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Abstract

In this paper, we obtain the existence of a global attractor for the higher-order evolution type equation. Moreover, we
discuss the asymptotic behavior of global solution.
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1 Introduction

We consider the following nonlinear evolution equation

U + (_A)m”+ (_A)m ur + (_A)m Urt -|-g(x,u) = f(x) ) ()C,l‘) €Qx (O’w)a

u(x,()):uo(x), u (x,0) = up (x), xeQ, 1.1)
ut) — 0, i=1,2,.om— 1, (x,1) € 9Q % [0,0),

where in a bounded domain Q C R" with smooth boundary d€, the assumption on f, g, ugp and u; will be made
below.
When m = 1, the equation (1.1) is following form

Uy — Au— Auy — Auge + g (x,u) = f(x). (1.2)

Chen and Wang [19] proved the existence of global attractor for the problem (1.2). Lately, Xie and Zhong in [8]
studied the existence of global attractor of solution for the problem (1.1) with f = 0. Also, there are some
authors studied the existence and nonexistence, asymptotic behavior of global solution for (1.2) (see [2—7] for
more details ). Nakao and Yang in [9] showed the global attractor of the Kirchhoff type wave equation.

In this paper, we improve our result by adopting and modifying the method of [19], we studied more general
form of the equation.
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This paper is organized as follows: In section 2, we give some assumptions and state the main results. In
section 3, we prove the global existence of solution using the Faedo-Galerkin method. Also, we write some
important estimates for the solution. In section 4, the existence of the global attractor is proved. In Section 5,
the proof of decay property for solution is showed.

2 Preliminaries and main results

We write the Sobolev space H* (Q) = W52 (Q), Hs (Q) = Wé"z (). Furthermore, we show by (.,.) the inner
product of L? (Q), by .||, the norm of L” (Q), p > 1 and by |||z the norm of any other Banach space E. As
usual, we give u (¢) instead of u (x,t), and u’ (¢) for u, (¢) and so on.

We write the following assumptions on f and g.

(A1) Assume f(x) € L? (Q) and show F = ||f]|,;

(A2) Suppose g (x,u) € C' (Q x R') and ki, k> > 0, hy (x) € L? (Q), ha (x) € L? (Q) NL"/?(Q) such that

g (x,u) u+hy (x) |u| > ky (G (x,u) +hy (x) |u]) >0, (x,u) € QxR! (2.1)

and the growth condition in u
g ()] < ko (Jul® 412 (), g ()] < ko (0" 4+ ha (), (,) € @ xR! 22)

with > 1, (n=1,2),and 1 < @ < 22, (n>3), G(x,u) = [, g (x,5)ds.
Later, we assume H| = ||h||,, H> = maX{HhZHZ, ||h2||n/2}.

Clearly, the function g (x,u) = a (x) [u|* ' u— b (x) lulP~"u (1 < B < a) supplies (2.1) and (2.2) for some
a(x),b(x).

Next, we show the definition and lemmas relating to the global attractor, (see [9, 11, 12]).

Definition 1. Suppose that E is Banach space and {S(t)},~, a semigroup on E. A set A C E is said a
(E,E) —global attractor if and only iff -

(1) A is never changing (invariant), namely, S (t)A = A for whole t > 0;

(2) A is compact in E;

(3) A is a bounded set in E and absorbs all bounded subset B in E relating with E topology, that is, for
whichever bounded subset B C E,

distg (S(t)B,A") =supinf ||S(t)y—x||p = 0ast — . (2.3)
yeBxeA*

Lemma 2. Assume E is Banach space and {S(t)},~ is a semigroup of continuous operators on E. Then, there
exists (E,E) —global attractor A if the following conditions are supplied:

(1) There exists a bounded absorbing set By in E, that is, for whichever bounded subset B C E, there is a
T =T (B) such that S(t)B C By foranyt > T.

(2) {S(t)},~( as asymptotically compact in E, that is, for any bounded sequence {y,} in E and t, — o as
n— oo, {8(t,) yu }or_| has a convergent subsequence relating to E topology.

We show the basic results now.

