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Abstract
In this work we investigate the completeness, minimality and basis properties of the eigenfunctions
of one class discontinuous Sturm-Liouville equation with a spectral parameter in boundary conditions.
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1 Introduction

We consider the boundary value problem for the differential equation on the interval [−1,1]

`(u) :≡−u′′+q(x)u = λw(x)u, (1)

with the boundary conditions

L1(u) := u(−1)+hu′(−1) = 0, (2)

L2(u) := (β1u(1)−β2u′(1))+λ

(
β̃1u(1)− β̃2u′(1)

)
= 0, (3)

and the transmission conditions
L3(y) := γ1u(−0)−δ1u(+0) = 0, (4)

L4(y) := γ2u′(−0)−δ2u′(+0) = 0, (5)

where

w(x) =
{

w2
1, −1≤ x < 0,

w2
2, 0 < x≤ 1,

†Corresponding author.
Email address: volkanala@mersin.edu.tr

ISSN 2444-8656 doi:10.2478/AMNS.2020.1.00034

https://www.sciendo.com
mailto:volkanala@xmersin.edu.tr
http://dx.doi.org/10.2478/AMNS.2020.1.00034
https://www.sciendo.com
http://crossmark.crossref.org/dialog/?doi=10.2478/AMNS.2020.1.00034


362 Khanlar R. Mamedov, Volkan Ala Applied Mathematics and Nonlinear Sciences 5(2020) 361–368

w1 6=w2, the real valued function q(x)∈C ([−1,0)∪ (0,1] ) and has finite limits q(±0)= lim
x→±0

q(x),λ is complex

parameter and we assume that h,wi,βi, β̃i,γi,δi (i = 1,2) are real numbers, γi,δi are positive coefficients, |β1|+
|β2| 6= 0,

∣∣∣β̃1

∣∣∣+ ∣∣∣β̃2

∣∣∣ 6= 0 and ρ := β1β̃2− β̃1β2.
Spectral problems for the discontinuous Sturm-Liouville equations with eigenparameter dependent boundary

conditions have been growing interest with physical applications and examined in [1-4]. For example, boundary
value problems with the form (1)-(7) is encountered in vibrating string problems investigated in [19]. This hap-
pens whenever one applies the method of seperation of variables to solve the corresponding partial differential
equation which contain a directional derivative in boundary conditions. On eigenvalues problems for second
order equation with spectral parameter in the boundary conditions are considered in [5-13, 20-22]. Some self
adjoint problems on eigenvalues for second order equation with spectral parameter in the boundary conditions
are considered in [5-11]. The corresponding problems led to the eigenvalue problem for a linear operator acting
on the space L2⊕CN , where CN is N− dimensional Euclidean space of complex numbers. In [4] for distinct
cases, it is shown that the eigenfunctions of the spectral problem formed a defect basis in L2 (0,1). In [14]
Rayleigh-Ritz formula is developed for eigenvalues.

The goal of this work is to investigate the problem of completeness, minimality and basis property of the
eigenfunctions of the boundary value problem (1)-(5). In this study, we introduce a special inner product in a
special Hilbert space and construct a linear operator A in it so that the problem (1)-(5) can be interpreted as the
eigenvalue problem for A. Let us give the main definitions and theorem which will be used in our main results:

Definition 1. [23] A sequence
{

f j
}

j≥1 of vectors of a Hilbert space H is called a basis of this space if every

vector f ∈H can be expanded in a unique way in a series f =
∞

∑
j=1

c j f j, which converges in the norm of the space

H.

Definition 2. [23] A basis
{

f j
}

j≥1 of H is called a Riesz basis if it is obtained from an orthonormal basis by
means of a bounded linear invertible operator.

Theorem 1. [24] Let A be selfadjoint compact operator or selfadjoint operator which has discrete spectrums.
Then the eigenfunctions of the operator A form orthonormal basis in the Hilbert space H.

