Available online April 10th 2020

Abstract

The purpose of this study is extended the TOPSIS method based on interval-valued fuzzy set in decision analysis. After the introduction of TOPSIS method by Hwang and Yoon in 1981, this method has been extensively used in decision-making, rankings also in optimal choice. Due to this fact that uncertainty in decision-making and linguistic variables has been caused to develop some new approaches based on fuzzy-logic theory. Indeed, it is difficult to achieve the numerical measures of the relative importance of attributes and the effects of alternatives on the attributes in some cases. In this paper to reduce the estimation error due to any uncertainty, a method has been developed based on interval-valued fuzzy set. In the suggested TOPSIS method, we use Shannon entropy for weighting the criteria and apply the Euclid distance to calculate the separation measures of each alternative from the positive and negative ideal solutions to determine the relative closeness coefficients. According to the values of the closeness coefficients, the alternatives can be ranked and the most desirable one(s) can be selected in the decision-making process.

Keywords: Multi-Criteria decision making, Fuzzy logic theory, Interval- Valued Fuzzy TOPSIS Analysis, Euclid distance, Shannon Entropy

AMS 2010 codes: 03E72

1 Introduction

Decision making is one of the most complicated administrative processes in management. Over the years, various methods have been designed to simplify the process as well as developing new methods. Since, there are many imprecise concepts all around us that routinely expressed in different terms. In fact, the human brain works with considering various factors and based on inferential thinking and value of sentences that modeling of them with mathematical formulas if not impossible would be a complex task.

E-mail: naiyer.mohammadi.lanbaran13@ogr.atauni.edu.tr

\$ sciendo

¹Atatürk University Faculty of Science, Department of Mathematics

²Atatürk University Faculty of Science, Department of Mathematics, E-mail: ercelik@atauni.edu.tr

³Department of Mathematics, Faculty of Science, Erzurum Technical University, E-mail: myigider@gmail.com

[†]Corresponding author:

Because crisp data are inexpressive to model real life situations Zadeh in 1965, has suggested fuzzy logic that is closer to human thinking and Chen [3] developed the TOPSIS method to fuzzy decision-making situations. The purpose of fuzzy logic as a decision-making technique is to improve decision making process in vague and unclear circumstances. Fuzzy management science, while creating the flexibility in the model, with entering some data such as knowledge, experience and human judgment in the model also offers fully functional responses to it [5]. However, if a decision is not possible for linguistic variables based on fuzzy sets, Interval-valued fuzzy set theory can provide a more detailed modeling. In this paper, interval-valued fuzzy TOPSIS method is proposed to solve MCDM (Multi-Criteria Decision Making) problems, where the weight of the criterias are unequal [2,6,7,10–12].

2 TOPSIS Method

As mentioned, this method was developed by Hwang and Yoon (1981) in which the best alternative should have the shortest distance from an ideal solution and the worst alternative is the furthest from an ideal solution [2,6].

Assume a multi criteria decision making problem has n alternatives, A_1, A_2, \ldots, A_n and m criterias, C_1, C_2, \ldots, C_m . Each alternative is estimated regarding the m criteria. All the values/ratings are determined to alternatives with respect to decision matrix define by $X(x_{ij})_{n \times m}$. The criteria's weight vector is $w = (w_1, w_2, \ldots, w_m)$ that $\sum_{j=1}^m w_j = 1$. TOPSIS method includes a process consisting of 6-steps as follows:

i Normalize the decision matrix using the following evolution for each r_{ij} .

$$r_{ij} = \frac{a_{ij}}{\sqrt{\sum_{i=1}^{m} a_{ij}^2}} \quad i = 1, 2, \dots, m \quad j = 1, 2, \dots, n$$
 (1)

ii Multiply the columns of the normalized decision matrix by the connected weights. The weighted and normalized decision matrix is come as:

$$V_{ij} = w_i \times r_{ij}; i = 1, 2, ..., m \quad j = 1, 2, ..., n$$
 (2)

Which w_i is the weight of the *jth* criteria.

iii specify the ideal and negative ideal alternatives respectively as follows:

$$A^{+} = \{v_{1}^{+}, v_{2}^{+}, \dots, v_{n}^{+}\} = \{(max_{i}v_{ij}j \in J_{1}), (min_{i}v_{ij}j \in J_{2}) i = 1, 2, \dots, m\}$$

$$A^{-} = \{v_{1}^{-}, v_{2}^{-}, \dots, v_{n}^{-}\} = \{(min_{i}v_{ij}j \in J_{1}), (max_{i}v_{ij}j \in J_{2}) i = 1, 2, \dots, m\}$$
(3)

Where J_1 is the set of benefit criterias and J_2 is the set of cost criterias.

iv With using of the two Euclidean distances to calculate the distance of the existing alternatives from ideal and negative ideal alternatives as:

$$S_{i}^{+} = \sqrt{\sum_{j=1}^{n} \left(v_{ij} - v_{j}^{+}\right)^{2}} \ i = 1, 2, \dots, m$$

$$S_{i}^{-} = \sqrt{\sum_{j=1}^{n} \left(v_{ij} - v_{j}^{-}\right)^{2}} \ i = 1, 2, \dots, m$$

$$(4)$$

v The relevant closeness to the ideal alternatives can be defined as:

$$C_i^+ = \frac{S_i^-}{S_i^- + S_i^+} \quad i = 1, 2, \dots, m$$
 (5)

Where $0 \le C_i^+ \le 1$.

vi According to the relative closeness to the ideal alternatives rank the alternatives the bigger C_i^+ is related to better alternative A_i [1].

3 Interval-Valued Fuzzy Sets

Since the theory of fuzzy sets by Zadeh can be used in vague and imprecise terms, many studies, have developed TOPSIS method in the interval- fuzzy environment. Because of the complexity of the socio-economic environment in many practical decision problems that option often would arrange shady by decision-makers [8, 9]. An interval-valued fuzzy set A defined on $(-\infty, +\infty)$ is given by:

$$A = \left\{ x, \left[\mu_{A}^{L}(x), \mu_{A}^{U}(x) \right] \right\} \mu_{A}^{L}(x), \mu_{A}^{U}(x) : X \to [0, 1] \quad \forall x \in X, \ \mu_{A}^{L}(x) \le \mu_{A}^{U}(x)$$

$$\bar{\mu}_{A}(x) = \left[\mu_{A}^{L}(x), \mu_{A}^{U}(x) \right] A = \left\{ (x, \bar{\mu}_{A}^{(x)}) \right\}, x \in (-\infty, +\infty)$$
(6)

That $\mu_{A}^{L}(x)$ is the lower limit of degree of membership and $\mu_{A}^{U}(x)$ is the upper limit of degree of membership.

