

Applied Mathematics and Nonlinear Sciences 4(2) (2019) 503-512

Applied Mathematics and Nonlinear Sciences

https://www.sciendo.com

On graphs with equal dominating and c-dominating energy

S. M. Hosamani¹, V. B. Awati² and R. M. Honmore³

Department of Mathematics, Rani Channamma University E-mail¹: sunilkumar.rcu@gmail.com, E-mail²: awati vb@yahoo.com

Submission Info

Communicated by Juan Luis García Guirao Received May 23rd 2019 Accepted August 16th 2019 Available online December 24th 2019

Abstract

Graph energy and domination in graphs are most studied areas of graph theory. In this paper we try to connect these two areas of graph theory by introducing c-dominating energy of a graph G. First, we show the chemical applications of c-dominating energy with the help of well known statistical tools. Next, we obtain mathematical properties of c-dominating energy. Finally, we characterize trees, unicyclic graphs, cubic and block graphs with equal dominating and c-dominating energy.

Keywords: Dominating set, Connected dominating set, Energy, Dominating energy, c-Dominating energy. **AMS 2010 codes:** 05C69; 05C90; 05C35; 05C12.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. In particular, these graphs do not have loops. Let G = (V, E) be a graph with the vertex set $V(G) = \{v_1, v_2, v_3, \cdots, v_n\}$ and the edge set $E(G) = \{e_1, e_2, e_3, \cdots, e_m\}$, that is |V(G)| = n and |E(G)| = m. The vertex u and v are adjacent if $uv \in E(G)$. The open(closed) neighborhood of a vertex $v \in V(G)$ is $N(v) = \{u : uv \in E(G)\}$ and $N[v] = N(v) \cup \{v\}$ respectively. The degree of a vertex $v \in V(G)$ is denoted by $d_G(v)$ and is defined as $d_G(v) = |N(v)|$. A vertex $v \in V(G)$ is pendant if |N(v)| = 1 and is called supporting vertex if it is adjacent to pendant vertex. Any vertex $v \in V(G)$ with |N(v)| > 1 is called internal vertex. If $d_G(v) = r$ for every vertex $v \in V(G)$, where $v \in \mathbb{Z}^+$ then $v \in \mathbb{Z}^+$ then $v \in \mathbb{Z}^+$ is called $v \in \mathbb{Z}^+$ then $v \in \mathbb{Z}^+$ is called $v \in \mathbb{Z}^+$ and for $v \in \mathbb{Z}^+$ is called the cubic graph. A graph $v \in \mathbb{Z}^+$ is called the regular. If $v \in \mathbb{Z}^+$ and $v \in \mathbb{Z}^+$ is called a block graph, if every block in $v \in \mathbb{Z}^+$ for undefined terminologies we refer the reader to $v \in \mathbb{Z}^+$ for undefined terminologies we refer the reader to $v \in \mathbb{Z}^+$ for undefined terminologies we refer the reader to $v \in \mathbb{Z}^+$ for undefined terminologies we refer the reader to $v \in \mathbb{Z}^+$ for undefined terminologies we refer the reader to $v \in \mathbb{Z}^+$ for $v \in \mathbb{Z}^+$ for undefined terminologies we refer the reader to $v \in \mathbb{Z}^+$ for $v \in \mathbb{Z}^+$ for $v \in \mathbb{Z}^+$ for undefined terminologies we refer the reader to $v \in \mathbb{Z}^+$ for $v \in \mathbb{Z}^+$ for

A subset $D \subseteq V(G)$ is called dominating set if N[D] = V(G). The minimum cardinality of such a set D is called the domination number $\gamma(G)$ of G. A dominating set D is connected if the subgraph induced by D is connected. The minimum cardinality of connected dominating set D is called the connected dominating number $\gamma(G)$ of G [27].

\$ sciendo

The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G. This quantity, introduced almost 30 years ago [13] and having a clear connection to chemical problems [15], has in newer times attracted much attention of mathematicians and mathematical chemists [3,8–12,20,22–24,28,30,31].