For example;
u′′(x)+λu(x) = 0, x ∈ (0,1)

u(0) = 0, u′(1) = dλu(1), d > 0,

this boundary value problem has only the eigenfunctions un(x) =
√

2sin
√

λnx, n = 0,1,2.., with positive eigen-
values found from the equation cot

√
λ = d

√
λ . By deleting an arbitrary eigenfunction, one obtains a basis in

the space Lp(0,1) p > 1, even a Riesz bases in the case p = 2. [4]

2 The Operator Formulation of the Problem and Main Results

It is convenient to represent the spectral problem (1)-(5) as an eigenvalue problem for a linear problem in a
Hilbert space. We denote by H = L2[−1,1]⊕C the special Hilbert space of all elements

ũ =

(
u(x)
u1

)
, ṽ =

(
v(x)
v1

)
∈ H,

with the inner product

(ũ, ṽ) = w2
1γ1γ2

0ˆ

−1

u(x)v(x)dx+w2
2δ1δ2

1ˆ

0

u(x)v(x)dx+
δ1δ2

ρ
u1v1. (6)
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In the space we define the operator

Aũ =

( 1
w(x) [−u′′+q(x)u]

β1u(1)−β2u′(1)

)
,

on the domain

D(A) =


ũ| ũ = (u(x),u1) ∈ H, u(x),u′(x) ∈ AC ([−1,0)∪ (0,1]) ,

u′(±0) = lim
x→±0

u′(x), `(u) ∈ L2 [−1,1] ,

L1u = L3u = L4u = 0,u1 = β̃1u(1)− β̃2u′(1)),

 (7)

where AC ([−1,1]) is the space of all absolutely continuous functions on the interval [−1,1]. Obviously, the
operator A is well defined in H. It is clear that the spectral problem (1)-(5) is equivalent to operator equation

Aũ = λ ũ, (8)

and the eigenvalues of A coincide with the eigenvalues of the problem (1)-(5) (see Lemma 1.4. in [5]). Also,
there exists a correspondence between eigenfunctions

ũk(x)↔
(

uk(x)

β̃1u(1)− β̃2u′(1))

)
Lemma 2. The domain D(A) of the operator A is dense in the space H.

Proof. The proof is similar using the same method in [15]. Suppose that f̃ ∈ H is orthogonal to all g̃ ∈ D(A)
with respect to the inner product (6), where f̃ = ( f (x), f1), g̃ = (g(x),g1). Let C̃∞

0 denote the set of functions

Φ(x) =
{

ϕ1(x),x ∈ [−1,0) ,
ϕ2(x),x ∈ (0,1] ,

where ϕ1(x) ∈ C∞
0 [−1,0) and ϕ2(x) ∈ C∞

0 (0,1] . Since C̃∞
0 ⊕ 0 ⊂ D(A) (0 ∈ C), any ũ = (u(x),0) ∈ C̃∞

0 ⊕ 0 is
orthogonal to f̃ , namely,

( f̃ , ũ) = w2
1γ1γ2

0ˆ

−1

f (x)u(x)dx+w2
2δ1δ2

1ˆ

0

f (x)u(x)dx = ( f ,u)1

where (,)1 denotes inner product in L2[−1,1]. This implies that f (x) is orthogonal to C̃∞
0 and ( f ,u)1 = 0. Hence,

( f̃ , g̃) =
δ1δ2

ρ
f1g1 = 0.

Thus f1 = 0 since g1 = β̃1g(1)− β̃2g′(1) can be chosen arbitrary. So f̃ = (0,0). Therefore, D(A) is dense in H.

Lemma 3. The operator A is selfadjoint.

Proof. In this case integrating by parts, we obtain that (A f̃ , g̃) is real. Taking into account Lemma 2, we
find that the operator A is symmetric in the space H. Boundary value problem (1)-(5) is solvable for every
non-eigenvalue λ and has discrete spectrum. Therefore the operator A is symmetric and has discrete spectrum.
Hence, the operator A is selfadjoint in H.