Theorem 3. Suppose (A1)-(Az) satisfy and (ug,u;) € X. Then, the problem (1.1) admits a unique weak solution
u(t) in the class

C'([0,00) s H') NC([0,00) s H*™ N HG') NW> ([0,00) s HE') AW (([0,00) s H™) (2.4)
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holds.
1 2 1 2 —Ait
HP2u(t)H2+HP2ut (r)Hzgcle 4Gy >0 2.5)
2 1 2 1 2 -A
Juae ()13 + [P )|+ [P ()] < Cre+Cay 120 (2.6)
and 5
HP%M, (r)”2+ 1Pu(8)][2 + | Puy (1) < Cse ™ +Cy, 1> 0 2.7)

with some Ai, Ar,A3 > 0. In this theorem C| = CI(HP%MO‘

(e

27HP%M1H2),C2 = CZ(F,Hl), C3 _
HP%ul H27F7H17H2> ,C4 = C4 (F,H1,H,),Cs5 = Cs ([|[Puol,, [|Pusr ||, F, Hi , Ha) -

27

Show the solution in Theorem 1 by S(¢) (ug,u;) = (u(t),u, (¢)). We are now in a position to prove some
continuity of S(¢) relating to the initial data (ug,u;), which will be needed for the proof of the existence of
global attractor.

Theorem 4. Suppose whole conditions in Theorem 3. Assume S (t) (uok,u1x) and S (t) (uo,u1) are the solutions
of the problem (1.1) with the initial data (uoy,u1) and (ug,uy). If (uor,u1x) — (uo,u1) in X as k — oo, then
S(t) (uok,urx) — S (t) (up,uy) in X as k — oo.

Theorem 4 denotes that the semigroup S(7) : X — X is continuous on X.

Theorem 5. Assume every assumptions in Theorem 3 be provided. Then, the semigroup {S(t)},- related with
the solution of the problem (1.1) accepts a (X,X) —global attractor A.

For the decay property of solution u(¢) for the problem (1.1), we get

Theorem 6. Suppose u is a weak solution in Theorem 3 with f = 0 and g (x,u) = g(u). Besides, suppose
0 <2G (u) < ug(u). Then, for whichever g > 0, there is C; = C, (HP%MQ Pu, H2> such that

27

E() = % <||u(z)\|§+ HP%@)H} [Pt (z)HD +/QG(M () dx < Cy (1+1)""4. 2.8)

3 The Proof of Theorem 3

In this section, we suppose that all assumptions in Theorem 3 are supplied. Firstly, we establish the global
existence of a solution to problem (1.1) with Fadeo-Galerkin method as in [16, 17].

Assume ®;(x) (j=1,2,...) is the complete set of properly normalized eigenfunctions for the operator
(—A)" in HY' (). Then, the family {®1,®;..., @, ...} holds an orthogonal basis for both HJ' () and L* (Q),

see [16, 17]. For each positive integer k, show Vy = span{®,®;...,®, ...} . We search for an approximation
solution u (¢) to the problem (1.1) in the form

k
we (1) =Y dj (1) o;
=1

where d i (1) are the solution of the nonlinear ordinary differential equation (ODE) system in the variant ¢:

(u, ;) — (Pug, ®;) — (Puy, ;) — (Pu}g,w,) +(g,0)) = (f,0;), j=1,2,...k, 3.1
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with the initial conditions
djx (0) = (uo, ®) , dy (0) = (urx, @) (3.2)

where ug; and uq; are chosen in Vj, so that
ok — o, uy; — up in H*™ (Q) NHY (Q) as k — oo (3.3)
Here (.,.) shows the inner product in L? (Q) . Then, Sobolev imbedding theorem means that Jcy > 0, such that
1 (0)][3 < co HPZuOH 14 (0)[ [ < 0 HP%ul Hz Vk=1,2,..., (3.4)
and (3.1) shows that for any v € V,,
(uZ,v) — (Pug,v) — (Pu}c,v) — <Puz,v> +(g,v)=(f,v), WEW. (3.5)

We know, the system (3.1) and (3.2) accept a unique solution uy () on the interval [0,7] for any 7 > 0. Such
a solution can be expanded to the overall interval [0,e0). We show by C; (i =1,2,...) the constants that are
independent of k and ¢ > 0, by C the constant depending on k;, k; in (A;) and Sobolev imbedding constant ¢
in (3.4). These constants may be different from line to line.

