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Abstract
This study reaches the dark, bright, mixed dark-bright, and singular optical solitons to the fractional Schrödinger-Hirota
equation with a truncated M-fractional derivative via the extended sinh-Gordon equation expansion method. Dark soliton
describes the solitary waves with lower intensity than the background, bright soliton describes the solitary waves whose
peak intensity is larger than the background, and the singular soliton solutions is a solitary wave with discontinuous
derivatives; examples of such solitary waves include compactions, which have finite (compact) support, and peakons,
whose peaks have a discontinuous first derivative. The constraint conditions for the existence of valid solutions are given.
We use some suitable values of the parameters in plotting 3-dimensional surfaces to some of the reported solutions.
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1 Introduction

Nonlinear Schrödinger equations (NLSEs) can be used to describe various complex nonlinear physical phe-
nomena arising from the different fields of nonlinear sciences, such as; optical fibers, hydrodynamics, complex
acoustics, quantum hall effect, heat pulses in solids and many other nonlinear unstable aspects [1,2]. The theory
of optical solitons is one of the interesting topics for the investigation of soliton propagation through nonlin-
ear optical fibers [3]. Optical solitons are restrained electromagnetic waves that stretch in nonlinear dispersive
media and allow the intensity to remain unchanged due to the balance between dispersion and nonlinearity
effects [4]. Various analytical approaches for securing optical solitons and other solutions to different kind of
NLSEs have been reported to the literature such as the the sine-Gordon expansion method [5–7], the first integral
method [8, 9], the improved Bernoulli sub-equation function method [10, 11], the trial solution method [12, 13],
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the new auxiliary equation method [14], the extended simple equation method [15], the solitary wave ansatz
method [16], the functional variable method [17], the sub-equation method [18–20] and several others [21–33].

However, in this study, the extended sinh-Gordon equation expansion method (ShGEEM) [34–38] is used in
constructing family of optical soliton and other solutions to the fractional Schrödinger-Hirota [39, 40] equation
with a truncated M-fractional derivative.

The fractional Schrödinger-Hirota equation with a truncated M-fractional derivative is given as

iDα,β
M,t ψ +λD2α,β

M,x ψ +δDα,β
M,t Dα,β

M,x ψ +ρ|ψ|2ψ + i(aD3α,β
M,x ψ +b|ψ|2Dα,β

M,x ψ)

= icDα,β
M,x ψ + idDα,β

M,x (|ψ|
2
ψ)+ ieDα,β

M,x (|ψ|
2)ψ, 0 < α < 1, β > 0, i =

√
−1,

(1.1)

where ψ is a complex-valued function of x and t. The coefficients λ , δ and a are the group velocity and spatio-
temporal and third-order dispersions terms, respectively. The parameters b and e are the nonlinear dispersion
terms. The coefficients c and d are the inter-modal dispersion and the self steepening terms, respectively [39,40].

For the past two decades, the field of fractional calculus has attracted the attention of many researchers.
Nonlinear fractional partial differential equations are used to describe various nonlinear phenomena in nonlinear
science. There are several definitions of fractional derivatives available in the literature, such as the Riemann-
Liouville, Caputo and Grunwald-Letnikov definitions, Atangana-Baleanu derivative in Caputo sense, Atangana-
Baleanu fractional derivative in Riemann-Liouville sense [41, 42], the conformable fractional derivative [43].
Atangana et. al [44] presented some new properties to the conformable fractional derivative. Recently, Sousa
and Oliveira developed the new truncated M-fractional derivative [45]. This new fractional derivative generalizes
the conformable derivative proposed by Khalil et. al [43].

2 The truncated M-fractional derivative

In this section, some basic definition and theorem about the new truncated M-fractional derivative are given
[45].

Definition 1. Let h : [0,∞)→ R, then the new truncated M-fractional derivative of h of order α is defined as

Dα, β

M {(h)(t)}= lim
ε→0

h(tEβ (εt1−α))−h(t)
ε

, ∀t > 0, 0 < α < 1, β > 0, (2.1)

where Eβ (.) is a truncated Mittag-Leffler function of one parameter [45].

Theorem 1. Let 0 < α ≤ 1, β > 0, q, r ∈ R, and g, h α-differentiable at a point t > 0. Then:

1. Dα, β

M {(qg+ rh)(t)}= qDα, β

M {g(t)}+ rDα, β

M {h(t)}.

2. Dα, β

M {(g . h)(t)}= g(t)Dα, β

M {h(t)}+h(t)Dα, β

M {g(t)}.

3. Dα, β

M {g
h(t)}=

h(t)Dα, β

M {g(t)}−g(t)Dα, β

M {h(t)}
[h(t)]2 .