Theorem 4. The eigenfunctions of the operator A form an orthonormal basis in the space H = L2[−1,1]⊕C.
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Proof. The operator A has countable many eigenvalues {λn}∞

n=1 which have the asymptotic form [16]:

λn =
1

w1 +w2
π(n−1)+O(

1
n
), n→ ∞.

Then for any number λ which is not an eigenvalue and arbitary f̃ ∈ H it can be found an element ũ ∈ D(A)
satisfying the condition (A−λ I) ũ = f̃ . Thus the operator (A−λ I) is invertible except for the isolated eigen-
values. Without loss of generality we assume that the point λ = 0 is not an eigenvalue. Then we obtain that the
bounded inverse operator A−1 is defined in H. Thus, the selfadjoint operator A−1 has at most countable many
eigenvalues and each one of them converges to zero at the infinity. So, the selfadjoint operator A−1 is compact.
Applying the Hilbert-Schmidt theorem to this operator we obtain that the eigenfunctions of the operator A form
an orthonormal basis in H. Theorem is proved.

Now we consider the case ρ < 0. We assume that the operator A is defined by formula (7) on the domain
D(A). In the space H = L2⊕C for ũ, ṽ ∈ H the scalar product is defined by formula

(ũ, ṽ) = w2
1γ1γ2

0ˆ

−1

u(x)v(x)dx+w2
2δ1δ2

1ˆ

0

u(x)v(x)dx− δ1δ2

ρ
u1v1. (9)

In this case the operator A is not selfadjoint in the space H. Therefore we introduce the operator J is defined by

J =

(
I 0
0 −I

)
where I is the identity operator in H. Operator J is selfadjoint and invertible.

In this case, the boundary value problem (1)-(5) is equivalent to eigenvalue problem for the operator pencil

(B−λJ)ũ = 0, (10)

in the space H such that B = JA. We obtain that (8) is equivalent to (10).

Lemma 5. The operator A is J− selfadjoint in the Hilbert space H.

Proof. Analogously to Lemma 2, we can show that the domain D(A) is dense in space H. From (9) and (10)
applying two times integration by parts, (Bũ, ũ) is real. Hence, the operator B is symmetric. Therefore, the
operator A is J− symmetric in the space H. In this case it can be proved that the operator A has a discrete
spectrum. Taking into consideration that the operator B is symmetric we have that the operator JA is selfadjoint.

Corollary 6. From the system {un}∞

0 one can eliminate one element so that the remaining elements will form a
complete and minimal system in the space L2[−1,1].

Proof. By Theorem 4, the system of eigenfunctions

ũn(x) =
{

un(x)
u1

}
,

(u1 ∈ C) of the operator A forms an orthonormal basis in H. Hence, the system of the eigenfunctions {ũn(x)}∞

1
is complete and minimal in the space H. Thus, of course, codimP = 1, then by Lemma 2.1 in [5], the system
{Pũn(x)} = {un(x)} whose one element is omitted from forms a complete and minimal system in P(H) =
L2[−1,1]. Hence, the eigenfunctions {un(x)}∞

0 (n 6= n0, n0 is an arbitrary nonnegative integer) of the boundary
problem (1)-(5) are complete and minimal system in L2[−1,1].

Theorem 7. The eigenfunctions of the operator A form a Riesz basis in the Hilbert space H.
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Proof. From the operator J is a bounded operator, using the idea in Theorem 4, it can be shown that the
operator B = JA is invertible since the selfadjoint operator B−1 is compact. Since the selfadjoint operator B−1

has at most countable many eigenvalues which converge to zero at infinity. Hence the operator B−1 is compact.
Then applying Azizov-Iokhvidov theorem in section IV of [18] to operator B we obtain that the eigenfunctions
of the J− selfadjoint operator A form a Riesz basis in the space H = L2⊕C.