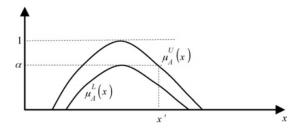


Fig. 1 Interval-valued fuzzy set.

Figure 1 Shows the value of membership at x' of interval-valued fuzzy set A. Thus, the minimum and maximum value of the membership x' are $\mu_A^L(x)$, $\mu_A^U(x)$ respectively.

Here are two interval-valued fuzzy numbers $P_x = [P_x^-; P_x^+]$ and $Q_x = [Q_x^-; Q_x^+]$ due to the [5], we have:

- **3.1. Definition** $P.Q(x.y) = [P_x^-.Q_x^-; P_x^+.Q_x^+]$ if $1 \in (+, -, \times, \div)$.
- **3.2. Definition** The Normalized Euclidean distance between \check{P} and \check{Q} is as:

$$D\left(\check{P},\;\check{Q}\right) = \sqrt{\frac{1}{6} \sum_{i=1}^{3} \left[\left(P_{x_i}^{-} - Q_{x_i}^{-}\right)^2 + \left(P_{x_i}^{+} - Q_{x_i}^{+}\right)^2 \right]}$$
 (7)

A standard MCDM (Multi-Criteria Decision Making) problem can be briefly demonstrated in a decision matrix that x_{ij} represents value of the ith alternative of A_i with notice to the jth attribute, x_j . In this article, we develop the canonical matrix to interval-valued fuzzy decision matrix. The value and weighing of criteria, have been considered as linguistic variables. By using of Tables 1 and 2, these linguistic variables can be turned to interval-valued fuzzy triangular numbers.

Suppose that $\tilde{X} = [\tilde{x}_{ij}]_{n \times m}$ be a fuzzy decision matrix for a multi criteria decision making problem where A_1, A_2, \dots, A_n are n possible alternatives and C_1, C_2, \dots, C_m are m criteria. So \tilde{x}_{ij} is the performance of alternative A_i with notice to criterion C_j . Figure 2 represents \tilde{x}_{ij} and \tilde{w}_j as triangular interval valued fuzzy numbers [10].

$$\tilde{x} = \begin{cases} (x_1, x_2, x_3) \\ (x'_1, x_2, x'_3) \end{cases}$$

Table 1 Definition of linguistic variables for the ratings

	<u>~</u> _
Very Poor (VP)	[(0,0);0;(1,1.5)]
Poor (P)	[(0,0.5);1;(2.5,3.5)]
Moderately Poor (MP)	[(0,1.5);3;(4.5,5.5)]
Fair (F)	[(2.5,3.5),5,(6.5,7.5)]
Moderately Good (MG)	[(4.5,5.5),7,(8,9.5)]
Good (G)	[(5.5,7.5),9,(9.5,10)]
Very Good (VG)	[(8.5,9.5),10,(10,10)]

Table 2 Definition of linguistic variables for the importance of each criterion

Very low (VL)	[(0,0);0;(0.1,0.15)]
Low (L)	[(0,0.05);0.1;(0.25,0.35)]
Medium low (ML)	[(0,0.15);0.3;(0.45,0.55)]
Medium (M)	[(0.25,0.35),0.5,(0.65,0.75)]
Medium high (MH)	[(0.45,0.55),0.7,(0.8,0.95)]
High (H)	[(0.55,0.75),0.9,(0.95,1)]
Very high (VH)	[(0.85,0.95),1,(1,1)]

Here \tilde{x} can be indicated by $\tilde{x} = \left[\left(x_1, x_1' \right); x_2; \left(x_3'; x_3 \right) \right]$. The normalized performance of rating as an expansion to Chen [3] for $\tilde{x} = \left[\left(a_{ij}, a_{ij}' \right); b_{ij}; \left(c_{ij}', c_{ij} \right) \right]$ can be calculated as:

$$\tilde{r}_{ij} = \left[\left(\frac{a_{ij}}{c_{j}^{+}}, \frac{a'_{ij}}{c_{j}^{+}} \right); \frac{b_{ij}}{c_{j}^{+}}; \left(\frac{c'_{ij}}{c_{j}^{+}}; \frac{c_{ij}}{c_{j}^{+}} \right) \right], \qquad i = 1, 2, ..., n \quad j \in \Omega_{b}
\tilde{r}_{ij} = \left[\left(\frac{a_{j}^{-}}{a'_{ij}}, \frac{a_{j}^{-}}{a_{ij}} \right); \frac{a_{j}^{-}}{b_{ij}}; \left(\frac{a_{j}^{-}}{c_{ij}}; \frac{a_{j}^{-}}{c'_{ij}} \right) \right], \qquad i = 1, 2, ..., n \quad j \in \Omega_{c}
c_{j}^{+} = \max_{i} c_{ij}, \quad j \in \Omega_{b}
a_{j}^{-} = \min_{i} a'_{ij}, \quad j \in \Omega_{c}$$
(8)

Therefore, the normalized matrix $\tilde{R} = [\tilde{r}_{ij}]_{n \times m}$ can be obtained.

