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Abstract
Null cartan curves have been studied by some geometers in both Euclidean and Minkowski spaces, but some special
characters of the curves are not considered. In this paper, we study weak AW (k)− type and AW (k)− type null cartan curve
in Minkowski 3-space E3

1 . We define helix according to Bishop frame in E3
1 . Furthermore, the necessary and sufficient

conditions for the helices in Minkowski 3-space are obtained.
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1 Introduction

Curves are one of the basic structures of differential geometry. It is safe to report that G. Monge initiated
the many important results in Euclidean 3-space curve theory and G. Darboux pioneered the idea of a moving
frame.

The curve theory has been one of the most studied subjects because of its many applications area from ge-
ometry to the various branch of science. Especially the characteristics of curvature and torsion play an important
role in special curve types such as so-called helices. In Euclidean 3-space E3, a general helix or a constant slope
curve is defined in such a way that the tangent makes a constant angle with a fixed direction. A classical result
stated by M. A Lancret in 1802 and first demonstrated by B. de Saint Venant in 1845 [5,6,11,12]. For nature’s
helical structures, helices arise in nano-springs, carbon nano-tubes, helices, DNA double and collagen triple he-
lix, lipid bilayers, bacterial flagella in salmonella and escherichia coli, aerial hyphae in actinomycetes, bacterial
shape in spirochetes, horns, tendrils, vines, screws, springs, helical staircases and shells of the sea [1,2,9]. In
fractal geometry, helical structures are used.

In Minkowski 3-space, null Cartan curves are known as the curves whose and Cartan frame contains two
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null (lightlike) vector fields ( see [7] for more information). Null curves of AW(k)-type are studied in the 3-
dimensional Lorentzian space by M. Külahcı [8] .

In [4] B. Bukcu and M. K. Karacan defined a slant helix according to Bishop frame of the timelike curve
and they have given some necessary and sufficent conditions for the slant helix . Ahmad T. Ali and Rafael
Lopez gave characterizations of slant helices in terms of the curvature and torsion and discussed the tangent and
binormal indicatrices of slant curves in E3

1 [3,10,13] .
F. Gökçelik and I.Gök defined a new kind of slant helix called W-slant helix in 3-dimensional Minkowski

space as a curve whose binormal lines make a constant angle with a fixed direction [14] .

2 Preliminaries

Definition 1. The Minkowski 3-space E3
1 is the real vector space E3 which is endowed with the standard indefi-

nite flat metric 〈., .〉 defined by
〈u,v〉=−u1v1 +u2v2 +u3v3, (2.1)

for any two vectors u = (u1,u2,u3) and v = (v1,v2,v3) in E3
1 . Since 〈., .〉 is an indefinite metric, an arbitrary

vector u ∈ E3
1\{0} can have one of three properties:

i) it can be space-like, if 〈u,u〉1 > 0,
ii) time-like, if 〈u,u〉1 < 0 or
iii) light-like or isotropic or null vector, if 〈u,u〉1 = 0, but u 6= 0.
In particular, the norm (length) of a non lightlike vector u ∈ E3

1 is given by

‖u‖=
√
|〈u,u〉|.

Given a regular curve α : I→ E3
1 can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors

α
′
(t) satisfy

〈
α
′
(t),α

′
(t)
〉

1
> 0,

〈
α
′
(t),α

′
(t)
〉

1
< 0 or

〈
α
′
(t),α

′
(t)
〉

1
= 0, respectively, at any tεI, where

α
′
(t) = dα

dt .

Definition 2. A curve α : I → E3
1 is called a null curve, if its tangent vector α

′
= T is a null vector. A null

curve α = α(s) is called a null Cartan curve, if it is parameterized by the pseudo-arc function s defined by

s(t) =
ˆ t

0

√
‖α ′′(u)‖du. (2.2)

There exists a unique Cartan frame {T,N,B} along a non-geodesic null Cartan curve satisfying the Cartan
equations T ′

N′

B′

=

 0 k 0
−τ 0 k
0 −τ 0

T
N
B

 , (2.3)

where the curvature k(s) = 1 and the torsion τ(s) is an arbitrary function in pseudo-arc parameter s. If τ(s) = 0,
the null Cartan curve is called a null Cartan cubic. The Cartan’s frame vectors satisfy the relations

〈N,N〉= 1, 〈T,T 〉= 〈B,B〉= 0,

〈T,B〉=−1, 〈T,N〉= 〈N,B〉= 0 (2.4)

and
T ×N =−T , N×B =−B, B×T = N. (2.5)

Cartan frame {T,N,B}is positively oriented, if det(T,N,B) = [T,N,B] = 1.
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The Frenet frame is created for the non-degenerated curves of three times continuously differentiable. But,
at some points on the curve,curvature may vanish . In this case, we need an alternative frame in E3. Bishop
introduced a new frame called Bishop frame or parallel transport frame, which is well defined even if the curve
has a vanishing second derivative [7] .