4. Dα, β

M {c}= 0, where g(t) = c is a constant.

5. If g is differentiable, then Dα, β

M {g(t)}= t1−α

Γ(β+1)
dg(t)

dt .
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3 The extended ShGEEM

In this section, the steps of the extended sinh-Gordon equation expansion method are presented.

Step-1: Consider the following nonlinear fractional partial differential equation with the new truncated
M-fractional derivative:

P(Dα, β

M,x ψ, ψ
2D2α, β

M,x ψ, Dα, β

M,t ψ, Dα, β

M,t Dα, β

M,x ψ, . . .) = 0. (3.1)

Putting the fractional travelling wave transformation

ψ(x, t) = Φ(ζ ), ζ =
Γ(β +1)

α
ν(xα − vtα) (3.2)

into Eq. (3.1), produces the following nonlinear ordinary differential equation (NODE):

D(Φ, Φ
′
, Φ

′′
, Φ

2
Φ
′
, . . .) = 0, (3.3)

Step-2: We suppose the trial solution to Eq. (3.3) to be of the form [34]

Φ(Θ) =
m

∑
k=1

[
Bksinh(Θ)+Akcosh(Θ)

]k
+A0, (3.4)

where A0, Ak, Bk (k = 1, 2, . . . , m) are constants to be determine later and Θ is a function of ζ which satisfies
the following ordinary differential equations:

Θ
′
= sinh(Θ). (3.5)

The value of m is determined by using the homogeneous balance principle.

Eq. (3.5) is obtained from the fractional sinh-Gordon equation given by [34]

Dα, β

M,t Dα, β

M,x ψ = γsinh(ψ). (3.6)

Eq. (3.5) possesses the following solutions [34]:

sinh(Θ) =±csch(ζ ) or sinh(Θ) =± i sech(ζ ), (3.7)

cosh(Θ) =±coth(ζ ) or cosh(Θ) =± tanh(ζ ), (3.8)

respectively, where i =
√
−1.

Step-3: Putting Eq. (3.4), its possible derivatives with the fixed value of m along with Eq. (3.5) into Eq. (3.3),
yields an equation in powers of hyperbolic functions; Θ

′lsinhi(Θ)cosh j(Θ) (l = 0,1 and i, j = 0, 1, 2, . . .). We
collect a set of over-determined nonlinear algebraic equations in A0, Ak, Bk, ν , v by setting the coefficients of
Θ
′lsinhi(Θ)cosh j(Θ) to zero.

Step-4: The collected set of over-determined nonlinear algebraic equations is then solved with aid of
computational software to determine the values of the parameters A0, Ak, Bk, ν , v.

Step-5: Based on Eqs. (3.7) and (3.8), Eq. (3.1) possesses the following forms of solutions:
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Φ(ζ ) =
m

∑
k=1

[
± iBk sech(ζ )±Aktanh(ζ )

]k
+A0, (3.9)

Φ(ζ ) =
m

∑
k=1

[
±Bk csch(ζ )±Akcoth(ζ )

]k
+A0. (3.10)

4 Application

In this section, we present the application of the ShGEEM to the the Schrödinger-Hirota equation.

Consider equation (Eq. (1.1)) given in section 1.

Substituting the fractional complex wave transformation

ψ(x, t) = Φ(ζ )eiθ , ζ =
Γ(β +1)

α
ν(xα − vtα), θ =

Γ(β +1)
α

(−κxα +ωtα +Ω) (4.1)

into Eq. (1.1), we get the following NODE and the constraint conditions:

ν
2(λ −δv+3aκ)Φ

′′− (ω +λκ
2−δκω +aκ

3 + cκ)Φ+(ρ +κb−κd)Φ3 = 0, (4.2)

e =
(b−3d)(λ − vδ )−3a(2kd +ρ)

2(3ak+λ − vδ )
(4.3)

and

c =
a(ω +κ(−8κλ + v(−3+6κδ )+2δω))−8a2κ3− (λ − vδ )(v+2κλ − vκλ −δω)

2aκ +λ − vδ
. (4.4)

Balancing the terms Φ3 and Φ
′′
, yields m = 1.

With m = 1, Eq. (3.4) takes the form

Φ(Θ) = B1sinh(Θ)+A1cosh(Θ)+A0. (4.5)

Substituting Eq. (4.5) and it is second derivative along with Eq. (3.5), gives and equation in powers of
hyperbolic functions. We collect the set of over-determined nonlinear algebraic equations as explained in the
description of the method. We further simplify the set of algebraic equations to obtained the values of the
parameters. To get the solutions of Eq. (1.1), we substitute the values of the parameters into Eqs. (3.9) and
(3.10).