Here the suggested technique for building up the TOPSIS to interval- valued fuzzy TOPSIS can be described as follows:

i Make the weighted normalized fuzzy decree matrix with notice that each criterias has own importance as: $\tilde{V} = [\tilde{v}_{ij}]_{n \times m}$ that $\tilde{v}_{ij} = \tilde{r}_{ij} \times \tilde{w}_j$. Now from Defintion 3.1:

$$\tilde{v}_{ij} = \left[\left(\tilde{r}_{1_{ij}} \times \tilde{w}_{1_j}, \tilde{r'}_{1_{ij}} \times \tilde{w'}_{1_j} \right); \tilde{r}_{2_{ij}} \times \tilde{w}_{2_j}; \left(\tilde{r'}_{3_{ij}} \times \tilde{w'}_{3_j}, \tilde{r}_{3_{ij}} \times \tilde{w}_{3_j} \right) \right] = \left[\left(g_{ij}, g'_{ij} \right); h_{ij}; (l'_{ij}, l_{ij}) \right]$$
(9)

ii Defined the optimal and negative optimal solution as:

$$A^{+} = [(1,1);1;(1,1)], \quad j \in \Omega_b A^{-} = [(0,0);0;(0,0)], \quad j \in \Omega_c$$
(10)

iii Normalized Euclidean distance can be figured out using Definition 3.2 as follows:

$$D^{-}(\tilde{N}, \tilde{M}) = \sqrt{\frac{1}{3} \sum_{i=1}^{3} \left[\left(N_{x_{i}}^{-} - M_{y_{i}}^{-} \right)^{2} \right]}$$

$$D^{+}(\tilde{N}, \tilde{M}) = \sqrt{\frac{1}{3} \sum_{i=1}^{3} \left[\left(N_{x_{i}}^{+} - M_{y_{i}}^{+} \right)^{2} \right]}$$
(11)

Where D^- , D^+ are the initial and secondary distance measure, respectively.

Hence, we can calculate distance from the ideal alternative for each alternative as follows:

$$D_{i1}^{+} = \sum_{j=1}^{m} \sqrt{\frac{1}{3} \left[(g_{ij} - 1)^{2} + (h_{ij} - 1)^{2} + (l_{ij} - 1)^{2} \right]}$$

$$D_{i2}^{+} = \sum_{j=1}^{m} \sqrt{\frac{1}{3} \left[(g'_{ij} - 1)^{2} + (h_{ij} - 1)^{2} + (l'_{ij} - 1)^{2} \right]}$$
(12)

As the same way, calculate gap of the negative ideal solution by:

$$D_{i1}^{-} = \sum_{j=1}^{m} \sqrt{\frac{1}{3} \left[(g_{ij} - 0)^2 + (h_{ij} - 0)^2 + (l_{ij} - 0)^2 \right]}$$

$$D_{i2}^{-} = \sum_{j=1}^{m} \sqrt{\frac{1}{3} \left[(g'_{ij} - 0)^2 + (h_{ij} - 0)^2 + (l'_{ij} - 0)^2 \right]}$$
(13)

Eqs. (12) and (13) are used to specify the distance from ideal and negative ideal alternatives in interval values.

iv The involved sepreation can be calculated by:

$$RC_1 = \frac{D_{i2}^-}{D_{i2}^+ + D_{i2}^-} \tag{14}$$

The latest worths of RC_i^* are identified as:

$$Rc_i^* = \frac{RC_1 + RC_2}{2} \tag{15}$$

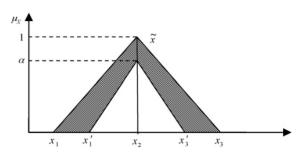


Fig. 2 Interval-valued triangular fuzzy number

4 The Implementation of the Extended Technique to Solve Problems

Suppose aninvestment corporation plans to allocate its limited resources to invest on four projects according to importance and profitability of each project respectively. In this paper, a model is presented for prioritizing investments in various industrial fields. In this case, committee of company's decision makers intend to evaluate and ultimately rank the possible company's investment options. Desired options for investment are given in the following table.

Firstly, criteria and sub-criteria were determined by applying the strategic documents of company. There are three main criteria as: "Industrial efficiency", "Compliance with company's strategy" and "The campany's industrial experience". The hierarchy of criteria and sub-criteria shows in Table 4.

Table 3 Desired options for investment

	1
Code	Title
A1	Project 1
A2	Project 2
A3	Project 3
A4	Project 4

Table 4 The hierarchy of criteria and sub-criteria

C1 Industrial officiancy	C2-Compliance	C3-Industrial
C1-Industrial efficiency	withcompany'sstrategy	experience
Increasing demand for industrial	Ability to attract foreign	Receivables in the
products (P)	investors (P)	subordinate (C)
C12 Alternative Products (C)	C22 Entrepreneurship (P)	Implementation C32 process of industrial projects (P)
C13 government intervention in product pricing (P)	C23 Technology transfer Capacity (P)	
C14 Current value of the industry on the exchange (P)	Ability to reduce C24 dependency on foreign products (P)	
C15 Average process for the delivery of industrial projects (C)	C25 Amount of dependency of foreign raw material (C)	n
	C26 Exportamount (P)	

4.1 Solution Steps

i After weighing the basic criteria by decision makers separately and unaware each other based on the target, then decision matrix is created by specified linguistic variables.

As already mentioned, each linguistic variable has an interval fuzzy value. Table 6. gives these values as. So, the final decision matrix is given in Tables 7 with interval fuzzy numbers.

- ii In this step, decision matrix is normalized by the equation (8) and the results are expressed in Tables 8.
- iii As stated earlier, the weight of each criteria was previously determined by the decision makers (Shannon entropy) as given in Tables 9.

 Table 5 Decision matrix according to linguistic variables

	C11	C12	C13	C14	C15	C21	C22	C23	C24	C25	C26	C31	C32
A1	MG	P	MP	G	MP	MG	MG	M	M	MP	M	MP	MG
A2	VG	VP	P	MG	VP	G	G	G	G	P	MG	P	VG
A3	P	M	M	MP	P	M	MP	P	VP	MP	MP	M	M
A4	M	MP	MP	MG	P	MG	M	P	MG	MP	MG	MP	M

Table 6 Interval fuzzy value of linguistic variables

[(3.83,4.83);6.33;(7.5,8.83)]	VP
[(4.5,5.5);6.67;(7.67,8.33)]	P
[(5.17,6.17);7.33;(8.17,9)]	MP
[(6.17,7.5);8.67;(,9.179.83)]	M
[(7.17, 8.17); 9; (9.33, 9.83)]	MG
[(7.5,8.83);9.67;(9.83,10)]	G
[(8.5,9.5);10;(10,10)]	VG

- iv Now we can make the weighted normalized fuzzy decision matrix by using the Eq. (9) given that each criterion has different importance. As in Table 10.
- v By using Eq. (11,12,13) the distance of each alternative is calculated from the ideal alternative $[D_{i1}^+, D_{i2}^+]$, given in Table 11.
- vi At this step, the fuzzy relative closeness of each alternative is calculated by using the respective distinctions of each pair and the results are given in Table (11).
- vii In the last step alternatives are listed in Table (12) according to their relative closeness.

