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Abstract
Graph energy and domination in graphs are most studied areas of graph theory. In this paper we try to connect these two
areas of graph theory by introducing c-dominating energy of a graph G. First, we show the chemical applications of c-
dominating energy with the help of well known statistical tools. Next, we obtain mathematical properties of c-dominating
energy. Finally, we characterize trees, unicyclic graphs, cubic and block graphs with equal dominating and c-dominating
energy.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. In particular, these graphs do not
have loops. Let G = (V,E) be a graph with the vertex set V (G) = {v1,v2,v3, · · · ,vn} and the edge set E(G) =
{e1,e2,e3, · · · ,em}, that is |V (G)| = n and |E(G)| = m. The vertex u and v are adjacent if uv ∈ E(G). The
open(closed) neighborhood of a vertex v ∈V (G) is N(v) = {u : uv ∈ E(G)} and N[v] = N(v)∪{v} respectively.
The degree of a vertex v ∈ V (G) is denoted by dG(v) and is defined as dG(v) = |N(v)|. A vertex v ∈ V (G) is
pendant if |N(v)| = 1 and is called supporting vertex if it is adjacent to pendant vertex. Any vertex v ∈ V (G)
with |N(v)|> 1 is called internal vertex. If dG(v) = r for every vertex v ∈V (G), where r ∈ Z+ then G is called
r-regular. If r = 2 then it is called cycle graph Cn and for r = 3 it is called the cubic graph. A graph G is
unicyclic if |V |= |E|. A graph G is called a block graph, if every block in G is a complete graph. For undefined
terminologies we refer the reader to [16].

A subset D ⊆ V (G) is called dominating set if N[D] = V (G). The minimum cardinality of such a set D is
called the domination number γ(G) of G. A dominating set D is connected if the subgraph induced by D is
connected. The minimum cardinality of connected dominating set D is called the connected dominating number
γc(G) of G [27].
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The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency
matrix of G. This quantity, introduced almost 30 years ago [13] and having a clear connection to chemical
problems [15], has in newer times attracted much attention of mathematicians and mathematical chemists [3,8–
12, 20, 22–24, 28, 30, 31].

In connection with energy (that is defined in terms of the eigenvalues of the adjacency matrix), energy-like
quantities were considered also for the other matrices: Laplacian [15], distance [17], incidence [18], minimum
covering energy [1] etc. Recall that a great variety of matrices has so far been associated with graphs [4,5,10,29].

Recently in [25] the authors have studied the dominating matrix which is defined as :
Let G = (V,E) be a graph with V (G) = {v1,v2, · · · ,vn} and let D ⊆ V (G) be a minimum dominating set of
G. The minimum dominating matrix of G is the n× n matrix defined by AD(G) = (ai j), where ai j = 1 if
viv j ∈ E(G) or vi = v j ∈ D, and ai j = 0 if viv j /∈ E(G).

The characteristic polynomial of AD(G) is denoted by fn(G,µ) := det(µI−AD(G)).
The minimum dominating eigenvalues of a graph G are the eigenvalues of AD(G). Since AD(G) is real and

symmetric, its eigenvalues are real numbers and we label them in non-increasing order µ1 ≥ µ2 ≥ ·· · ≥ µn. The
minimum dominating energy of G is then defined as

ED(G) =
n
∑

i=1
|µi|.

Motivated by dominating matrix, here we define the minimum connected dominating matrix abbreviated as
(c-dominating matrix). The c-dominating matrix of G is the n×n matrix defined by ADc(G) = (ai j), where

ai j =


1, if viv j ∈ E;

1, if i = j and vi ∈ Dc;

0, otherwise.

The characteristic polynomial of ADc(G) is denoted by fn(G,λ ) := det(λ I−ADc(G)).
The c-dominating eigenvalues of a graph G are the eigenvalues of ADc(G). Since ADc(G) is real and sym-

metric, its eigenvalues are real numbers and we label them in non-increasing order λ1 ≥ λ2 ≥ ·· · ≥ λn. The
c-dominating energy of G is then defined as

EDc(G) =
n
∑

i=1
|λi|.

To illustrate this, consider the following examples:

Figure 1.

