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Abstract
This work proposes the new extended rational sinh-Gordon equation expansion technique (SGEEM). The computational
approach is formulated based on the well-known sinh-Gordon equation. The proposed technique generalizes the sine-
Gordon/sinh-Gordon expansion methods in a rational format. The efficiency of the suggested technique is tested on the
(2+1)=�imensional Kundu=iukherjee=jaskar (KMN) model. Various of optical soliton solutions have been ob-
tained using this new method. The conditions which guarantee the existence of valid solitons are given.
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1 Introduction

various complicated nonlinear physical phenomena can be expressed in the form of nonlinear partial dieren-
tial equations (NPDEs). Nonlinear Schrödinger’s type equations (NLSEs) are unique types of nonlinear partial
differential equations which are complex in nature. Such equations can be used to define various nonlinear physi-
cal aspects such as plasma physics, fluid dynamics, photonics, quantum electronics, and electromagnetism [1–5].
One of the important and hot subjects for investigating soliton propagation through nonlinear optical fibers is
the theory of optical solitons [6]. The spread of ultrashort pulses of electromagnetic radiation in a nonlinear
medium is a multidimensional phenomenon. The interaction between various physical elements such as ma-
terial dispersion, diffraction and nonlinear reaction affect the dynamics of the pulse [6]. This area has drawn
the attention of many scientists for more than two decades. Different computational methods have been used to
reveal solutions of various type of NLEEs such as the modified exp(−Ψ(η))-expansion function method [7–9],
the first integral method [10,11], the improved Bernoulli sub-equation function method [12,13], the trial solution
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method [14,15], the new auxiliary equation method [16], the extended simple equation method [17], the solitary
wave ansatz method [18], the functional variable method [19] and several others [20–39].

However, a novel extended rational sinh-Gordon equation expansion technique is developed in this research.
The new approach is based on the well-known sine-Gordon and sinh-Gordon equations. We employ the new
approach to the (2+1)=�imensional Kundu=iukherjee=jaskar model [40] in generating various optical
solitons.

The (2+1)=�imensional KMN model is given by [40]

iΘt +αΘxy + iβΘ(ΘΘ
∗
x−Θ

∗
Θx) = 0. (1.1)

In Eq. (1.1), the unknown function Θ(x,y, t) stands for the nonlinear wave envelope. The nonzero constants
a and b are the coefficients of the dispersion term and the term that is different from conventional Kerr law
nonlinearity or any known non-Kerr law media. The first term Θt represents the temporal evolution of the wave.
Eq. (1.1) describes the oceanic rogue waves as well as hole waves. It may also be used in describing optical
wave propagation through coherently excited resonant wave guides that is doped with Erbium atoms [40, 41].

2 Analysis of the Method

In this section, we give the description of the novel extended rational sinh-Gordon equation expansion
technique.

Consider the following sinh-Gordon equation [42]

Θxt = γ sinh(Θ). (2.1)

One may recall the following as the solutions of Eq. (2.1) [43]:

sinh(Ω) =± csch(∆) or sinh(Ω) =± i sech(∆), (2.2)

cosh(Ω) =±coth(∆) or cosh(Ω) =± tanh(∆), (2.3)

sinh(Ω) = tan(∆) or sinh(Ω) =−cot(∆) (2.4)

and
cosh(Ω) =±sec(∆) or cosh(Ω) =± tan(∆), (2.5)

where i =
√
−1 and Ω′ = sinh(Ω), or Ω′ = cosh(Ω). For details, see [43].

Consider the nonlinear partial differential equation

P(Θx, Θ
2
Θxx, Θxxx . . .) = 0, (2.6)

where the subscript represents the partial derivative of Θ with respect to x.

Substituting the travelling wave transformation

Θ(x, t) = Θ(∆), ∆ = ω(x−µt) (2.7)
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into Eq. (2.6), the following nonlinear ordinary differential (NODE) is obtained:

D(Θ, Θ
′
, Θ

′′
, Θ

2
Θ
′
, . . .) = 0, (2.8)

where the superscript indicates the derivative of the function Θ with respect to ∆.