Now calculate c_i^+ and a_i^- as followes:

$$\tilde{x}_{ij} = \left[(a_{ij}, \acute{a}_{ij}) \,, b_{ij}, (\acute{c}_{ij}, c_{ij}) \right]$$

$$c_j^+ = \max_i c_{ij}, \ j \in \Omega_b, \ a_j^- = \min_i a_{ij}', \ j \in \Omega_c$$

$$10 \quad 4.83 \quad 5.5 \quad 10 \quad 4.83 \quad 10 \quad 9.83 \quad 10 \quad 10 \quad 5.5 \quad 9.83 \quad 5.5 \quad 10$$

$$c_1^+ \quad a_2^- \quad a_3^- \quad C_4^+ \quad a_5^- \quad C_6^+ \quad C_7^+ \quad C_8^+ \quad C_9^+ \quad a_{10}^- \quad C_{11}^+ \quad a_{12}^- \quad C_{13}^+$$

Now with using of:

$$\tilde{r}_{ij} = \left[\left(\frac{a_{ij}}{c_j^+}, \frac{a'_{ij}}{c_j^+} \right), \frac{b_{ij}}{c_j^+}, \left(\frac{c'_{ij}}{c_j^+}, \frac{c_{ij}}{c_j^+} \right) \right], \quad i = 1, 2, \dots, n \quad , \quad j \in \Omega_b \\
\tilde{r}_{ij} = \left[\left(\frac{a_j^-}{a'_{ij}}, \frac{a_j^-}{a_{ij}} \right), \frac{a_j^-}{b_{ij}}, \left(\frac{a_j^-}{c_{ij}}, \frac{a_j^-}{c'_{ij}} \right) \right], \quad i = 1, 2, \dots, n \quad , \quad j \in \Omega_c$$

Make the $\tilde{R} = [\tilde{r}_{ij}]_{n \times m}$.

5 Conclusions

The increasing complexity of socio-economic communities causes the intricacy and ambiguity in the priorities of decision-makers; because decision-making is often done in some circumstances such as lack of information and knowledge, lack of decision-makers consensus, time limits... So, in such situation, Decision-making in an interval-valued fuzzy environment would be convenient. The main characteristic of using interval-valued fuzzy environment is that the membership functions would be an interval rather than an exact number. In fuzzy set theory, it is difficult to express a thought or linguistic variables entirely by an integer number in [0, 1]. Thus, expressing degree of certainty by an interval of [0, 1] would be more appropriate. It's worth paying attention, the use of interval valuation numbers gives an occasion to proficients to define lower and upper bounds values as an interval for matrix elements and weights of criteria.

 Table 7 Interval valued fuzzy decision matrix

			Lable 1 Hitch var varucu ruzzy uccision manna	y accision manix	
	C11	C12	C13	C14	C15
A1	[(7.17,8.17);9;(9.33,9.83)]	[(4.5,5.5);6.67;(7.67,8.33)] [(5.17,6.17);7.33;(8.17,9)] [(7.5,8.83);9.67;(9.83,10)]	[(5.17,6.17);7.33;(8.17,9)]		[(5.17,6.17);7.33;(8.17,9)]
A2	[(8.5,9.5);10;(10,10)]	[(3.83,4.83);6.33;(7.5,8.83)] [(4.5,5.5);6.67;(7.67,8.33)] [(7.17,8.17);9;(9.33,9.83)]	[(4.5,5.5);6.67;(7.67,8.33)]	_	[(3.83,4.83);6.33;(7.5,8.83)]
А3	[(4.5,5.5);6.67;(7.67,8.33)]	[(4.5,5.5);6.67;(7.67,8.33)] [(6.17,7.5);8.67;(,9.179.83)] [(6.17,7.5);8.67;(,9.179.83)] [(5.17,6.17);7.33;(8.17,9)] [(6.17,7.5);8.67;(,9.179.83)] [(6.17,7.5);8.75;(,9.179.83)] [(6.17,7.5);8.75;(,9.179.83)]	[(6.17, 7.5); 8.67; (9.179.83)]	_	[(4.5,5.5);6.67;(7.67,8.33)]
A4	[(6.17,7.5);8.67;(,9.179.83)]	A4 [(6.17,7.5);8.67;(,9.179.83)] [(5.17,6.17);7.33;(8.17,9)] [(5.17,6.17);7.33;(8.17,9)] [(7.17,8.17);9;(9.33,9.83)]	[(5.17,6.17);7.33;(8.17,9)]		[(4.5,5.5);6.67;(7.67,8.33)]
	C21	C22	C23	C24	C25
A1	[(7.17, 8.17); 9; (9.33, 9.83)]	[(7.17, 8.17); 9; (9.33, 9.83)]	[(6.17,7.5);8.67;(,9.179.83)]	A1 [(7.17,8.17);9;(9.33,9.83)] [(7.17,8.17);9;(9.33,9.83)] [(6.17,7.5);8.67;(9.179.83)] [(6.17,7.5);8.67;(9.179.83)] [(5.17,6.17);7.33;(8.17,9)] [(6.17,7.5);8.67;(9.179.83)	[(5.17,6.17);7.33;(8.17,9)]
A2	[(8.5,9.5);10;(10,10)]	[(6.17,7.5);8.67;(,9.179.83)]	[(8.5,9.5);10;(10,10)]	$[(8.5,9.5);10;(10,10)] \qquad [(6.17,7.5);8.67;(,9.179.83)] [(8.5,9.5);10;(10,10)] \qquad [(7.5,8.83);9.67;(9.83,10)] [(4.5,5.5);6.67;(7.67,8.33)] [(6.17,7.5);8.67;(,9.179.83)] [(6.17,7.5);8.75;(,9.179.83)] [(6.17,7.5);8.75;(,9.179.83)] [(6.17,7.5);8$	[(4.5,5.5);6.67;(7.67,8.33)]
A3	[(6.17,7.5);8.67;(,9.179.83)]	[(5.17,6.17);7.33;(8.17,9)]	[(4.5,5.5);6.67;(7.67,8.33)]	A3 [(6.17,7.5); 8.67; (9.179.83)] [(5.17,6.17); 7.33; (8.17,9)] [(4.5,5.5); 6.67; (7.67,8.33)] [(3.83,4.83); 6.33; (7.5,8.83)] [(5.17,6.17); 7.33; (8.17,9)] [(4.5,5.5); 6.67; (7.67,8.33)] [(3.83,4.83); 6.33; (7.5,8.83)] [(5.17,6.17); 7.33; (8.17,9)] [(4.5,5.5); 6.67; (7.67,8.33)] [(3.83,4.83); 6.33; (7.5,8.83)] [(5.17,6.17); 7.33; (8.17,9)] [(4.5,5.5); 6.67; (7.67,8.33)] [(4.5,5.5); 6.67; (7.67,8.33)] [(5.17,6.17); 7.33; (8.17,9)] [(4.5,5.5); 6.67; (7.67,8.33)] [(5.17,6.17); 7.33; (8.17,9)] [(5.17,6.1	[(5.17,6.17);7.33;(8.17,9)]
A4	[(7.17,8.17);9;(9.33,9.83)]	[(6.17,7.5);8.67;(,9.179.83)]	[(4.5,5.5);6.67;(7.67,8.33)]	A4 [(7.17,8.17);9;(9.33,9.83)] [(6.17,7.5);8.67;(9.179.83)] [(4.5,5.5);6.67;(7.67,8.33)] [(7.17,8.17);9;(9.33,9.83)] [(5.17,6.17);7.33;(8.17,9)]	[(5.17,6.17);7.33;(8.17,9)]
	C26	C31	C32		
A1	[(6.17,7.5);8.67;(,9.179.83)]	A1 [(6.17,7.5); 8.67; (9.179.83)] [(5.17,6.17); 7.33; (8.17,9)] [(7.17,8.17); 9; (9.33,9.83)]	[(7.17,8.17);9;(9.33,9.83)]		
A2	[(7.17,8.17);9;(9.33,9.83)]	$[(7.17,8.17);9;(9.33,9.83)] \qquad [(4.5,5.5);6.67;(7.67,8.33)] \qquad [(8.5,9.5);10;(10,10)]$	[(8.5,9.5);10;(10,10)]		
A3	[(5.17,6.17);7.33;(8.17,9)]	A3 $[(5.17,6.17);7.33;(8.17,9)]$ $[(6.17,7.5);8.67;(,9.179.83)]$ $[(6.17,7.5);8.67;(,9.179.83)]$	[(6.17, 7.5); 8.67; (,9.179.83)]		
Α4	[(7.17, 8.17); 9; (9.33, 9.83)]	A4 [(7.17,8.17);9;(9.33,9.83)] [(5.17,6.17);7.33;(8.17,9)] [(6.17,7.5);8.67;(,9.179.83)]	[(6.17,7.5);8.67;(,9.179.83)]		