Example 1. Let G be the 5-vertex path P5, with vertices v1,v2,v3,v4,v5 and let its minimum connected domi-
nating set be Dc = {v2,v3,v4}. Then

ADc(G) =


0 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 0


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The characteristic polynomial of ADc(G) is λ 5−3λ 4−λ 3 +5λ 2 +λ −1 = 0. The minimum connected domi-
nating eigenvalues are λ1 = 2.618, λ2 = 1.618, λ3 = 0.382, λ4 =−1.000 and λ5 =−0.618.
Therefore, the minimum connected dominating energy is EDc(P5) = 6.236.

Example 2. Consider the following graph

Figure 2.

Let G be a tree T as shown above and let its minimum connected dominating set be Dc = {b,d,e, f ,g,h}. Then

ADc(G) =



0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0


By direct calculation, we get the minimum connected dominating eigenvalues are λ1 = 2.945, λ2 = 2.596,
λ3 = 1.896, λ4 = 1.183, λ5 =−1.263, λ6 =−1.152, λ7 = 0.579, λ8 = 0.000, λ9 =−0.268 and λ10 =−0.516 .
Therefore, the minimum connected dominating energy is EDc(T ) = 12.398.

Example 3. The c-dominating energy of the following graphs can be calculated easily:

1. EDc(Kn) = (n−2)+
√

n(n−2)+5, where Kn is the complete graph of order n.

2. EDc(K1,n−1) =
√

4n−3 where K1,n−1 is the star graph.

3. EDc(Kn×2) = (2n−3)+
√

4n(n−1)−9, where Kn×2 is the coctail party graph.

In this paper, we are interested in studying the mathematical aspects of the c-dominating energy of a graph.
This paper has organized as follows: The section 1, contains the basic definitions and background of the current
topic. In section 2, we show the chemical applicability of c-dominating energy for molecular graphs G. The
section 3, contains the mathematical properties of c-dominating energy. In the last section, we have character-
ized, trees, unicyclic graphs and cubic graphs and block graphs with equal minimum dominating energy and
c-dominating energy. Finally, we conclude this paper by posing an open problem.

2 Chemical Applicability of EDc(G)

We have used the c-dominating energy for modeling eight representative physical properties like boiling
points(bp), molar volumes(mv) at 20◦C, molar refractions(mr) at 20◦C, heats of vaporization (hv) at 25◦C,
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critical temperatures(ct), critical pressure(cp) and surface tension (st) at 20◦C of the 74 alkanes from ethane
to nonanes. Values for these properties were taken from http://www.moleculardescriptors.eu/dataset.htm. The
c-dominating energy EDc(G) was correlated with each of these properties and surprisingly, we can see that the
EDc has a good correlation with the heats of vaporization of alkanes with correlation coefficient r = 0.995.
The following structure-property relationship model has been developed for the c-dominating energy EDc(G).

hv = 10EDc(G)±5. (1)

Figure 3: Correlation of EDc(G) with heats of vaporization of alkanes.

3 Mathematical Properties of c-Dominating Energy of Graph

We begin with the following straightforward observations.

Observation 1. Note that the trace of ADc(G) = γc(G).

Observation 2. Let G = (V,E) be a graph with γc-set Dc. Let fn(G,λ ) = c0λ n + c1λ n−1 + · · ·+ cn be the
characteristic polynomial of G. Then

1. c0 = 1,

2. c1 =−|Dc|=−γc(G).

Theorem 3. If λ1,λ2, · · · ,λn are the eigenvalues of ADc(G), then

1.
n
∑

i=1
λi = γc(G)

2.
n
∑

i=1
λ 2

i = 2m+ γc(G).

Proof.

1. Follows from Observation 1.

2. The sum of squares of the eigenvalues of ADc(G) is just the trace of ADc(G)2. Therefore

n

∑
i=1

λ
2
i =

n

∑
i=1

n

∑
j=1

ai ja ji
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= 2∑
i< j

(ai j)
2 +

n

∑
i=1

(aii)
2

= 2m+ γc(G).

We now obtain bounds for EDc(G) of G, similar to McClelland’s inequalities [21] for graph energy.

