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Abstract

In this article, some new travelling wave solutions of the (3+1) dimensional Boiti—-Leon—-Manna—Pempinelli (BLMP) equa-
tion are obtained using the modified exponential function method. When the solution functions obtained are examined, it is
seen that functions with periodic functions are obtained. Two and three dimensional graphs of the travelling wave solutions
of the BLMP equation are drawn by selecting the appropriate parameters
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1 Introduction

Nonlinear partial differential equations (NPDE) have an important role to describe natural phenomenon from
biology to engineering. Especially in engineering, acoustic waves, water waves, electromagnetic waves have
been model via NPDE. Physics and engineering applications have concentrated to the behavior of waves, for
this reason solutions of such equations have attracted the attention of many scientists for many years. Hence,
there are various analytical methods in the literature used by researchers to obtain solutions for such equations.
Some of these are the multipliers method [1],the simplest equation method [2], the (G//G)-expansion method
[3-6], the Sine- Gordon expansion method [7—11],the extended trial equation method [12, 13], the new function
method [14, 15].

In this study, we used the Modified Exponential Function Method (MEFM) to the (3+1) dimensional Boiti-
Leon-Manna-Pempinelli equation (BLMP) which is used to describe incompressible liquid in fluid mechanics.
The equation is given as,

vyt + Uy + vxxxy + Vypxz — 3vx (ny + vxz) - 3vxx (vy + vz) =0. (1)
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Eq.(1) is derived from (2+1)-dimensional Boiti—-L.eon—Manna— Pempinelli equation by Darvishi et al. [16]. They
have submitted multisoliton solutions of both equations. There are several studies on the Boiti-Leon—-Manna—
Pempinelli equation in the literature. Authors have investigated the Lax pair of Eq.(1) by singular manifolds
method [17]. Employing Hirota’s bilinear method different types of lump solitons of Eq.(1) have been submitted
in [18]. They have disscused Nth-order soliton solutions, rational solutions, periodic wave solutions using
Pffafian tecnique, the ansatz method and the Hirota-Riemann method respectively [19]. Further researchs can
be seen [?,2,20-33].

This paper is rested as manner; we give steps of the modified exponential function method in section 2, then
an application of the mention method is given in section 3. In last section 4, we give some conclusions on the
obtained wave solutions.

2 The Manner of the Method

In this section, we give the manner of the MEFM [34-36].
Let’s consider the following general form of nonlinear partial differential equation;

p (ua Uy Uy, Uzy Uxyy Uyt y Uxxzy Uxxxzy ) =0, ()

where u = u(x,y,z,t)is unknown solution function.
Step 1. Regarding travelling wave transformation as follows;

u(x,t) =U(C), =x+y+z—ct, 3)

where c is a non-zero real value, required derivative terms are substituted into Eq. (2). By this way, the following
nonlinear ordinary differential equation is obtained,

N(U, U U",--) =0. 4)
Step 2: We think the solution function Uin Eq. (4) as follows;

Zf'V:oAi [exp(—Q(C))]i Ao +Ajexp(—Q)+---+Ayexp(N(—Q))

U(g)= I}/IZOBJ lexp (—Q(O))] ~ Bo+Biexp(—Q)+---+Byexp(M(—Q))

; (&)

whereA;,B;, (0 <i < N,0 < j < M)are constants. Using the balancing principle, a relationship is set between
the upper limits of Eq. (5), M and N values. (Balancing principle; it is obtained by equalizing the term containing
the highest order derivative and the highest degree nonlinear term). Ay # 0, By # 0, and Q = Q ({)provides the
following differential equation;

Q'(§) =exp(—Q(£)) +pexp(Q(8)) +A. (6)

When the Eq. (6) is solved, the following solution families are obtained [37].
Family 1: When u # 0,A? —4u > 0,

Q(C)—ln<_ 22_4utanh< 122_4H(C+E)>—27L>. (7

Family 2: When u # 0,A? —4u <0,

Q(C)zln(v_lz+4utan<v_lz+4u(C+E)>— k). (8)

2u
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Family 3: When g = 0,1 #0, and A2 —4u > 0,

A
2= GagrE ) ©
Family 4: When p # 0,4 #0, and A> —4u =0,

o) =m(-HELE ),

A2(CTE) (10)

Family 5: When u = 0,1 =0, and A> —4u =0,

Q&) =In({+E). (11)

where Ag,A1,...,Ay,Bo,B1,...,By,E, A, LL are constants.

Step 3: The Eq.(6) and the solution families are written into the Eq. (5) to obtain the algebraic equation system
consisting of exp (Q(up)).

The equation systems obtained are equalized to zero and Ag,Aq,...,An,Bo,B1,...,By,E, A, are obtained.
These coefficients are written in Eq. (5) instead of Eq. (2) to provide the travelling wave solutions.