In connection with energy (that is defined in terms of the eigenvalues of the adjacency matrix), energy-like quantities were considered also for the other matrices: Laplacian [15], distance [17], incidence [18], minimum covering energy [1] etc. Recall that a great variety of matrices has so far been associated with graphs [4,5,10,29].

Recently in [25] the authors have studied the dominating matrix which is defined as: Let G = (V, E) be a graph with $V(G) = \{v_1, v_2, \dots, v_n\}$ and let $D \subseteq V(G)$ be a minimum dominating set of G. The minimum dominating matrix of G is the $n \times n$ matrix defined by $A_D(G) = (a_{ij})$, where $a_{ij} = 1$ if $v_i v_j \in E(G)$ or $v_i = v_j \in D$, and $a_{ij} = 0$ if $v_i v_j \notin E(G)$.

The characteristic polynomial of $A_D(G)$ is denoted by $f_n(G, \mu) := det(\mu I - A_D(G))$.

The minimum dominating eigenvalues of a graph G are the eigenvalues of $A_D(G)$. Since $A_D(G)$ is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$. The minimum dominating energy of G is then defined as

$$E_D(G) = \sum_{i=1}^n |\mu_i|.$$

Motivated by dominating matrix, here we define the minimum connected dominating matrix abbreviated as (c-dominating matrix). The c-dominating matrix of G is the $n \times n$ matrix defined by $A_{D_c}(G) = (a_{ij})$, where

$$a_{ij} = \begin{cases} 1, & \text{if } v_i v_j \in E; \\ 1, & \text{if } i = j \text{ and } v_i \in D_c; \\ 0, & \text{otherwise.} \end{cases}$$

The characteristic polynomial of $A_{D_c}(G)$ is denoted by $f_n(G,\lambda) := det(\lambda I - A_{D_c}(G))$.

The c-dominating eigenvalues of a graph G are the eigenvalues of $A_{D_c}(G)$. Since $A_{D_c}(G)$ is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. The c-dominating energy of G is then defined as

$$E_{D_c}(G) = \sum_{i=1}^n |\lambda_i|.$$

To illustrate this, consider the following examples:

$$P_5: \quad \bullet_{v_1} \quad \bullet_{v_2} \quad \bullet_{v_3} \quad \bullet_{v_4} \quad \bullet_{v_5}$$

Figure 1.

Example 1. Let G be the 5-vertex path P_5 , with vertices v_1, v_2, v_3, v_4, v_5 and let its minimum connected dominating set be $D_c = \{v_2, v_3, v_4\}$. Then

$$A_{D_c}(G) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

The characteristic polynomial of $A_{D_c}(G)$ is $\lambda^5 - 3\lambda^4 - \lambda^3 + 5\lambda^2 + \lambda - 1 = 0$. The minimum connected dominating eigenvalues are $\lambda_1 = 2.618$, $\lambda_2 = 1.618$, $\lambda_3 = 0.382$, $\lambda_4 = -1.000$ and $\lambda_5 = -0.618$. Therefore, the minimum connected dominating energy is $E_{D_c}(P_5) = 6.236$.

Example 2. Consider the following graph

Figure 2.

Let G be a tree T as shown above and let its minimum connected dominating set be $D_c = \{b, d, e, f, g, h\}$. Then

By direct calculation, we get the minimum connected dominating eigenvalues are $\lambda_1=2.945,\ \lambda_2=2.596,\ \lambda_3=1.896,\ \lambda_4=1.183,\ \lambda_5=-1.263,\ \lambda_6=-1.152,\ \lambda_7=0.579,\ \lambda_8=0.000,\ \lambda_9=-0.268$ and $\lambda_{10}=-0.516$. Therefore, the minimum connected dominating energy is $E_{D_c}(T)=12.398$.

Example 3. The c-dominating energy of the following graphs can be calculated easily:

- 1. $E_{D_c}(K_n) = (n-2) + \sqrt{n(n-2)+5}$, where K_n is the complete graph of order n.
- 2. $E_{D_r}(K_{1,n-1}) = \sqrt{4n-3}$ where $K_{1,n-1}$ is the star graph.
- 3. $E_{D_c}(K_{n\times 2}) = (2n-3) + \sqrt{4n(n-1)-9}$, where $K_{n\times 2}$ is the coctail party graph.