2.1 The Bishop Frame

The Bishop frame or relatively parallel adapted frame {T,N1,N2} of a regular curve in Euclidean 3-space
is introduced by R.L. Bishop. It contains the tangential vector field T and two normal vector fields N1 and N2,
which can be obtained by rotating the Frenet vectors N and B in the normal plane T⊥ of the curve, in such a way
that they become relatively parallel. This means that their derivatives N

′
1 and N

′
2 with respect to the arc-length

parameter s of the curve are collinear with the tangential vector field T [7].

Remark 1. We can also define N1 and N2 to be relatively parallel, if the normal component T⊥1 = span{N1,N2}
of their derivatives N

′
1 and N

′
2 is zero, which implies that the mentioned derivatives are collinear with T1.

2.2 The Bishop frame of a null Cartan curve in E3
1

The Bishop frame {T1,N1,N2} of a non-geodesic null Cartan curve in E3
1 is positively oriented pseudo-

orthonormal frame consisting of the tangential vector field T1, relatively parallel spacelike normal vector field
N1 and relatively parallel lightlike transversal vector field N2.

Theorem 1. Let α be a null Cartan curve in E3
1 parameterized by pseudo-arc s with the curvature k(s) = 1 and

the torsion τ(s). Then the Bishop frame {T1,N1,N2} and the Cartan frame {T,N,B} of α are related by

T1
N1
N2

=

 1 0 0
−k2 1 0

k2
2
2 −k2 1


T

N
B

 , (2.6)

and the Cartan equations of according to the Bishop frame read

T ′1
N′1
N′2

=

k2 k1 0
0 0 k1
0 0 −k2

T1
N1
N2

 , (2.7)

where the first Bishop curvature k1(s)= 1 and the second Bishop curvature satisfies Riccati differential equation

k
′
2 (s) =−

1
2

k2
2 (s)− τ (s) ,

which satisfies the conditions

〈N1,N1〉= 1, 〈T1,T1〉= 〈N2,N2〉= 0,

〈T1,N2〉=−1, 〈T1,N1〉= 〈N1,N2〉= 0 [7] .
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3 Curves of AW(k)- type

Proposition 1. Let α be a Frenet curve of osculating order 3, by using the cartan equations of α according to
the Bishop frame (2.7), then we have

α
′
(s) = T1 (s) ,

α
′′
(s) = T

′
1 (s) = k2T1 + k1N1,

α
′′′
(s) =

(
k
′
2 + k2

2

)
T1 +

(
k
′
1 + k1k2

)
N1 + k2

1N2,

α
′′′′
(s) =

(
k
′′
2 +3k2k

′
2 + k3

2

)
T1

+
(

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1 +3k1k

′
1N2.

Notation 1. Let us write

M1 (s) = k1N1, (3.1)

M2 (s) =
(

k
′
1 + k1k2

)
N1 + k2

1N2, (3.2)

M3 (s) =
(

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1 +3k1k

′
1N2. (3.3)

Corollary 1. α
′
(s) , α

′′
(s) , α

′′′
(s) and α

′′′′
(s) are linearly dependent if and only if M1 (s) , M2 (s) and M3 (s)

are linearly dependent.

Definition 3. Frenet curves of osculating order 3 are of
i) type weak AW (2) if they satisfy

M3 (s) = 〈M3 (s) ,M?
2 (s)〉M?

2 (s) , (3.4)

ii) type weak AW (3) if they satisfy

M3 (s) = 〈M3 (s) ,M?
1 (s)〉M?

1 (s) , (3.5)

where

M?
1 (s) =

M1 (s)
‖M1 (s)‖

, (3.6)

M?
2 (s) =

M2 (s)−〈M2 (s) ,M?
1 (s)〉M?

1 (s)∥∥M2 (s)−
〈
M2 (s) ,M?