Table 9 Weight values of criteria

Table > Weight values of el	Ittila
[(0.85,0.95);1;(1,1)]	VH
[(0.55, 0.75); 0.9; (0.95, 1)]	Н
[(0.45, 0.55); 0.7; (0.8, 0.95)]	MH
[(0.25, 0.35); 0.5; (0.65, 0.75)]	M
[(0,0.15);0.3;(0.45,0.55)]	ML
[(0,0.05);0.1;(0.25,0.35)]	L
[(0,0);0;(0.1,0.15)]	VL

 Table 9
 Weight of criterias

			0		
C11	VH	C21	L	C31	M
C12	Н	C22	ML	C32	ML
C13	Н	C23	M		
C14	L	C24	ML		
C15	MH	C25	VL		
		C26	M		

		Table 1	Table 10 Weighted normalize fuzzy decision matrix	decision matrix	
	C11	C12	C13	C14	C15
A1	A1 [(0.61,0.78);0.9;(0.93,0.98)]	[(0.48,0.80);0.65;(0.55,0.63)] [(0.49,0.8);0.68;(0.58,0.67)]	[(0.49,0.8);0.68;(0.58,0.67)]	[(0,0.04);0.09;(0.25,0.35)]	[(0.35, 0.51); 0.46; (0.43, 0.56)]
A2	[(0.72,0.9);1;(1,1)]	[(0.55,0.98);0.68;(0.52,0.64)]	[(0.55,0.98);0.68;(0.52,0.64)] [(0.55,0.92);0.74;(0.59,0.72)] [(0,0.04);0.09;(0.23,0.34)]	[(0,0.04);0.09;(0.23,0.34)]	[(0.45, 0.72); 0.53; (0.44, 0.61)]
A3	[(0.38, 0.52); 0.67; (0.77, 0.83)]		[(0.40,0.67);0.57;(0.53,0.6)]	[(0,0.03);0.07;(0.21,0.32)]	[(0.4,0.6);0.5;(0.46,0.6)]
A4	A4 [(0.53,0.71);0.73;(0.82,0.9)]	[(0.43, 0.70); 0.59; (0.51, 0.59)] [(0.49, 0.8); 0.68; (0.58, 0.67)]	[(0.49, 0.8); 0.68; (0.58, 0.67)]	[(0,0.04);0.09;(0.23,0.34)]	[(0.4,0.6);0.5;(0.46,0.6)]
	C21	C22	C23	C24	C25
A1	A1 [(0,0.04);0.09;(0.23,0.35)]	[(0,0.12);0.28;(0.43,0.52)]	[(0.16,0.26);0.37;(0.53,0.68)]	[(0,0.11);0.22;(0.37,0.5)]	[(0,0);0;(0.06,0.1)]
A2	[(0,0.05);0.1;(0.25,0.35)]	[(0,0.11);0.26;(0.42,0.55)]	[(0.21, 0.33); 0.5; (0.65, 0.75)]	[(0,0.13);0.29;(0.44,0.55)]	[(0,0);0;(0.06,0.11)]
A3	[(0,0.04);0.07;(0.21,0.32)]	[(0,0.08);0.23;(0.37,0.51)]	[(0.11, 0.19); 0.34; (0.5, 0.62)]	[(0,0.07);0.19;(0.34,0.48)]	[(0,0);0;(0.06,0.1)]
A4	[(0,0.04);0.09;(0.23,0.34)]	[(0,0.11);0.26;(0.42,0.55)]	[(0.11, 0.19); 0.34; (0.5, 0.62)]	[(0,0.12);0.27;(0.42,0.54)]	[(0,0);0;(0.06,0.1)]
	C26	C31	C32		
A1	A1 [(0.16,0.27);0.44;(0.6,0.75)]	[(0.22,0.37);0.38;(0.4,0.5)]	[(0,0.12);0.27;(0.42,0.54)]	I	
A2	[(0.18, 0.29); 0.46; (0.62, 0.71)]	[(1,0.43);0.41;(0.4,0.54)]	[(0,0.14);0.3;(0.45,0.55)]		
A3	[(0.13, 0.22); 0.38; (0.54, 0.69)]	[(0.18, 0.31); 0.32; (0.36, 0.45)]	[(0,0.11);0.22;(0.37,0.5)]		
A4	[(0.18, 0.29); 0.46; (0.62, 0.71)]	[(0.22, 0.37); 0.38; (0.4, 0.5)]	[(0,0.11);0.22;(0.37,0.5)]		