The general steps of the new generalized rational sinh-Gordon equation expansion method are given as
follows:

Step-I: Suppose that Eq. (2.6) adopts the following form of rational solution:

Θ(Ω) =
∑

m
j=1
[
b j sinh(Ω)+a j cosh(Ω)

] j
+a0

∑
m
j=1
[
c j sinh(Ω)+d j cosh(Ω)

] j
+ c0

. (2.9)

Step II: The unknown parameters involved are obtained by substituting Eq. (2.9) along with Ω′ = sinh(Ω)
and/or Ω′ = cosh(Ω) into Eq. (2.8). This produces a polynomial in powers of hyperbolic functions. Summing
the coefficients of these hyperbolic functions of the same power, provides a group of algebraic equations after
equating each summation to zero.

Step III: The solutions of Eq. (2.6) are reached by inserting the values of the unknown parameters into
the following rational solutions formed from Eqs. (2.2), (2.3), (2.4) and (2.5), respectively:

Θ(∆) =
∑

m
j=1
[
±b ji sech(∆)±a j tanh(∆)

] j
+a0

∑
m
j=1
[
± c ji sech(∆)±d j tanh(∆)

] j
+ c0

. (2.10)

Θ(∆) =
∑

m
j=1
[
±b j csch(∆)±a jcoth(∆)

] j
+a0

∑
m
j=1
[
± c j csch(∆)±d jcoth(∆)

] j
+ c0

, (2.11)

Θ(∆) =
∑

m
j=1
[
b j tan(∆)±a jsec(∆)

] j
+a0

∑
m
j=1
[
c j tan(∆)±d jsec(∆)

] j
+ c0

(2.12)

and

Θ(∆) =
∑

m
j=1
[
−b j cot(∆)±a jtan(∆)

] j
+a0

∑
m
j=1
[
− c j cot(∆)±d jtan(∆)

] j
+ c0

. (2.13)

3 Applications

In this section, we give the applications of the new extended rational sinh-Gordon equation expansion
method.

Consider the complex wave transformation

Θ(x,y, t) = Θ(∆)eiθ , Θ
∗(x,y, t) = Θ(∆)e−iθ

∆ = ω(−σ1x−σ2y−µt),

θ =−γ1x− γ2y+κt +φ .
(3.1)
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In Eq. (3.1), γ1 and γ2 are the frequencies of the solitons in x− and y-directions, respectively. The constant µ

stands for the velocity of the soliton. The parameter κ is the phase constant. The parameters σ1 and σ2 stand
for the inverse width of the soliton along x− and y−directions, respectively [40].

Substituting Eq. (3.1) into (1.1), gives

ω
2
ασ1σ2Θ

′′− (κ +αγ1γ2)Θ−2βγ1Θ
3 = 0 (3.2)

from the real part, and

µ = α(γ1σ2 + γ2σ1) (3.3)

from the real part.

Balancing the terms Θ
′′

and Θ3, yields m = 1.

With m = 1, Eq. (2.9) turns to

Θ(Ω) =
b1 sinh(Ω)+a1 cosh(Ω)+a0

c1 sinh(Ω)+d1 cosh(Ω)+ c0
. (3.4)

Substituting Eq. (3.4) along with Ω′ = sinh(Ω) and/or Ω′ = cosh(Ω) into Eq. (3.2), yields a polynomial in
powers of hyperbolic functions. Collecting the coefficients of the hyperbolic functions of the same power and
equating each summation to zero, yields a system of algebraic equations. Solving the system of algebraic
equations, produces the values of a1, b1, c1, d1, and the other parameters involved. Substituting the values of
the parameters into Eqs. (2.10)-(2.13) with fixed value of m = 1, gives some new results to Eq. (1.1).