1 (s)
〉

M?
1 (s)

∥∥ , (3.7)

iii) AW (1)-type, if they satisfy
M3 (s) = 0, (3.8)

iv) AW (2)-type, if they satisfy

‖M2 (s)‖2 M3 (s) = 〈M3 (s) ,M2 (s)〉M2 (s) , (3.9)

v) AW (3)-type, if they satisfy

‖M1 (s)‖2 M3 (s) = 〈M3 (s) ,M1 (s)〉M1 (s) . (3.10)

Proposition 2. Let α be a Frenet curve of osculating order 3, then α is AW (1)-type if and only if
i) k1 is a constant function, and ii)

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2 = 0. (3.11)
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Proof. Since α is a curve of type AW (1), then α must satisfy (3.8)

M3 (s) =
(

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1 +3k1k

′
1N2,

0 =
(

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1 +3k1k

′
1N2.

Since N1 and N2 are linearly independent, therefore

3k1k
′
1 = 0,

k1 is a constant function, and
k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2 = 0.

Hence the proposition is proved.

Proposition 3. Let α be a Frenet curve of osculating order 3. Then, if α are of AW (2)−type, we have

3
(

k
′
1

)2
+3k

′
1k1k2 = k

′′
1k1 +2k2

1k
′
2 + k

′
1k1k2 + k2

1k
2

2. (3.12)

Proof. Suppose that α is a Frenet curve of osculating order 3. From (3.2) and (3.3) we can write

M2 (s) = β (s)N1 + γ (s)N2,

M3 (s) = δ (s)N1 +η (s)N2,

where β (s), γ (s), δ (s) and η (s) are differential functions. Since M2 (s) and M3 (s) are linearly dependent , then
the determinant of the coefficients of N1 and N2 is equal to zero, hence one can write∣∣∣∣β (s) γ (s)

δ (s) η (s)

∣∣∣∣= 0, (3.13)

where

β (s) = k
′
1 + k1k2, γ (s) = k2

1,

δ (s) = k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2 and

η (s) = 3k1k
′
1. (3.14)

By considering (3.14) in (3.13) we get

3
(

k
′
1

)2
+3k

′
1k1k2 = k

′′
1k1 +2k2

1k
′
2 + k

′
1k1k2 + k2

1k
2

2.

Hence the proposition is proved.

Proposition 4. Let α be a Frenet curve of osculating order 3, then α is of type AW (3) if and only if k1 (s) is a
constant function

Proof. Suppose that α is a Frenet curve of order 3. From (3.1) and (3.3) we can write

M1 (s) = β (s)N1 + γ (s)N2,

M3 (s) = δ (s)N1 +η (s)N2,
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where β (s), γ (s), δ (s) and η (s) are differential functions. Since M2 (s) and M3 (s) are linearly dependent, then
the determinant of the coefficients of N1 and N2 is equal to zero, one can write∣∣∣∣β (s) γ (s)

δ (s) η (s)

∣∣∣∣= 0, (3.15)

where

β (s) = k1, γ (s) = 0,

δ (s) = k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2 and

η (s) = 3k1k
′
1. (3.16)

By substituting (3.16) in (3.15) we get
k2

1k
′
1 = 0.

For k2
1k
′
1 to be zero, k1 (s) has to be a constant function. Hence the proposition is proved.

Proposition 5. Let α be a Frenet curve of osculating order 3, then α is of weak AW (2)−type if and only if
i) k1 (s) is a constant function,
ii)

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2 = 0 and k2(s) =
2

s−2c
, (3.17)

where s and c are arc-length parameter and constant respectively.

Proof. Since α is of weak AW (2)−type , it must satisfy (3.4), by using (3.4), (3.6), (3.7) and (3.1)

M?
1 (s) =

M1 (s)
‖M1 (s)‖

=
k1N1√

k2
1

= N1, (3.18)

M?
2 (s) =

M2 (s)−〈M2 (s) ,M?
1 (s)〉M?

1 (s)∥∥M2 (s)−
〈
M2 (s) ,M?

1 (s)
〉

M?
1 (s)

∥∥ ,

M?
2 (s) =

(
k
′
1 + k1k2

)
N1 + k2

1N2−
(

k
′
1 + k1k2

)
N1∥∥(k′1 + k1k2

)
N1 + k2

1N2−
(
k′1 + k1k2

)
N1
∥∥ ,

M?
2 (s) = N2. (3.19)

Since α is of weak AW (2)−type, then it must satisfy

M3 (s) = 〈M3 (s) ,M?
2 (s)〉M?