Multiplying (3.1) by d}k () and summing the resulting equations over j, we obtain

E! (t)+HP%u§((t)H2:O, i >0 (3.6)
where
E(t) = % <Hu; (0)]]3+ HP%uk (z)H} Hpéu; (z)Hj) +/QG(x, 0 (t))dx—/gf(x) w(dx. (3.7
Also, multiplying (3.1) by d (), we get
B (1) + [ P (:)Hz+/gg(x,uk)uk (1)dx = 02+ P (t)Hi—i—/Qf(x) w()de  (38)
where
Ex(f) =5 szuk H / we (1)l (1) dx + /Qpéuk (1) P24, () dx. (3.9)
If we take sufficient large k; > 0 and use the assumption (A;), we get
W () + Ay () < Co (F2+HP™), wi (1) = kiEy (1) + Ex (1) (3.10)

with some positive 41, relating to the indicated constants in (A7).
We note that

w0 < colla+eo) ([P 0]+ [P0
(P +H) [ (Gt (0] G311
and
2
200> = 1) (Juh 0+ [P 0] + 1 seo [t 0]

+k1/ (G+hy |u (1)) dx — Kk} (F*+HP™) (3.12)
Q
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with k; > max {3,2+5¢¢} .
The application of Gronwall lemma to (3.10) holds

2 2
[Pru @]+ [Pt o]+ [ G o)+ @ ohdr< et vz o
Q
which shows
1 2 NI At
Hquk(t)Hz—l—HPZuk(t)Hz§C1e 1> 0 (3.13)

where €y = C; (HP%uOHZ, Piu H2> L C=C, (F.Hy).
Also, we differentiate (3.1) with respect to ¢ and get

(", 0;) = (Puy, ;) — (Pu, ;) — (P, @) + (8uy, @) =0, j=1,2,...k. 3.14)
Multiplying (3.14) by dj; (t) and summing the resulting equations over j, we obtain
2
EL (1) + Hp%u;g (z)H2+/ gutdyd!dx = 0 (3.15)
Q
with
1 1 2 Iy 2 Lon 2
Es () = 5 ([l 0I5 +||Prui |+ [P 0]
: 2 | 2
<G (szu;g (;)H2+ pru; (z)H2> 120 (3.16)

in which the Sobolev embedding theorem has been used.
Furthermore, the growth condition (2.2) and the Holder inequality mean that

| Ve < s [ (1l ]+ o o] 1)

o 1 1
<61t )t
Therefore, we get
1o 1 Loy 2 Ly 2 L 2(0471) 2m
Q‘guukuk|dx§§HP2uk (t)”z—l—CoHquk(t)Hz Hquk(t)H2 +H (3.17)
and
/ 1 Loy 2 Ly 2 1 2(0{71) 2m
E} (t)+§HP2uk (t)Hzgc()Hquk(t)Hz HPmk(t)Hz L HP . (3.18)

Then, the applications of the estimates (3.13) and (3.15)-(3.18) give that A > A, > 0, depending on Cy, such
that

EL (1) + MaE; (1) < G Hp%u; (t)Hi <1+ Hp%uk (z)Hz(H) +H22>
< Cze M4y (3.19)
Here, assume C; = C3 <HP%MQ ) P%ul ) ,F,Hl,H2> ,C4 = Cy4 (F,H,,H,) . Then (3.19) means that
E3(t) <E3(0)e ™ 4 Ce ™ 445 ey 1 > 0. (3.20)
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We show that E3 (0) is uniformly bounded for k under the conditions in Theorem 3 now. It follows by (3.1) that

(ui (1) = Pug (1) = Pu (1) = Pt (1), (1)) = (f il (1)) — (8, (1)) -

Especially, suppose t = 0, we get
et (0)H§+ HPQMZ H / P2ull (0). (P%uk (0) + P24 (0)) dx
= [ FG) O dx~ [ (g0 0)a.
Q Q