Theorem 4. Let G be a graph of order n and size m with γc(G) = k. Then

EDc(G) ≤
√

n(2m+ k). (2)

Proof. Let λ1 ≥ λ2 ≥ ·· · ≥ λn be the eigenvalues of ADc(G). Bearing in mind the Cauchy-Schwarz inequality,(
n
∑

i=1
aibi

)2

≤
(

n
∑

i=1
ai

)2( n
∑

i=1
bi

)2

we choose ai = 1 and bi = |λi|, which by Theorem 3 implies

E2
Dc

=

( n

∑
i=1
|λi|
)2

≤ n
( n

∑
i=1
|λi|2

)
= n

n

∑
i=1

λ
2
i

= 2(2m+ k).

Theorem 5. Let G be a graph of order n and size m with γc(G) = k. Let λ1 ≥ λ2 ≥ ·· · ≥ λn be a non-increasing
arrangement of eigenvalues of ADc(G). Then

EDc(G) ≥
√

2mn+nk−α(n)(|λ1|− |λn|)2 (3)

where α(n) = n[n
2 ](1−

1
n [

n
2 ]), where [x] denotes the integer part of a real number k.

Proof. Let a1,a2, · · · ,an and b1,b2, · · · ,bn be real numbers for which there exist real constants a,b,A and B, so
that for each i, i = 1,2, · · · ,n,a≤ ai ≤ A and b≤ bi ≤ B. Then the following inequality is valid (see [6]).

| n
n

∑
i=1

aibi−
n

∑
i=1

ai

n

∑
i=1

bi | ≤ α(n)(A−a)(B−b), (4)

where α(n) = n[n
2 ](1−

1
n [

n
2 ]). Equality holds if and only if a1 = a2 = · · ·= an and b1 = b2 = · · ·= bn.

We choose ai := |λi|,bi := |λi|, a = b := |λn| and A = B := |λ1|, i = 1,2, · · · ,n, inequality (4) becomes

|n
n

∑
i=1
|λi|2−

( n

∑
i=1
|λi|
)2

| ≤ α(n)(|λ1|− |λn|)2. (5)

https://www.sciendo.com


508 S. M. Hosamani et al. Applied Mathematics and Nonlinear Sciences 4(2019) 503–512

Since EGc(G) =
n
∑

i=1
|λi|,

n
∑

i=1
|λi|2 =

n
∑

i=1
|λi|2 = 2m+ k and EDc(G)≤

√
n(2m+ k), the inequality (5) becomes

n(2m+ k)− (EDc)
2 ≤ α(n)(|λ1|− |λn|)2

(EDc)
2 ≥ 2mn+nk−α(n)(|λ1|− |λn|)2.

Hence equality holds if and only if λ1 = λ2 = · · ·= λn.

Corollary 6. Let G be a graph of order n and size m with γc(G) = k. Let λ1 ≥ λ2 ≥ ·· · ≥ λn be a non-increasing
arrangement of eigenvalues of ADc(G). Then

EDc(G) ≥
√

2mn+nk− n2

4
(|λ1|− |λn|)2. (6)

Proof. Since α(n) = n[n
2 ](1−

1
n [

n
2 ])≤

n2

4 , therefore by (3), result follows.

Theorem 7. Let G be a graph of order n and size m with γc(G) = k. Let λ1 ≥ λ2 ≥ ·· · ≥ λn be a non-increasing
arrangement of eigenvalues of ADc(G). Then

EGc(G) ≥ |λ1||λ2|n+2m+ k
|λ1|+ |λn|

. (7)

Proof. Let a1,a2, · · · ,an and b1,b2, · · · ,bn be real numbers for which there exist real constants r and R so that
for each i, i = 1,2, · · · ,n holds rai ≤ bi ≤ Rai. Then the following inequality is valid (see [11]).

n

∑
i=1

b2
i + rR

n

∑
i=1

a2
i ≤ (r+R)

n

∑
i=1

aibi. (8)

Equality of (8) holds if and only if, for at least one i, 1≤ i≤ n holds rai = bi = Rai.
For bi := |λi|, ai := 1 r := |λn| and R := |λ1|, i = 1,2, · · · ,n inequality (8) becomes

n

∑
i=n
|λi|2 + |λ1||λn|

n

∑
i=1

1≤ (|λ1|+ |λn|)
n

∑
i=1
|λi|. (9)

Since
n
∑

i=1
|λi|2 =

n
∑

i=1
λ 2

i = 2m+ k,
n
∑

i=1
|λi|= EDc(G), from inequality (9),

2m+ k+ |λ1||λn|n ≤ (λ1 +λn)EDc(G)

Hence the result.