2 (s) ,

=
〈(

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1 +3k1k

′
1N2,N2

〉
N2,

= 0.

Therefore (
k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1 +3k1k

′
1N2 = 0,

then

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2 = 0 and (3.20)

3k1k
′
1 = 0.
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For the k2
1k
′
1 to be zero, k1 (s) has to be a constant function.

Then (3.20) turns to

2k1k
′
2 + k1k

2

2 = 0, (3.21)

by integrating the above equation

2k
′
2 + k

2

2 = 0,

k
′
2

k2

2

=−1
2
,

ˆ
k
′
2

k2

2

ds =−
ˆ

1
2

ds, (3.22)

let

k2 (s) = u, (3.23)

k
′
2ds = du, (3.24)

therefore (3.22) turns to

ˆ
du
u2 =−

ˆ
1
2

ds,

−1
u
=−1

2
+ c,

by simplifying the above equation and using (3.23) we get

k2(s) =
2

s−2c
.

Hence the proposition is proved.

Proposition 6. Let α be a Frenet curve of osculating order 3, then α is of weak AW (3)−type if and only if k1 (s)
is a constant function.

Proof. Since α is of weak AW (3)−type, by using (3.3) and (3.18)

M3 (s) = 〈M3 (s) ,M?
1 (s)〉M?

1 (s) ,

=
(

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1

Therefore (
k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1 +3k1k

′
1N2 =

(
k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1

k1k
′
1 = 0.

For the k2
1k
′
1 to be zero, k1 (s) has to be a constant function. Hence the proposition is proved.
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4 The helices according to Bishop frame of null cartan curve in Minkowski 3-space

Definition 4. Helix can be defined as a curve whose tangent lines make a constant angle with a fixed direction.
Helices are characterized by the fact that the ratio k1

k2
is constant along the curve.

Theorem 2. Let α be a null cartan curve in E3
1 , then α is a general helix if and only if k1

k2
is constant.

Proof. Let α be a general helix in E3
1 and 〈T,U〉 is constant, then α is a general helix, from the definition we

have
〈T,U〉= c c is constant, (4.1)

by differentiating the above equation 〈
T
′
,U
〉
+
〈

T,U
′
〉
= 0,〈

T
′
,U
〉
= 0,

k2 cosθ + k1 sinθ = 0,

k1

k2
=−cotθ (constant), (4.2)

as disered.

Theorem 3. Suppose that α is a null cartan curve in E3
1 , then α is a general helix if and only if

det(T ′1,T
′′

1 ,T
′′′

1 ) = k2
1

(
k1k

′′
2− k2k

′′
1

)
. (4.3)

Proof. (=⇒) Let k1
k2

be constant. We have equalities as

T
′

1 (s) = k2T1 + k1N1,

T
′′

1 (s) =
(

k
′
2 + k2

2

)
T1 +

(
k
′
1 + k1k2

)
N1 + k2

1N2,

T
′′′

1 (s) =
(

k
′′
2 +3k2k

′
2 + k3

2

)
T1

+
(

k
′′
1 +2k1k

′
2 + k

′
1k2 + k1k

2

2

)
N1 +3k1k

′
1N2.

So we get

det(T ′1,T
′′

1 ,T
′′′

1 ) =

∣∣∣∣∣∣∣∣∣∣
k2 k1 0(

k
′
2 + k2

2

) (
k
′
1 + k1k2

)
k2

1(
k
′′
2 +3k2k

′
2

+k3
2

) (
k
′′
1 +2k1k

′
2

+k
′
1k2 + k1k

2

2

)
3k1k

′
1

∣∣∣∣∣∣∣∣∣∣
,

det(T ′1,T
′′

1 ,T
′′′

1 ) =−k2
1k3

2

(
k1

k2

)′
+3k1k

′
1k2

2

(
k1

k2

)′
+ k2

1

(
k1k

′′
2− k2k

′′
1

)
.

Since α is a general helix, and k1
k2

is constant. Hence, we have

det(T ′1,T
′′

1 ,T
′′′

1 ) = k2
1

(
k1k

′′
2− k2k

′′
1

)
, but k2 6= 0.