 Table 11 Distance of alternatives from ideal alternatives

			le II Distar	ice of alterna	<u>tives fro</u>	m ideal alter			
A1	D{11}^{+}	D_{12}^{+}	D_{11}^{-}	D_{12}^{-}	A2	D_{11}^{+}	D_{12}^{+}	D_{11}^{-}	D_{12}^{-}
C11	0.234521	0.14	0.826035	0.890468	C11	0.161658	0.057735	0.916224	0.967815
C12	0.443471	0.31459	0.564329	0.697472	C12	0.422414	0.278328	0.587452	0.781537
C13	0.424264	0.288039	0.588473	0.719097	C13	0.382187	0.225389	0.631981	0.798415
C14	0.892562	0.851293	0.153406	0.209921	C14	0.898332	0.853483	0.142595	0.204369
C15	0.585947	0.491155	0.415933	0.511631	C15	0.528205	0.3879	0.475044	0.624873
C21	0.898146	0.851293	0.142595	0.209921	C21	0.889288	0.843603	0.155456	0.212132
C22	0.783156	0.712928	0.296254	0.312463	C22	0.792465	0.716984	0.28519	0.356931
C23	0.665833	0.591608	0.384448	0.471487	C23	0.576368	0.503786	0.48874	0.554196
C24	0.816497	0.742092	0.248529	0.321714	C24	0.778396	0.698451	0.304248	0.366742
C25	0.791623	0.776745	0.034641	0.057735	C25	0.980408	0.964728	0.034641	0.063509
C26	0.627163	0.549363	0.439394	0.525674	C26	0.607838	0.541541	0.457675	0.516333
C31	0.67082	0.585064	0.342929	0.420833	C31	0.485833	0.543016	0.665357	0.463537
C32	0.789515	0.710868	0.288271	0.355387	C32	0.772981	0.690917	0.31225	0.37063
Sum	8.623517	7.605039	4.725234	5.703802	Sum	8.276371	7.305862	5.456853	6.281021
			T.12323T	3.703002	Sum			3.730033	0.201021
A3	D_{11}^{+}	D_{12}^{+}	D_{11}^{-}	D_{12}^{-}	A4	D_{11}^{+}	D_{12}^{+}	D_{11}^{-}	D_{12}^{-}
_									
A3	D_{11}^{+}	D_{12}^{+}	D_{11}^{-}	D_{12}^{-}	A4	D_{11}^{+}	D_{12}^{+}	D_{11}^{-}	D_{12}^{-}
A3 C11	D_{11}^{+} 0.426693	D_{12}^{+} 0.350333	D_{11}^{-} 0.628808	D_{12}^{-} 0.685128	A4 C11	D_{11}^{+} 0.329747	D_{12}^{+} 0.235938	D_{11}^{-} 0.703847	D_{12}^{-} 0.784644
A3 C11 C12	D_{11}^{+} 0.426693 0.563738	D_{12}^{+} 0.350333 0.461519	D_{11}^{-} 0.628808 0.444747	D_{12}^{-} 0.685128 0.541295	A4 C11 C12	D_{11}^{+} 0.329747 0.494335	D_{12}^{+} 0.235938 0.376917	D_{11}^{-} 0.703847 0.514166	$\begin{array}{c} D_{12}^{-} \\ 0.784644 \\ 0.628808 \end{array}$
A3 C11 C12 C13	D ₁₁ ⁺ 0.426693 0.563738 0.505239	D ₁₂ ⁺ 0.350333 0.461519 0.38893	D_{11}^{-} 0.628808 0.444747 0.505239	D_{12}^{-} 0.685128 0.541295 0.614763	A4 C11 C12 C13	D_{11}^{+} 0.329747 0.494335 0.423832	D_{12}^{+} 0.235938 0.376917 0.289425	D_{11}^{-} 0.703847 0.514166 0.588473	$\begin{array}{c} D_{12}^{-} \\ 0.784644 \\ 0.628808 \\ 0.719097 \end{array}$
A3 C11 C12 C13 C14	D ₁₁ ⁺ 0.426693 0.563738 0.505239 0.91086	$\begin{array}{c} D_{12}^{+} \\ 0.350333 \\ 0.461519 \\ 0.38893 \\ 0.869521 \end{array}$	$\begin{array}{c} D_{11}^{-} \\ 0.628808 \\ 0.444747 \\ 0.505239 \\ 0.127802 \end{array}$	$\begin{array}{c} D_{12}^{-} \\ 0.685128 \\ 0.541295 \\ 0.614763 \\ 0.189912 \end{array}$	A4 C11 C12 C13 C14	D ₁₁ ⁺ 0.329747 0.494335 0.423832 0.898332	D ₁₂ + 0.235938 0.376917 0.289425 0.853483	D_{11}^{-} 0.703847 0.514166 0.588473 0.142595	$\begin{array}{c} D_{12}^{-} \\ 0.784644 \\ 0.628808 \\ 0.719097 \\ 0.204369 \end{array}$
A3 C11 C12 C13 C14 C15	$\begin{array}{c} D_{11}^{+} \\ 0.426693 \\ 0.563738 \\ 0.505239 \\ 0.91086 \\ 0.548209 \end{array}$	$\begin{array}{c} D_{12}^{+} \\ 0.350333 \\ 0.461519 \\ 0.38893 \\ 0.869521 \\ 0.43589 \end{array}$	$\begin{array}{c} D_{11}^{-} \\ 0.628808 \\ 0.444747 \\ 0.505239 \\ 0.127802 \\ 0.455192 \end{array}$	D ₁₂ 0.685128 0.541295 0.614763 0.189912 0.568624	A4 C11 C12 C13 C14 C15	D ₁₁ ⁺ 0.329747 0.494335 0.423832 0.898332 0.528205	D ₁₂ + 0.235938 0.376917 0.289425 0.853483 0.3879	D ₁₁ 0.703847 0.514166 0.588473 0.142595 0.475044	D ₁₂ 0.784644 0.628808 0.719097 0.204369 0.624873
A3 C11 C12 C13 C14 C15 C21	D_{11}^{+} 0.426693 0.563738 0.505239 0.91086 0.548209 0.91086	D ₁₂ ⁺ 0.350333 0.461519 0.38893 0.869521 0.43589 0.865814	$\begin{array}{c} D_{11}^{-} \\ 0.628808 \\ 0.444747 \\ 0.505239 \\ 0.127802 \\ 0.455192 \\ 0.127802 \end{array}$	$\begin{array}{c} D_{12}^{-} \\ 0.685128 \\ 0.541295 \\ 0.614763 \\ 0.189912 \\ 0.568624 \\ 0.190526 \end{array}$	A4 C11 C12 C13 C14 C15 C21	D ₁₁ ⁺ 0.329747 0.494335 0.423832 0.898332 0.528205 0.898332	D ₁₂ + 0.235938 0.376917 0.289425 0.853483 0.3879 0.853483	D_{11}^{-} 0.703847 0.514166 0.588473 0.142595 0.475044 0.142595	D ₁₂ 0.784644 0.628808 0.719097 0.204369 0.624873 0.204369
A3 C11 C12 C13 C14 C15 C21 C22	D_{11}^{+} 0.426693 0.563738 0.505239 0.91086 0.548209 0.91086 0.814412	D_{12}^{+} 0.350333 0.461519 0.38893 0.869521 0.43589 0.865814 0.748198	$\begin{array}{c} D_{11}^{-} \\ 0.628808 \\ 0.444747 \\ 0.505239 \\ 0.127802 \\ 0.455192 \\ 0.127802 \\ 0.251529 \end{array}$	$\begin{array}{c} D_{12}^{-} \\ 0.685128 \\ 0.541295 \\ 0.614763 \\ 0.189912 \\ 0.568624 \\ 0.190526 \\ 0.326292 \end{array}$	A4 C11 C12 C13 C14 C15 C21	D ₁₁ ⁺ 0.329747 0.494335 0.423832 0.898332 0.528205 0.898332 0.792465	D ₁₂ + 0.235938 0.376917 0.289425 0.853483 0.3879 0.853483 0.716984	D_{11}^{-} 0.703847 0.514166 0.588473 0.142595 0.475044 0.142595 0.28519	D ₁₂ 0.784644 0.628808 0.719097 0.204369 0.624873 0.204369 0.356931