By Young inequality with €,

2 2

/‘qug )P%uk(O)‘dxge)‘P%ug(O)“2+cg P%uk(O)‘z,
1 | 2 1 2

/‘sz )Pfu;((O)‘dxgEHPfl/tZ(O)Hz—f—Cg Pfufc(O)‘z,

i 2
| Ve (00t 0) x| < i 0], gl < e [PHai ), e gl

and

, 2
[ 1r @ @] <[P )+ 112
Q

with 1, =2n/(n+2). Since u,oc =2net/ (n+2) <2n/(n—2), we obtain by (2.2) that

Uyo
Jletrar <o [ (@ + ) dx < co ([P + el )
Q Q
Suppose 0 < € < 1/6. Then, from (3.22) to (3.24) that
7 2 2
) <[Pt O, + i @I+ [P 01
2
gco<(]p%u;(0)\\2+Hmuk(O)szu||gu,il>
T TRRRTE I LR 5
<y HP2M1H2+HPZM()H2+F —l—HPZLt() 5 +||h2H2 =(C;.

Therefore, the inequality (3.20) shows
2
o+ o s [z s s 2o

and the estimates (3.13) and (3.26) give that

{ur (1)} is bounded in L™ ([0,00) ; HJ' (2)),
{u, ()} is bounded in L= ([0, 0); H' (Q)),
{u (r)} is bounded in L™ ([0, ) ; HJ (Q)) .

So, there exists a subsequences in {u } (still showed by {u;}) such that
ur — u weakly star in L= ([0,00) ; H}' (Q)),
uj, — u' weakly star in L ([0,0) ;L (Q))
ul — u” weakly star in L2 ([0,0); HI' (Q)).
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From applying the fact that L™ ([0,00); HJ' (Q)) < L?([0,0);HY" (Q)) and the Lions-Aubin compactness
Lemma in [20], we obtain from (3.27) and (3.28) that

g — u, u — u' strongly in L* ([0,00);L* (Q)) (3.29)

and then uy — u a.e in Q x [0,0).
Using the growth condition (2.2), for any 7' > 0, the integral

T
/ / |8 (x, uy (x,t))\%1 dxdt
0 Q

is bounded. Accordingly, by Lemma 2 in Chap. 1 [17], we conclude

a+1

g (x,u) — g (x,u) weakly in L ([0 T];L (Q)) (3.30)

with these convergences, by using the limit in the approximate equation (3.5), we get
(u” (1) ,v) — (Pu,v) — (Pu’,v) — (Pu”,v) + (g (x,u),v) = (f,v), YWwe H) (Q), (3.31)

So, u(t) is a weak solution of (1.1) and supplies (2.5) and (2.6), and the proof of existence for the solution u (7)
of (1.1) is completed.

We derive the estimates for ||Pu (t)||, and || Pu, (t)|, now. Also, we write u instead of u; for convenience and
view the estimates for u as a limit of u;. Supposing v = —Pu in (3.31), we obtain

B )+ 1Pu0) B <[P ()] + 1P ()1 -+ o (F2 + gl (3:32)
with some Cy > 0 and
E4 (1) :;HPu(t)H%qL/QPiut (t)Péu(t)dx-f-/QPu, (t) Pu(t)dx. (3.33)
Also, assuming v = —Pu, in (3.31), we get

/Put(Mtt+Pu+Pun)dx+HPu,H§:/gPéutdx/fPu,dx
Q Q Q

1
< SlPull3+Co (F+g13). (3.34)
This means that |
E5 () + 5 [1Pu (05 < Co (F?+g13) (3:35)
with
Es(r) =+ ([Phu 0)|[ + 1P ()12 + 12 ()2 3.36
s()=5 e (1)), + |1Pur (@) l2 + [Pu ()13 ) - (3.36)

We note that

200 2B
lul < Co[Pral )+ 1PulE " < mlPul3+ Cy [PEal (337)
withsmalln >0and 200 = (n—2)oc—n<2,B=a(1—06)/(1 —o6) > 0. Then, (3.37) shows
2 1%P 2m
Il < Co (Ilull3s +H3") < mlPull3+Cy [PEu " +cor™. (3:38)
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Then, by (2.5), (3.35) and (3.38) that