3 Applications

By using the wave transformation in equation (3) to equation (1), the following nonlinear differential equation
1s obtained;
—cv"+vV—-6v" 0" =0. (12)

If the equation (12) is integrated,
—cv' +v" =3 (V) =0. (13)

It is described in a simpler way as follows by applying the transformation v’ = @ to the nonlinear ordinary
differential equation (13).
—co+0" -3 (w)?=0. (14)

When the balancing principle is applied to the equation (14), the following relation is found between M and N,
N=M+2.

N =3 for M = 1 and values to Eq.(5) , ®, @', ®” can be written as follows,

W Aot Are 8 14,0720 L a5
o (C) - - Bo+B1e— %0 )

¢

!y /

o' (§) =25, (15)
1" 03 o2 ! — " !0 02 +2 "2

W' (§) = Yo—eve (wquww)qo 2)ve

Substituting Eq.(15) into Eq. (14), w related solution functions are obtained. By integrating these solutions, the
travelling wave solutions providing the equation (1) were obtained as follows.
CASE 1:

Ao =2uBg,A; =2(ABy+ uB;),Ay =2(By+AB)),A3 =2B;,c = A* — 4. (16)

Using the coefficients given above, the following solution families are obtained.
Family 1:
A3 —4Au +24/A% —4u u Sinh 1]

VL o) = A nCosh[e] 4
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where 7T (x,y,z,t) = (EE+{) /A2 —4pu.

Figure 1. The 3D and ¢ = 1 for 2D of Eq.(17)

Family 2:
A3 HAApu+2u\/—A2 +4u Sin[&]
V12 (x7y7zvt) = 2 s
A?—=2u+2ucCos(&]
where & (x,y,z,t) = (EE+ ) \/—A%+4u.
iz
Fajium =

Figure 2. The 3D and t = 1 for 2D of Eq.(18)

Family 3:
24
1+ eMEEHE)’

Fljsnis ISET= ]

-

vl,3 (xa}%Z;t) = -

(18)

19)

Figure 3. The 3D and ¢ = 1for 2D of Eq.(19)
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CASE 2:

AOZ_%(C_6AU‘)B()5A1:_2\/_C+4“BO_%(C—6;U')317 (20)
As=2(Bo—/—cTAB1),As = 2B1, A = —/—c T 4L

Equations (20) the following solution families are obtained from equations.

Family 1:

_ 3ey/=c+a4p— 2 (EE+{)+2cpu (EE+§) (14 Cos [k]) — 6+/cuSin k] 1)

1)271 (-x7yazat) -

where K (x,y,z,t) = (EE+ ) \/c.

LE RIS

Figure 4: The 3D andr = 1for 2D of Eq.(21)
Family 2:

3(c—2u—2uCos|x))

Lialxs

_ 3ey/=c+4ap—c(EE+ ) +2cu (EE+§) (1+Cos[k]) — 6/cuSin k]

ki
(2]

t) = 22
02,1 (xvyaza ) 3(C—2[J—2HCOS[K]) ’ ( )
where x (x,y,z,t) = (EE+ ) +/c.
Dy pandn Y
T - .illI . ,
Figure 5: The 3D andr = 1for 2D of Eq.(22)
Family 3:
2y/—c cC
—(_ _ = 2
vateren) = (- g - ). 3)
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Lzaimi
|

Figure 6: The 3D andr = 1for 2D of Eq.(23)

CASE 3:
Ao = ¢ (3A%+¢) Bo,A; =2ABo+ ¢ (3A* +¢) B1,Ay =2(Bo+ AB) ),

A3 =2B;,u=75(A*+c). @
According to the coefficients, the following solution families are get.
Family 2:
3A2+c(3+A(EE+ c+A?
1)3,2 (%)’:ZJ) =\ ( ( C)) + 1 ) (25)
34 A —/cTan[3\/c(EE+{)]

[ gk

L3,aim%
10

LLJ =10

Figure 7: The 3D andr = 1for 2D of Eq.(25)
Remark: Since the above cases do not meet the requirements of the conditions, no suitable solution has been
found for the families.

4 Conclusion

In this study, new travelling wave solutions of Boiti-Leon-Manna-Pempinelli (BLMP) equation have been suc-
cessfully obtained by using modified exponential function method. When we compare our results with the
solutions obtained for this equation in the literature, we see that all solutions are completely different. We have
drawn two and three dimensional graphs of all travelling wave solutions by selecting the suitable constants. The
solutions obtained can be said to be an effective method for obtaining analytical solutions of such nonlinear
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differential equations. The solutions found include trigonometric and hyperbolic functions. Such functions are
also periodic functions. The advantage of such functions is that it allows us to comfortably comment on the
physical behavior of the wave, regardless of the range of the graph of the resulting solution function.

The hyperbolic functions and trigonometric functions are arisen in both mathematics and physics. For example,
the hyperbolic cosine functions are shape of catenary, the hyperbolic tangent functions arise in calculate to
magnetic moment and rapidity of special relativity, the hyperbolic secant functions arise in the profile of a
laminar jet, the hyperbolic cotangent functions arise in the Langevin function for magnetic polarization [38].
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