A3 C11 C12 C13 C14 C15 C21 C22 C23	$\begin{array}{c} D_{11}^{+} \\ 0.426693 \\ 0.563738 \\ 0.505239 \\ 0.91086 \\ 0.548209 \\ 0.91086 \\ 0.814412 \\ 0.701831 \end{array}$	D_{12}^{+} 0.350333 0.461519 0.38893 0.869521 0.43589 0.865814 0.748198 0.641898	$\begin{array}{c} D_{11}^{-} \\ 0.628808 \\ 0.444747 \\ 0.505239 \\ 0.127802 \\ 0.455192 \\ 0.127802 \\ 0.251529 \\ 0.354824 \end{array}$	$\begin{array}{c} D_{12}^{-} \\ 0.685128 \\ 0.541295 \\ 0.614763 \\ 0.189912 \\ 0.568624 \\ 0.190526 \\ 0.326292 \\ 0.422729 \end{array}$	A4 C11 C12 C13 C14 C15 C21 C22 C23	$\begin{array}{c} D_{11}^{+} \\ 0.329747 \\ 0.494335 \\ 0.423832 \\ 0.898332 \\ 0.528205 \\ 0.898332 \\ 0.792465 \\ 0.701831 \end{array}$	$\begin{array}{c} D^+_{12} \\ 0.235938 \\ 0.376917 \\ 0.289425 \\ 0.853483 \\ 0.3879 \\ 0.853483 \\ 0.716984 \\ 0.641898 \end{array}$	D_{11}^{-} 0.703847 0.514166 0.588473 0.142595 0.475044 0.142595 0.28519 0.354824	$\begin{array}{c} D_{12}^{-} \\ 0.784644 \\ 0.628808 \\ 0.719097 \\ 0.204369 \\ 0.624873 \\ 0.204369 \\ 0.356931 \\ 0.422729 \end{array}$
A3 C11 C12 C13 C14 C15 C21 C22 C23 C24	$\begin{array}{c} D_{11}^{+} \\ 0.426693 \\ 0.563738 \\ 0.505239 \\ 0.91086 \\ 0.548209 \\ 0.91086 \\ 0.814412 \\ 0.701831 \\ 0.835005 \end{array}$	D_{12}^{+} 0.350333 0.461519 0.38893 0.869521 0.43589 0.865814 0.748198 0.641898 0.772744	$\begin{array}{c} D_{11}^{-} \\ 0.628808 \\ 0.444747 \\ 0.505239 \\ 0.127802 \\ 0.455192 \\ 0.127802 \\ 0.251529 \\ 0.354824 \\ 0.22487 \end{array}$	$\begin{array}{c} D_{12}^{-} \\ 0.685128 \\ 0.541295 \\ 0.614763 \\ 0.189912 \\ 0.568624 \\ 0.190526 \\ 0.326292 \\ 0.422729 \\ 0.300777 \end{array}$	A4 C11 C12 C13 C14 C15 C21 C22 C23 C24	$\begin{array}{c} D_{11}^{+} \\ 0.329747 \\ 0.494335 \\ 0.423832 \\ 0.898332 \\ 0.528205 \\ 0.898332 \\ 0.792465 \\ 0.701831 \\ 0.789367 \end{array}$	D_{12}^{+} 0.235938 0.376917 0.289425 0.853483 0.3879 0.853483 0.716984 0.641898 0.711548	D_{11}^{-} 0.703847 0.514166 0.588473 0.142595 0.475044 0.142595 0.28519 0.354824 0.288271	$\begin{array}{c} D_{12}^{-} \\ 0.784644 \\ 0.628808 \\ 0.719097 \\ 0.204369 \\ 0.624873 \\ 0.204369 \\ 0.356931 \\ 0.422729 \\ 0.355387 \end{array}$
A3 C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 C26 C31	D_{11}^{+} 0.426693 0.563738 0.505239 0.91086 0.548209 0.91086 0.814412 0.701831 0.835005 0.980408	D_{12}^{+} 0.350333 0.461519 0.38893 0.869521 0.43589 0.865814 0.748198 0.641898 0.772744 0.967815	$\begin{array}{c} D_{11}^{-} \\ 0.628808 \\ 0.444747 \\ 0.505239 \\ 0.127802 \\ 0.455192 \\ 0.127802 \\ 0.251529 \\ 0.354824 \\ 0.22487 \\ 0.034641 \end{array}$	$\begin{array}{c} D_{12}^{-} \\ 0.685128 \\ 0.541295 \\ 0.614763 \\ 0.189912 \\ 0.568624 \\ 0.190526 \\ 0.326292 \\ 0.422729 \\ 0.300777 \\ 0.057735 \\ 0.472193 \\ 0.365605 \end{array}$	A4 C11 C12 C13 C14 C15 C21 C22 C23 C24 C25	$\begin{array}{c} D_{11}^{+} \\ 0.329747 \\ 0.494335 \\ 0.423832 \\ 0.898332 \\ 0.528205 \\ 0.898332 \\ 0.792465 \\ 0.701831 \\ 0.789367 \\ 0.848528 \end{array}$	D_{12}^{+} 0.235938 0.376917 0.289425 0.853483 0.3879 0.853483 0.716984 0.641898 0.711548 0.967815	D_{11}^{-} 0.703847 0.514166 0.588473 0.142595 0.475044 0.142595 0.28519 0.354824 0.288271 0.34641 0.457675 0.342929	$\begin{array}{c} D_{12}^{-} \\ 0.784644 \\ 0.628808 \\ 0.719097 \\ 0.204369 \\ 0.624873 \\ 0.204369 \\ 0.356931 \\ 0.422729 \\ 0.355387 \\ 0.057735 \end{array}$
A3 C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 C26	$\begin{array}{c} D_{11}^{+} \\ 0.426693 \\ 0.563738 \\ 0.505239 \\ 0.91086 \\ 0.548209 \\ 0.91086 \\ 0.814412 \\ 0.701831 \\ 0.835005 \\ 0.980408 \\ 0.671541 \end{array}$	D_{12}^{+} 0.350333 0.461519 0.38893 0.869521 0.43589 0.865814 0.748198 0.641898 0.772744 0.967815 0.602467	$\begin{array}{c} D_{11}^{-} \\ 0.628808 \\ 0.444747 \\ 0.505239 \\ 0.127802 \\ 0.455192 \\ 0.127802 \\ 0.251529 \\ 0.354824 \\ 0.22487 \\ 0.034641 \\ 0.388544 \end{array}$	D_{12}^{-} 0.685128 0.541295 0.614763 0.189912 0.568624 0.190526 0.326292 0.422729 0.300777 0.057735 0.472193	A4 C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 C26	D ₁₁ 0.329747 0.494335 0.423832 0.898332 0.528205 0.898332 0.792465 0.701831 0.789367 0.848528 0.607838	D_{12}^+ 0.235938 0.376917 0.289425 0.853483 0.3879 0.853483 0.716984 0.641898 0.711548 0.967815 0.541541	D_{11}^{-} 0.703847 0.514166 0.588473 0.142595 0.475044 0.142595 0.28519 0.354824 0.288271 0.34641 0.457675	$\begin{array}{c} D_{12}^- \\ 0.784644 \\ 0.628808 \\ 0.719097 \\ 0.204369 \\ 0.624873 \\ 0.204369 \\ 0.356931 \\ 0.422729 \\ 0.355387 \\ 0.057735 \\ 0.516333 \end{array}$