1 PNIL: .
E5 (1) + 5 I1Pu (0113 < 1 IPul)]l3+Co | |PRuto)| | +Co (F2+ H3")
< Cre PP L |lPu(n)|}+Co. (3.39)
Assume ¢ (t) = k1Es (1) + E4 (t). We get from (3.32) and (3.39) that

ki —1
2

Suppose k; > 3 and 7 is small that 1 — 1 (1 +k;/2) > 4/5. Then, (3.40) shows

o' (1) + 1P (0)]154 (1 — (1 +ki /2)n) [|[Pu(r)|)5 < Cre Pl ¢, (3.40)

1
o' (1) + 1P ()15 + 5 1Pu ()3 < Cre P +C. (3.41)

We note that )

1
‘ + HPi U
2

3 2 2, 1 1 2
Ey(1) < S IPul3+31Pus (1) |3+ 5 Hqu i (3.42)

3k 2 ki 7 1 1 2
< | = — —
¢ (1) < (5+ 2) || Pull; + (3+ 2) 1P|+ 5 (Hqu 2)

< Co (POl + 1Pu (0)]13) + Cre P +Cs. (3.43)

and

2 1
[P
2

Also (3.41) and (3.43) give that 3A ;8 > A3 > 0, depending on Cy, such that
¢ (1) +A30 (1) < Cre™MP 4Gy, 1 > 0. (3.44)

So,
0 (1) <9 (0)e ™ +Cre ™ +CA;", 1> 0. (3.45)

Otherwise, we get

0 (1) = kiEa (1) + E5 (1) > % (HPiu,

1 1
5 ([P

ki —1
>
- 2

2

2 2
+PulB+ Pl
2
)

2 [k 2 ki—co 2
(5 =) IPut+ S el

2 2 1
P+ [P

1
HPZMt

I 2 2
> |[PHu||+ 1P+ 1Pul, (3.46)

where the facts k; > {4,2+ ¢¢} and Sobolev imbedding theorem (see [17])

2
HP%M ‘2 < col|Pul? Vu € H™(Q)NHI ()

have been used. So, by the estimates (3.45) and (3.46) that
1 2 2 2 —3,3[ —1
P2u, (t) 2+ |Pu(t)||5+ [|[Pu (2)||5 < Cse +CsAz , >0 (3.47)
with C4 = Cy (F,H] ,Hz) , Cs =C;s (HPM()H27 HPM] H2 JF Hy ,Hz) .
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To establish the uniqueness, we suppose that u(z) and v(¢) are two solutions of (1.1), which supply the
estimates (2.5)-(2.7) and u(0) = v(0), «’ (0) =V (0). Taking U (t) = u; (¢), V(t) = v, (t) and W () = U (t) —
V (1), then we see from (1.1) that

W, —PW —PW, —P(u—v)=g(x,v) —g(x,u), xeQ, t>0. (3.48)

Multiplying (3.48) by W, we obtain

;jt <||W )|E t)Hj)Jr’PiW(t)Her/QP% (u—v) P Wdx
:/(g(xjv)—g(x,u))de (3.49)
Q
and
||W(t)|y§+‘P%W(t)H2+2 H ds+2/ /Pz v (s)) P*W (5) dxds
= 2/ / (x,v(s)) — g (x,u(s)))W (s)dxds. (3.50)
Since S s
Pi(u(s)—v(s)))g/o Pé(ur(f)—vf(r))‘d’c:/o P%W(r)]dr
then
‘p% (u(s)—v(s))Hzgs”( OY PW(r)der) v
and

t

E(u(s) — v (s)) PEW (s (dxds<

‘PZW ‘dxdfds

0 JQ

v,

P%W(r)szrds

t P%W(s)szs. (3.51)

0

Now, taking U (s) = €u(s)+ (1 —¢€)v(s),0<e <1, we get

:/O/Q|g(x,u(s g(x,v(s))| W (s) |dxds— g(x,Ug)de||W (s)|dxds
t 1

<[] e tents) =0 W (9 dedas

<k / / (1" W1 o () ) (5) = v () W (s) s

SCO/O (e (G, + v (G, + all ) || P2 aa5) = W ()| ds

where o) =n(a—1)/2<2n/(n—2), 0, =n/2.
From (2.5) and Sobolev imbedding theorem, there is C3 > 0 such that

e ()IZ! + v ()15 +Hh2H52<Co(’

1 o1
Pfu(s)’ )