Let us consider another boundary value problem for the Sturm-Liouville equation

`u :=−p(x)u′′+q(x)u = λu, (11)

on [−1,0)∪ (0,1] with boundary condition,

L1(u) := α1u(−1)+α2u′(−1) = 0 (12)

L2(λ )u := λ (β̃1u(1)− β̃2u′(1))+(β1u(1)−β2u′(1)) = 0, (13)

with transmission conditions at the point of discontinuity x = 0,

L3(u) := γ1u(−0)−δ1u(+0) = 0, (14)

L4(u) := γ2u′(−0)−δ2u′(+0) = 0, (15)

here

p(x) =
{

p2
1, −1≤ x < 0,

p2
2, 0 < x≤ 1,

p1 6= p2, the real valued function q(x) is continuous in [−1,0)∪(0,1] and has finite limits q(±0) = lim
x→±0

q(x), λ

is complex parameter, we assume that h, pi,βi, β̃i,γi,δi (i = 1,2) are real numbers, γi,δi are positive coefficients,
|β1|+ |β2| 6= 0,

∣∣∣β̃1

∣∣∣+ ∣∣∣β̃2

∣∣∣ 6= 0 and ρ := β1β̃2− β̃1β2 > 0.
It is convenient to represent the spectral problem (11)-(15) as an eigenvalue problem for a linear problem in

a special Hilbert space. We denote by H = L2 (−1,1)⊕C the special Hilbert space of all elements

f =
(

f (x)
f1

)
, g =

(
g(x)
g1

)
∈ H,

with the inner product

( f ,g) =
1
p2

1
γ1γ2

0ˆ

−1

f (x)g(x)dx+
1
p2

2
δ1δ2

1ˆ

0

f (x)g(x)dx+
δ1δ2

ρ
f1g1 (16)

In the space we define the operator

Lu =

(
−p(x)u′′+q(x)u
β1u(1)−β2u′(1)

)
,

on the domain

D(L) =


ũ| ũ = (u(x),u1) ∈ H, u(x),u′(x) ∈ AC ([−1,0)∪ (0,1]) ,

u′(±0) = lim
x→±0

u′(x), `(u) ∈ L2 [−1,1] ,

L1u = L3u = L4u = 0,u1 = β̃1u(1)− β̃2u′(1)),

 (17)

u(±0) has finite limits.Now we can rewrite the problem (11)-(15) in the operator form as

Lu = λu. (18)

The eigenvalues of the operator L coincide with the eigenvalues of the spectral problem (11)-(15).
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Theorem 8. The eigenfunctions of the operator L form an orthonormal basis in the space H = L2[−1,1]⊕C.

Proof. The operator L has countable many eigenvalues {λn}∞

n=1 which have the asymptotic form [17]:

λn =
α1α2

α1 +α2
π(n−1)+O(

1
n
), n→ ∞.

Then using the idea of the proof of Theorem 4, it can be proved analogusly.

Now for the boundary value problem (11)-(15) we consider the case ρ < 0. In the space H = L2⊕C for
f ,g ∈ H the scalar product is defined by formula

( f ,g) =
1
p2

1
γ1γ2

0ˆ

−1

f (x)g(x)dx+
1
p2

2
δ1δ2

1ˆ

0

f (x)g(x)dx− δ1δ2

ρ
f1g1.

Since ρ < 0, the operator A is not selfadjoint in the space H . Therefore we introduce the operator J is defined
by

J =

(
I 0
0 −I

)
where I is the identity operator in H. Operator J is selfadjoint and invertible in H.

In this case, the boundary value problem (11)-(15) is equivalent to eigenvalue problem for the operator pencil

(B−λJ)ũ = 0, (19)

where B = JL is symmetric and L is J− symmetric in the space H.. Similary to Lemma 5, The operator L is J−
selfadjoint in the Hilbert space H and we obtain the following results:

Theorem 9. The eigenfunctions of the operator L form a Riesz basis in the Hilbert space H.

Corollary 10. From the system {un}∞

0 one can eliminate one element so that the remaining elements will form
a complete and minimal system in the space L2[−1,1].
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