Set-1: When

a0 = d1

√
−(κ +αγ1γ2)

2βγ1
, c0 = a1

√
− 2βγ1

(κ +αγ1γ2)
, ω =−

√
−2(κ +αγ1γ2)

ασ1σ2
,

b1 =−i
√

(c2
1−d2

1)(κ+αγ1γ2)−2βa2
1γ1

2βγ1
, we have the following mixed dark-bright soliton:

Θ1.1(x,y, t) =

(
d1

√
− (κ+αγ1γ2)

2βγ1
+
√

(c2
1−d2

1)(κ+αγ1γ2)−2βa2
1γ1

2βγ1
sech[∆]+a1 tanh[∆]

)
ic1sech[∆]+d1 tanh[∆]+a1

√
− 2βγ1

(κ+αγ1γ2)

eiθ , (3.5)

and the mixed singular soliton

Θ1.2(x,y, t) =

(
a1 coth[∆]+d1

√
− (κ+αγ1γ2)

2βγ1
+
√

(c2
1−d2

1)(κ+αγ1γ2)−2βa2
1γ1

2βγ1
i csch[∆]

)
c1csch[∆]+d1 coth[∆]+a1

√
− 2βγ1

(κ+αγ1γ2)

eiθ , (3.6)
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Set-2: When

a0 = d1

√
−(κ +αγ1γ2)

2βγ1
, c0 = a1

√
− 2βγ1

(κ +αγ1γ2)
, b1 = 0, c1 = 0, ω =

√
−(κ +αγ1γ2)

2ασ1σ2
,

we get the following dark soliton

Θ2.1(x,y, t) =

(
d1

√
− (κ+αγ1γ2)

2βγ1
+a1 tanh[∆]

)
a1

√
− 2βγ1

(κ+αγ1γ2)
+d1 tanh[∆]

eiθ , (3.7)

and the singular soliton

Θ2.2(x,y, t) =

(
a1 coth[∆]+d1

√
− (κ+αγ1γ2)

2βγ1

)
a1

√
− 2βγ1

(κ+αγ1γ2)
+d1 coth[∆]

eiθ . (3.8)

Set-3: When

a0 = c1

√
κ +αγ1γ1

2βγ1
, c0 =−b1

√
2βγ1

κ +αγ1γ2
, ω =−

√
2(κ +αγ1γ2)

ασ1σ2
,

a1 =−
√

2βb2
1γ1+(c2

1−d2
1)(κ+αγ1γ2)

2βγ1
, we get the following trigonometric functions solution:

Θ3.1(x,y, t) =

(
b1 tan[∆]−−

√
2βb2

1γ1+(c2
1−d2

1)(κ+αγ1γ2)
2βγ1

sec[∆]+ c1

√
κ+αγ1γ1

2βγ1

)
d1 sec[∆]+ c1 tan[∆]−b1

√
2βγ1

κ+αγ1γ2

eiθ . (3.9)

Set-4: When

a0 =−c1

√
κ +αγ1γ1

2βγ1
, c0 = b1

√
2βγ1

κ +αγ1γ2
, a1 = 0, d1 = 0, ω =−

√
κ +αγ1γ2

2ασ1σ2
,

we get the following trigonometric function solution:

Θ4.1(x,y, t) =

(
b1 tan[∆]− c1

√
κ+αγ1γ1

2βγ1

)
c1 tan[∆]+b1

√
2βγ1

κ+αγ1γ2

eiθ . (3.10)

Set-5: When

a0 = c1

√
κ +αγ1γ1

2βγ1
, c0 =−b1

√
2βγ1

κ +αγ1γ2
, ω =−

√
2(κ +αγ1γ2)

ασ1σ2
,

a1 =−
√

2βb2
1γ1+(c2

1−d2
1)(κ+αγ1γ2)

2βγ1
, we get the following trigonometric functions solution:
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Θ5.1(x,y, t) =

(
b1cot[∆]−−

√
2βb2

1γ1+(c2
1−d2

1)(κ+αγ1γ2)
2βγ1

csc[∆]+ c1

√
κ+αγ1γ1

2βγ1

)
d1csc[∆]+ c1 cot[∆]−b1

√
2βγ1

κ+αγ1γ2

eiθ . (3.11)