(o)
n ‘ p%v(s)Hz‘ + thugg) < C3 Vs> 0.
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Then,
t S 1 2 1/2 1 t 2
G<C3/ 5172 (/ HPfW(T)H dr) HP7W(S)H ds < Cst r)H ar. (3.52)
0 0 2 2 0 2
Then, the estimates (3.50)-(3.52) indicate that
2 t t 2
W (1)]2 + HP%W(t)H2+2 H (C3+ 1)1t p%W(s)szs. (3.53)
0 0

The integral inequality (3.53) represents that there exists 77 > 0, such that W () = 0 in [0,71]. As a result,
u()—v(t)=u(0)—v(0)=0in[0,T;].

Then, we conduce that u () = v(¢) on [T1,2T1], [2T1,3T1],..., and u(t) = v(¢) on [0,c0). This shows the
proof of uniqueness.

Now, we establish u € C([0,00) ; HJ' (©2)) . Assume 7 > s > 0. Then,

2 t 2
| (u(t)—u(s))sz/ /P%uf(c)dr dx
QlJs
t . 2
g(r—s)/ : r)derdr—>0ast—>s. (3.54)
N
This indicates u () € C([0,%0); Hj' (Q)) . Also, we get
1 2
P -u)B= [ | [ Puc@)dz| ar
QlJs
t
g(zs)/ |Pus (T)|3dT — 0 ast — s. (3.55)
and u(r) € C([0,00) ; H*™ (Q) NHJ (Q)) .
Moreover, we get
2
HPZ up (1) —uy (s H (t—ys) P%u,,(‘c)sz‘L'%Oast—)s. (3.56)

This shows that u (¢) € C! ([0,0) ; HI") and the proof of Theorem 3 is completed.

4 Global attractor for the problem (1)

By Theorem 3, we see that the solution operator S (¢) (ug,u;) = (u(t),u; (t)), t > 0 of the problem (1.1)
creates a semigroup on X = (H*" (Q) NHY' (Q)) x (H*™ (Q)NHY' (Q)) , which supplies these properties:

(1)S(r): X - X forallr > 0;

(2)S(t+s5)=S(t)S(s) fort,s > 0;

(3) S(t) (uo,u1) = S(s) (uo,u1) in X as t — s for any (uo,u;) € X.

For establishing the existence of the (X, X)-global attractor for the problem (1.1), firstly, we show the conti-
nuity of S () relating to the initial data (uo,u;).

The proof of Theorem 4

Suppose uy (1), u(t) is corresponding solution of the problem (1.1) with the initial data (uog,u k) and (uo, ;)
respectively, k =1,2,....

Since (uok, u1x) — (uo,u1) in X, {(uok,u1x)} is bounded in X. Set wy () = uy (t) — u (¢) . Then, wy holds

wi — Pwi— Pwj — Pwy = g (x,u) — g (x,u) = G, (x,1) € Qx (0,0,
Wik ()C,O) = Uok (X) —Up (X), Wllg (X,O) = U]k (x) —u ()C), X € Q‘v (41)
wi (x,1) =0, (x,1) € IQ X [0,00).
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Multiplying the equation in (4.1) by w), —Pwy and —Pw/_, we get

1d 2 12 1ol2 L2 2
S (szHﬁHszka;HPzwsz) +(1=m) [Pt < cq Gl
and
d (1 1 1
= (2 HPwkH%—i—/ (Pw;(Pwk +P2ka2w;{) dx) +(1-m) HPwng
Q
2 113 2 2 2
< [[Pwills + |[P#wh |, +CallGel < collPwills +Co Gl
and

1d
2dt
with small n > 0. Then, by (4.2) and (4.4) we obtain

2
(HPMHJ Pl + HPwZHi) +(1=m) [[Pwi]l5 < Cy Gl

) (1= 1) o) [P |24+ m) [Pt 0]+ (1 =) 1w )12

2
< kCn HGkHz

where

ki+1 1 2
) =5 (1w 0l + [P 0]

o2 ([P Il + & [tk
+ /g (Pwi () P (1) + Pwi () P (1)) s

ki+2 1 2
< A2 (1P 0l+ [Phi o)

k1+1
2

2
<G (HPW; ()3 + 1Pwe (1) 13+ | P <’>H2) .
2
)
1 12 2 k 2
5 ([l + i) + 5 il

1 1
3 (1l + o) -5

1 2 2
> [|Pw (0113 + [Pk )|+ [Pwi )], £ 0.