Theorem 8. Let G be a graph of order n and size m with γc(G) = k. If ξ = |detADc(G)|, then

EDc(G) ≥
√

2m+ k+n(n−1)ξ
2
n . (10)

Proof.

(EDc(G))2 =

( n

∑
i=1
|λi|
)2

=
n

∑
i=1
|λi|2 +∑

i 6= j
|λi||λ j|.
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Employing the inequality between the arithmetic and geometric means, we obtain

1
n(n−1) ∑

i 6= j
|λi||λ j| ≥

(
∏
i 6= j
|λi||λ j|

) 1
n(n−1)

.

Thus,

(EDG)
2 ≥

n

∑
i=1
|λi|2 +n(n−1)

(
∏
i 6= j
|λi||λ j|

) 1
n(n−1)

≥
n

∑
i=1
|λi|2 +n(n−1)

(
∏
i6= j
|λi|2(n−1)

) 1
n(n−1)

= 2m+ k+n(n−1)ξ
2
n .

Lemma 9. If λ1(G) is the largest minimum connected dominating eigenvalue of ADc(G), then λ1 ≥ 2m+γc(G)
n .

Proof. Let X be any non-zero vector. Then we have λ1(A) = maxX 6=0{X ′AX
X ′X }, see [16]. Therefore, λ1(ADc(G))≥

J′AJ
J′J = 2m+γc(G)

n .

Next, we obtain Koolen and Moulton’s [19] type inequality for EDc(G).

Theorem 10. If G is a graph of order n and size m and 2m+ γC(G)≥ n, then

EDc(G) ≤ 2m+ γc(G)

n
+

√
(n−1)

[
(2m+ γc(G))−

(
2m+ γc(G)

n

)2]
. (11)

Proof. Bearing in mind the Cauchy-Schwarz inequality,(
n
∑

i=1
aibi

)2

≤
(

n
∑

i=1
ai

)2( n
∑

i=1
bi

)2

.

Put ai = 1 and bi = |λi| then ( n

∑
i=2

aibi

)2

≤ (n−1)
( n

∑
i=2

bi

)2

(EDc(G)−λ1)
2 ≤ (n−1)(2m+ γc(G)−λ

2
1 )

EDc(G) ≤ λ1 +
√

(n−1)(2m+ γc(G)−λ 2
1 ).

Let

f (x) = x+
√

(n−1)(2m+ γc(G)− x2). (12)

For decreasing function

f ′(x) ≤ 0

⇒ 1− x(n−1)√
(n−1)(2m+ γc(G)− x2)

≤ 0

x ≥
√

2m+ γc(G)

n
.

Since (2m+ k)≥ n, we have
√

2m+γc(G)
n ≤ 2m+γc(G)

n ≤ λ1. Also f (λ1)≤ f
(

2m+γc(G)
n

)
.
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i.e EDc(G)≤ f (λ1)≤ f
(

2m+γc(G)
n

)
.

i.e EDc(G)≤ f
(

2m+γc(G)
n

)
Hence by (12), the result follows.

4 Graphs with equal Dominating and c-Dominating Energy

Its a natural question to ask that for which graphs the dominating energy and c-dominating energy are equal.
To answer this question, we characterize graphs with equal dominating energy and c-dominating energy. The
graphs considered in this section are trees, cubic graphs, unicyclic graphs, block graphs and cactus graphs.

Theorem 11. Let G = T be a tree with at least three vertices, then ED(G) = EDc(G) if and only if every internal
vertex of T is a support vertex.