Set-6: When

a0 =−c1

√
κ +αγ1γ1

2βγ1
, c0 = b1

√
2βγ1

κ +αγ1γ2
, a1 = 0, d1 = 0, ω =−

√
2(κ +αγ1γ2)

ασ1σ2
,

we get the following trigonometric functions solution:

Θ6.1(x,y, t) =−

(
b1 cot[∆]+ c1

√
κ+αγ1γ1

2βγ1

)
b1

√
2βγ1

κ+αγ1γ2
− c1 cot[∆]

eiθ . (3.12)

Remarks: Solutions (3.5)-(3.8) are valid only for ασ1σ2(κ +αγ1γ2) < 0, and solutions (3.9)-(3.12) are valid
only for ασ1σ2(κ +αγ1γ2)> 0.

4 Results and Discussion

In this study, We succeeded in formulating the extended rational sinh-Gordon equation expansion technique.
The developed method is employed to the (2+1)=�imensional Kundu=iukherjee=jaskar model to test
its efficiency. Mixed dark-bright, singular solitons and trigonometric functions solutions are successfully con-
structed.

Recently, Yamgoue et al. [44] introduced the rational sine-Gordon expansion method. The authors intro-
duced the following trial solution which was generated from the sine-Gordon equation [45, 46]:

Θ(∆) =
∑

m
j=1 tanh j−1(∆)

[
b j sech(∆)+a jtanh(∆)

]
+a0

∑
m
j=1 tanh j−1(∆)

[
c j sech(∆)+d jtanh(∆)

]
+ c0

. (4.1)

In this study, we come up with the following sets of trial solutions that were generated from the sinh-Gordon
equation [42]:

Θ(∆) =
∑

m
j=1
[
±b j isech(∆)±a j tanh(∆)

] j
+a0

∑
m
j=1
[
± c j isech(∆)±d j tanh(∆)

] j
+ c0

, (4.2)

Θ(∆) =
∑

m
j=1
[
±b j csch(∆)±a j coth(∆)

] j
+a0

∑
m
j=1
[
± c j csch(∆)±d j coth(∆)

] j
+ c0

, (4.3)

Θ(∆) =
∑

m
j=1
[
b j tan(∆)±a j sec(∆)

] j
+a0

∑
m
j=1
[
c j tan(∆)±d j sec(∆)

] j
+ c0

(4.4)

and

Θ(∆) =
∑

m
j=1
[
−b j cot(∆)±a j tan(∆)

] j
+a0

∑
m
j=1
[
− c j cot(∆)±d j tan(∆)

] j
+ c0

. (4.5)
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These newly introduced trial solutions generalize all the kind of solutions that may be obtained by using the
sine- and sinh-Gordon expansion methods in rational format.
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Figure 1 The (a) 2-, 3-dimensional and (b) contour surfaces of Eq. (3.5).
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Figure 2 The (a) 2-, 3-dimensional and (b) contour surfaces of Eq. (3.7).

5 Conclusion

In this research, the extended rational sinh-Gordon equation expansion method is developed. The newly
developed technique gives variety of wave solutions when tested on the (2+1)=�imensional Kundu=
iukherjee=jaskar model. Dark, mixed dark-bright, singular, mixed singular solitons and trigonometric func-
tions solutions are successfully constructed. The conditions which guarantee the existence of the valid solutions
to this model are given. The 2- , 3-dimensional and contour graphs to this model are plotted. It is known that
dark soliton describes the solitary waves with lower intensity than the background, bright soliton describes the
solitary waves whose peak intensity is larger than the background [?]. The singular soliton solutions is a soli-
tary wave with discontinuous derivatives; instances of such solitary waves are compactions, which have finite
(compact) assistance, and peakons, whose peaks have a discontinuous first derivative [48, 49]. The general-
ized sinh-Gordon equation expansion method is efficient and powerful mathematical tool which may be used in
generating varieties of wave solutions to different kind of nonlinear wave equations.
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