(⇐=) Suppose that det(T ′1,T
′′

1 ,T
′′′

1 ) = k2
1

(
k1k

′′
2− k2k

′′
1

)
, then it is clear that the k1

k2
is constant, since

(
k1
k2

)′
is

zero. Hence the theorem is proved.
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Theorem 4. Let α be a null cartan curve in E3
1 , then α is a general helix if and only if

det(N′1,N
′′
1 ,N

′′′
1 ) = 0. (4.4)

Proof. (=⇒) Suppose that k1
k2

be constant. We have equalities as

N′1 = k1N2,

N′′1 =
(

k
′
1− k1k2

)
N2,

N
′′′
1 =

(
k
′′
1−2k

′
1k2− k1k

′
2 + k1k2

2

)
N2.

So we get

det(N′1,N
′′
1 ,N

′′′
1 ) =

∣∣∣∣∣∣∣
0 0 k1
0 0 −k2

1

0 0
(

k
′′
1−2k

′
1k2− k1k

′
2 + k1k2

2

)
∣∣∣∣∣∣∣ ,

det(N′1,N
′′
1 ,N

′′′
1 ) = 0.

(⇐=) Suppose that det(N′1,N
′′
1 ,N

′′′
1 ) = 0, then it is clear that the k1

k2
is constant, since

(
k1
k2

)′
is zero. Hence the

theorem is proved.

Theorem 5. Let α be a null cartan curve in E3
1 , then α is a general helix if and only if

det(N′2,N
′′
2 ,N

′′′
2 ) = 0. (4.5)

From (2.7)

α (s) = T ,

DT T = k2T1 + k1N1,

DT N1 = k1N2,

DT N2 =−k2N2. (4.6)

Theorem 6. Let α : I −→ E3
1 be a unit speed null cartan curve with the cartan frame apparatus

{T, N2, N2, k1, k2}, then α is a general helix if and only if

DT (DT DT N1)+ k1k2DT N2 =
(

k
′′
1−3k

′
1k2

) 1
k1

DT N1. (4.7)

Proof. (=⇒) Suppose that α is a general helix. Then, from (4.6), we have

DT N1 = k1N2,

DT (DT N1) = k
′
1N2− k1k2N2, (4.8)

DT (DT DT N1) = k
′′

1N2−
(

k
′
1k2 + k1k

′
2

)
N2− k

′
1k2N2− k1k2DT N2. (4.9)

Since α is a general helix
k1

k2
= c c is constant, (4.10)

by differentiating (4.10) we get
(k1k2)

′
= 2k

′
1k2, (4.11)
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but
DT N1 = k1N2,

N2 =
1
k1

DT N1. (4.12)

By substituting (4.11) and (4.12) in (4.9) we get

DT (DT DT N1) =
(

k
′′

1−3k
′
1k2

)( 1
k1

DT N1

)
− k1k2DT N2, (4.13)

DT (DT DT N1)+ k1k2DT N2 =
(

k
′′

1−3k
′
1k2

)( 1
k1

DT N1

)
.

(⇐=) We will show that null cartan curve α is a general helix. By differentianting (4.12) covariently

N2 =
1
k1

DT N1,

DT N2 =−
k
′
1

k2
1

DT N1 +
1
k1

DT DT N1, (4.14)

DT DT N2 =

(
−k

′
1

k2
1

)′
DT N1−

2k
′
1

k2
1

DT DT N1 +
1
k1

DT DT DT N1. (4.15)

By substituting (4.8) and (4.13) in (4.15) we get

DT DT N2 =

(−k
′
1

k2
1

)′
+
(

k
′′

1−3k
′
1k2

) 1
k2

1

DT N1

−
2
(

k
′
1

)2

k2
1

N2−

(
2k
′
1

k1
+ k2

)
DT N2. (4.16)

From (4.6)

DT N2 =−k2N2,

DT (DT N2) =−k
′
2N2− k2DT N2. (4.17)

By comparing (4.16) and (4.17)

−

(
2k
′
1

k1
+ k2

)
=−k2,

by integrating the above equation we get
k1 = 1,

to find k2, by comparing (4.16) and (4.17) we have

−
2
(

k
′
1

)2

k2
1

=−k
′
2.

But k1 = 1, therefore
k
′
2 = 0,

which means k2 is a constant function.
k1

k2
is constant.

Hence α is a general helix.
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Theorem 7. Let α : I −→ E3
1 be a unit speed null cartan curve with the cartan frame apparatus

{T, N2, N2, k1, k2}, then α is a general helix if and only if

DT (DT DT N2) =
(

k
′′

2−3k2k
′
2 + k3

2

)( 1
k2

DT N2

)
. (4.18)

The above theorem can be proven analogously, so we skip its proof.
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