+

P O+ Ik OB + [P 0]

By taking k; > 3

ki+1
Vi (t) =

(e

2 1,
+ HPZWk
2

2
2
Otherwise, we obtain from assumption (A4;),

1Gell2 = /g g (rotag) — g () P = /Q Gwids

< co/ (\ukIZ(a_l) + oD —i—h%) widx.
o

205

(4.2)

(4.3)

4.4)

4.5)

(4.6)

4.7)

(4.8)
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The application of Sobolev imbedding theorem and the estimate (2.7) gives

2(a—1 2 2(a—1 2 2
/Q PO whdie < w3, el 5o, < Cs Iwell3, < Callwel3 (49)

with u, =n/(n—4)" and uy =,/ (U, — 1). Similarly,

/Q P whdie < w3, lull5iac ), < Cs Wil < CsllPwel3 (4.10)
and
/Q’%W%dx < [will3g, ha2ll% /2 < C3 Iwill3,, < Csl[Pwill3- (4.11)
Then, we get from (4.5) to (4.11) that A4 > 0, such that
Vi () + Aayi (1) < C3 ||Gell3 < Cs [Iwellay, < C3 [[Pwill3,,, < Caye (1) (4.12)

where C; is as in (2.6), independent of k. The differential inequality (4.12) means

Ve (£) <y (0)e @2 >0. (4.13)
Then, from (4.6) and (4.7), we obtain
1 2
3(0) <Gy (HPz (g =) | + 1P (i — o) 13+ ||P(u1k—u1)||§> —0ask— oo “.14)
and )
1Pwe ()3 + | Pt () + [Pwl 0] < e 6) < 3 ()& 0 as k> om @.15)

This indicates that S(¢) : X — X is continuous. Now we show that {S(¢)},- is asymptotically compact in X
from the method in [9]. -

Assume {(uox,u1x)} is a bounded sequence and {uy (¢)} be the corresponding solutions of the problem (1.1)
in C ([0,00); H*™ (Q) NH{' (Q)) . We suppose #; — oo as k — oo. For any 7 > 0, assume f,,t > T. Then, the
application of (4.12) to wi, (1) = u, (t +1, —T) —ug (t +1, — T, we get

t
Yin (£) < Vi (0) e 4 +C5 / e 40 | (9)[13,,, ds, >0 (4.16)
0
with 5
1 2
Yoo (1) = [|Pwia 05+ [P, (1) |+ [[Pwl 0] @.17)

Especially, we take t = T and obtain

1P o ) — e 0)) B+ [P () — i 60+ 1Py 0) =, 0) 2

< Yen (0)e 7 +C3 sup lug (1 — T +) =ty (ta — T +5)13,,, - (4.18)
0<s<T

Since the embedding (H*"(Q)NHJ'(Q)) < L*2(Q) is compact, we can remove a subsequence
{Mkkl (tkkl —T+ s) } which converges in L?*2 (Q) . Therefore, for any € > 0, firstly we fix T > 0, such that

Yin (0) e 4T < g 4.19)
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Supposing ng > 0 and k1, j > np, we get

2 €
‘ukkl (l‘kkl —T+ S) — U; (tkj -T —|—S) H < 5 (4.20)

C3 sup
2U,

0<s<T

Then, it follows by (4.18) to (4.20) that {Mkkl (tkkl ) } is a Cauchy sequence in X and we finalize that {S(#)},>
is asyptotically compact on X and now Theorem 4 is established.

Proof of Theorem 5

From Lemma 2, it is sufficient to indicate that there exists a continuous operator semigroup {S(¢)} on X
such that S (¢) (uo,u1) = (u(t),u; (¢)) for each t > 0. By the estimates (2.7), we accomplish that

B, = {(u,v) exyHP%v

2
‘2+\|PMH§+ 1Pv||3 §C4} 4.21)

is an absorbing set of {S(#)},-, and for any (uo,u1) € X,
distx (S (1) (ug,u1),By) < Cse ¥, >0 (4.22)
where the constants Cy, Cs are in (2.7). By Theorem 2, S (¢) : X — X is continuous and asymptotically compact

on X. From a general theory (see [1, | 1]), we conclude that S (7) admits a global attractor A on X defined by

20 [ 1>

a=a(By) = 0, |US 0By (423)
X

where [D]y is the closure of the set D in X. Then we prove the Theorem 5.