 Table 12
 The final ranking of Options

	RC1	RC2	RC*	RANK	
A1	0.428572	0.353983	0.391278	2	
A2	0.462286	0.602653	0.532469	1	
A3	0.373306	0.30307	0.338188	4	
A4	0.415433	0.357171	0.386302	3	

References

- [1] S. Ballı and S. Korukoğlu (2009), "Operating SystemSelection Using Fuzzy AHP and Topsis Methods", Mathematical & Computational Applications, 14 (2), 119-130.
- [2] C.L. Hwang, K. Yoon, Multiple Attributes Decision Making Methods and Applications, Springer, Berlin Heidelberg, 1981.
- [3] C.T. Chen, Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems 114 (2000) 1–9.
- [4] D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade, Terminological difficulties in fuzzy set theory—the case of "intuitionistic fuzzy sets", Fuzzy Sets and Systems 156 (2005) 485–491.
- [5] D.H. Hong and S. Lee, Some algebraic properties and a distance measure for intervalvalued fuzzy numbers, Information Sciences 148 (2002) 1–10.
- [6] K. Yoon, System selection by multiple attribute decision making, Ph.D. dissertations, Kansas State University, Manhattan, Kansas, 1980.
- [7] L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Information Science 8 (1975) 199–249.
- [8] L.A. Zadeh, the concept of a linguistic variable and its application to approximate reasoning—I, Inform. Sci. 8 (1975) 199–249.
- [9] M.B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 21 (1987) 1–17.
- [10] P. Grzegorzewski, Distances between intuitionistic fuzzy sets and/or intervalvalued fuzzy sets based on the Hausdorff metric, Fuzzy Set and Systems 148 (2004) 319–328.
- [11] Şenel, M., Şenel, B., Havle, C.A., (2018). Risk Analysis of Ports in Maritime Industry in Turkey Using FMEA Based Intuitionistic Fuzzy Topsis Approach, ITM Web of Conference, 01023 (8). DOI: https://doi.org/10.1051/itmconf/2018221023.
- [12] M. Şenel, B. Şenel, Havle, C.A., (2018). Analysis of APSP Key Factors By Using Fuzzy Cognitive Map(FCM), Safety Science, (Yayınaşamasında).
- [13] Şenel, B., Şenel, M., Aydemir, G., (2018). Use and Comparison of TOPSIS and Electre Methods in Personnel Selection. ITM Web of Conference, 01021 (10). DOI:https://doi.org/10.1015/itmconf/20182201021.

This page is intentionally left blank