Case-1: When

A0 = 0, A1 =−

√
ω +κ(c+κ(aκ +λ )−δω)

bκ−κd +ρ
, B1 = A1,

ν =−
√
− (ω+κ(c+κ(aκ+λ )−δω))

3ak−vδ+λ
,

we have the mixed dark-bright optical soliton
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ψ1(x, t) =±

√
ω +κ(c+κ(aκ +λ )−δω)

bκ−κd +ρ

(
i sech

[
Γ(β +1)

α
ν(xα − vtα)

]

+tanh

[
Γ(β +1)

α
ν(xα − vtα)

])
ei( Γ(β+1)

α
(−κxα+ωtα+Ω)),

(4.6)

where (bκ−κd +ρ)(ω +κ(c+κ(aκ +λ )−δω))> 0 and (3ak− vδ +λ )(ω +κ(c+κ(aκ +λ )−δω))< 0
for valid soliton.

Case-2: When

A0 = 0, A1 =−

√
ω +κ(c+κ(aκ +λ )−δω)

bκ−κd +ρ
, B1 = 0,

ν =−
√

ω(κδ−1)−κ(c+κ(aκ+λ ))
2(3ak−vδ+λ ) ,

we have the dark and singular solitons

ψ2(x, t) =±

√
ω +κ(c+κ(aκ +λ )−δω)

bκ−κd +ρ

×tanh

[
Γ(β +1)

α
ν(xα − vtα)

]
ei( Γ(β+1)

α
(−κxα+ωtα+Ω))

(4.7)

and

ψ3(x, t) =±

√
ω +κ(c+κ(aκ +λ )−δω)

bκ−κd +ρ

×coth

[
Γ(β +1)

α
ν(xα − vtα)

]
ei( Γ(β+1)

α
(−κxα+ωtα+Ω)),

(4.8)

respectively, where (bκ −κd +ρ)(ω +κ(c+κ(aκ +λ )− δω)) > 0 and (3ak− vδ +λ )(ω(κδ − 1)−κ(c+
κ(aκ +λ )))> 0 for valid solitons.

Case-3: When

A0 = 0, A1 = 0, B1 =−

√
−2(ω +κ(c+κ(aκ +λ )−δω))

bκ−κd +ρ
,

ν =−
√

ω+κ(c+κ(aκ+λ )−δω)
3ak−vδ+λ

,

we have the bright and singular solitons

ψ4(x, t) =±

√
2(ω +κ(c+κ(aκ +λ )−δω))

bκ−κd +ρ

×sech

[
Γ(β +1)

α
ν(xα − vtα)

]
ei( Γ(β+1)

α
(−κxα+ωtα+Ω))

(4.9)
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and

ψ5(x, t) =±

√
−2(ω +κ(c+κ(aκ +λ )−δω))

bκ−κd +ρ

×csch

[
Γ(β +1)

α
ν(xα − vtα)

]
ei( Γ(β+1)

α
(−κxα+ωtα+Ω)),

(4.10)

respectively, where (3ak− vδ +λ )(ω +κ(c+κ(aκ +λ )−δω))> 0 for valid solitons.

5 Physical representation of the reported results

In order to have clear and good understanding of the physical properties of the constructed dark, bright and
singular soliton solutions, under the choice of the suitable values of parameters and good choice of the fractional
value of α , the 3-dimensional graphs are plotted. The perspective view of the dark, bright and singular solitons
can be seen from the (a) part of figs. 1, 2, and (a), (b) parts of figs. 1 and 2, respectively.

(a) (b)

Fig. 1 The 3D surfaces of (a) Eq. (4.7) and (b) Eq. (4.8) with fractional value α = 0.9.

(a) (b)

Fig. 2 The 3D surfaces of (a) Eq. (4.9) and (b) Eq. (4.10) with fractional value α = 0.9.
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6 Conclusions

In this study, the dark, bright, mixed dark-bright and singular optical solitons to the fractional Schrödinger-
Hirota equation with a truncated M-fractional derivative are successfully revealed by using the extended sinh-
Gordon equation expansion method. The truncated M-fractional derivative is a generalized form of the con-
formable fractional derivative. The definition of the new fractional derivative is smoothly used in transforming
the fractional Schrödinger-Hirota equation to nonlinear ordinary differential equation. The reported results may
be useful in explaining the physical meaning of the studied nonlinear model. The extended sinh-Gordon equa-
tion expansion method is powerful technique in obtaining wave solutions to various complex fractional nonlinear
model.
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