5 Decay property of solution for (1)

In this section, we search the decay property of solution to (1.1) with f = 0. Firstly, we present a well-known
Lemma that will be needed.

Lemma 7. ( [18]) Assume E : [0,00) — [0,0) is a non-increasing function and suppose that there are constants
g > 0 and 7y > 0 such that

/Eq“(r)dzgy1E(0)qE(s),vszo. (5.1)
S
Then, we get
1_|_q l/q
E(t) <E(0 Vi >0ifg>0 5.2
W<E0(54) w0 652
and
E(t)<E(0)e' ™"Vt >0ifqg=0. (5.3)

Proof of Theorem 7

Suppose u (t) is a weak solution in Theorem 3 with f = 0. Show

E(t) = % <|yu(t)||§+ Hpéu(z)Hz+ HP%ut (z)Hi) —i—/gG(u(r))dx, >0, (5.4)

Then, we obtain by (1.1) that
2
E' (z)+HP%u, (;)H —0, V¢ >0. (5.5)
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This indicates that E (¢) is non-increasing in [0, o).
Multiplying the equation in (1.1) by E4(¢)u(t), g > 0, we obtain

T
/Eq(t)/ (tyy — Pu— Puy + g (1)) dxdt =0, VT > S > 0.
S Q

We note that

T T
| B0 @ = B0 ) [~ [ (B0 E 0 w) 4 E90) s (1)) e
S S

2
P2y

T T
/E" ) (u, Pu)dt = /Eq(t)’
S S

T T
/ E9(1) (u, Pu,) dt :/ E9(7) (P%M,P%u,> dt
S S

2

and

| 2
P2y, (t)H2> dt

T
_/ E1 (t) (M Plxin dt < q lE‘/ (P%M,P%ut) +Eq(t)‘
S
_|_E(I( ) (PZM qu[) |S

Then, we get by (5.6) that
2 /S " (e = B (1) () + (Pru i) ]
—i—q/STE(t)qlE' (1) [(u,ut) + (P%u,P%u,ﬂ dt
=3 CE() (1 1+ [P o)) a
+/STEq (1) (péu,p%u,)dz+/STEq (1) (2G (1) — ug (u)) dt.

Since G (u) > 0, E (t) > 0. Moreover, we get the following estimates from (5.5):

1

P <202, |

P%ut(t)Hzg(—E’(t))l/z, ‘

‘Eq (1) ((u,ut) + (P%u,p%u,))\ < CoE (1) ‘ Piu

|

/‘E ) E (1 [(u,u,)—i—(P%u,P%u,)”dt
< | 5o o]
2/STE‘1(t) (\|u,(t)\|§+\Piu,(t)Hj> dtsco/STE‘f(t)( E'(1)"? < GET(5),

/sTEfl(t) (Péu,ﬁ”’)dtg/s Eq(t)’ ’2‘

T
< / ET () di + CETT(S).
S

Piu, (;)HZ < CoET (1),

Pu| ||Pru, dt<C0E‘1+1 (S),

1
Pzu

1
PZM[
2
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Then we obtain from (5.8) to (5.12) that

/T E (1)dt < CET' (S) < GE?(0)E(S) =y 'EY(0)E(S). (5.13)
S

From Lemma 10, we get
1 5 | 2 | 2
E@) =5 (Ilu@l3+ |[Pru)| +| P )] ) + | Gu@ax
Q

1/q
< E(0) (lqu‘;) <Ci(141)7 Y4,

This is the estimates (2.8) and the proof of Theorem 7 is completed.

Conclusion 8. In this paper, we obtained the global attractor and the asymptotic behavior of global solution for
the higher-order evolution equation with damping term. This improves and extends many results in the literature
such as (Xie and Zhong (2007); Chen et al. (2011)).
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