Proof. Let G = T be a tree of order at least 3. Let F = {u1,u2, · · · ,uk} be the set of internal vertices of T .
Then clearly F is the minimal dominating set of G. Therefore in AD(G) the values of ui = 1 in the diagonal
entries. Further, observe that 〈F〉 is connected. Hence F is the minimal connected dominating set. Therefore,
AD(G) = ADc(G). In general, AD(G) = ADc(G) is true if every minimum dominating set is connected. In other
words, AD(G) = ADc(G) if γ(G) = γc(G). Therefore, the result follows from Theorem 2.1 in [2].

In the next three theorems we characterize unicyclic graphs with AD(G) = ADc(G). Since, AD(G) = ADc(G)
if γ(G) = γc(G). Therefore, the proof of our next three results follows from Theorem 2.2, Theorem 2.4 and
Theorem 2.5 in [2].

Theorem 12. Let G be a unicyclic graph with cycle C = u1u2 · · · ,unu1 n ≥ 5 and let X = {v ∈C : dG(v)≥ 2}.
Then ED(G) = EDc(G) if the following conditions hold:

1. (a). Every v ∈V −N[X ] with dG(V )≥ 2 is a support vertex.

2. (b). 〈X〉 is connected and |X | ≤ 3.

3. (c). If 〈X〉= P1orP3, both vertices in N(X) of degree at least 3 are supports and if 〈X〉= P2, at least one
vertex in N(X) of degree at least three is a support.

Theorem 13. Let G be unicyclic graph with |V (G)| ≥ 4 containing a cycle C =C3, and let X = {v∈C : dG(v) =
2}. Then ED(G) = EDc(G) if the following conditions hold:

1. (a). Every v ∈V −N[X ] with dG(V )≥ 2 is a support vertex.

2. (b). There exists some unique v ∈C with dG(v)≥ 3 or for every v ∈C of dG(v)≥ 3 is a support.

Theorem 14. Let G be unicyclic graph with |V (G)| ≥ 5 containing a cycle C =C4, and let X = {v∈C : dG(v) =
2}. Then ED(G) = EDc(G) if the following conditions hold:

1. (a). Every v ∈V −N[X ] with dG(V )≥ 2 is a support vertex.

2. (b). If |X | = 1, all the three remaining vertices of C are supports and if |X | ≥ 2, C contains at least one
support.

Theorem 15. Let G be a connected cubic graph of order n, Then ED(G) = EDc(G) if G ∼= K4,C6,K3,3,, G1 or
G2 where G1 and G2 are given in Fig. 4.
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Theorem 16. Let G be a block graph of with l ≥ 2. Then ED(G) = EDc(G) if every cutvertex of G is an end
block cutvertex.

Proof. Since ED(G) = EDc(G) if γ(G) = γc(G). Therefore, the result follows from Theorem 2 in [7].

We conclude this paper by posing the following open problem for the researchers:
Open Problem: Construct non- cospectral graphs with unequal domination and connected domination numbers
having equal dominating energy and c-dominating energy.
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[22] I. Milovanovć, E. Milovanovć and A. Zakić, A short note on graph energy, MATCH Communications in Mathematical

and in Computer Chemistry 72 (2014), 179–182.

https://www.sciendo.com


512 S. M. Hosamani et al. Applied Mathematics and Nonlinear Sciences 4(2019) 503–512

[23] M. Naeem, M. K. Siddiqui, J. L. G. Guirao, W. Gao, New and modified eccentric indices of octagonal grid Om
n , 2018,

3, 209-228.
[24] J. Rada, Energy ordering of catacondensed hexagonal systems, Discrete Applied Mathematics 145 (2005), 437–443.
[25] M. Rajesh Kanna, B. Dharmendra and G. Sridhara, The minimum dominating energy of a graph, International Journal

of Pure and Applied Mathematics 85 (2013), 707–718.
[26] H. Sachs, beziehungen zwischen den in einem graphen enthaltenen kreisen und seinem charakteristischen polynom,

Ibid. 11 (1963), 119–134.
[27] E. Sampathkumar and H. Walikar, The connected domination number of a graph, Journal of Mathematical and Physical

Sciences 13 (1979), 607–613.
[28] I. Shparlinski, On the energy of some circulant graphs, Linear Algebra and its Applications 414 (2006), 378–382.
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