In this paper, we are interested in studying the mathematical aspects of the c-dominating energy of a graph. This paper has organized as follows: The section 1, contains the basic definitions and background of the current topic. In section 2, we show the chemical applicability of c-dominating energy for molecular graphs G. The section 3, contains the mathematical properties of c-dominating energy. In the last section, we have characterized, trees, unicyclic graphs and cubic graphs and block graphs with equal minimum dominating energy and c-dominating energy. Finally, we conclude this paper by posing an open problem.

2 Chemical Applicability of $E_{D_c}(G)$

We have used the c-dominating energy for modeling eight representative physical properties like boiling points(bp), molar volumes(mv) at $20^{\circ}C$, molar refractions(mr) at $20^{\circ}C$, heats of vaporization (hv) at $25^{\circ}C$,

critical temperatures(ct), critical pressure(cp) and surface tension (st) at $20^{\circ}C$ of the 74 alkanes from ethane to nonanes. Values for these properties were taken from http://www.moleculardescriptors.eu/dataset.htm. The c-dominating energy $E_{D_c}(G)$ was correlated with each of these properties and surprisingly, we can see that the E_{D_c} has a good correlation with the heats of vaporization of alkanes with correlation coefficient r = 0.995. The following structure-property relationship model has been developed for the c-dominating energy $E_{D_c}(G)$.

Figure 3: Correlation of $E_{D_c}(G)$ with heats of vaporization of alkanes.

3 Mathematical Properties of c-Dominating Energy of Graph

We begin with the following straightforward observations.

Observation 1. *Note that the trace of* $A_{D_c}(G) = \gamma_c(G)$.

Observation 2. Let G = (V, E) be a graph with γ_c -set D_c . Let $f_n(G, \lambda) = c_0 \lambda^n + c_1 \lambda^{n-1} + \cdots + c_n$ be the characteristic polynomial of G. Then

1.
$$c_0 = 1$$
,

2.
$$c_1 = -|D_c| = -\gamma_c(G)$$
.

Theorem 3. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of $A_{D_c}(G)$, then

1.
$$\sum_{i=1}^n \lambda_i = \gamma_c(G)$$

2.
$$\sum_{i=1}^{n} \lambda_i^2 = 2m + \gamma_c(G)$$
.

Proof.

- 1. Follows from Observation 1.
- 2. The sum of squares of the eigenvalues of $A_{D_c}(G)$ is just the trace of $A_{D_c}(G)^2$. Therefore

$$\sum_{i=1}^{n} \lambda_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} a_{ji}$$

$$= 2\sum_{i < j} (a_{ij})^2 + \sum_{i=1}^n (a_{ii})^2$$

= 2m + \gamma_c(G).

We now obtain bounds for $E_{D_c}(G)$ of G, similar to McClelland's inequalities [21] for graph energy.

Theorem 4. Let G be a graph of order n and size m with $\gamma_c(G) = k$. Then

$$E_{D_c}(G) \le \sqrt{n(2m+k)}. (2)$$

Proof. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of $A_{D_c}(G)$. Bearing in mind the Cauchy-Schwarz inequality,

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i\right)^2 \left(\sum_{i=1}^n b_i\right)^2$$

we choose $a_i = 1$ and $b_i = |\lambda_i|$, which by Theorem 3 implies

$$E_{D_c}^2 = \left(\sum_{i=1}^n |\lambda_i|\right)^2$$

$$\leq n \left(\sum_{i=1}^n |\lambda_i|^2\right)$$

$$= n \sum_{i=1}^n \lambda_i^2$$

$$= 2(2m+k).$$

Theorem 5. Let G be a graph of order n and size m with $\gamma_c(G) = k$. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be a non-increasing arrangement of eigenvalues of $A_{D_c}(G)$. Then

$$E_{D_c}(G) \ge \sqrt{2mn + nk - \alpha(n)(|\lambda_1| - |\lambda_n|)^2}$$
(3)

where $\alpha(n) = n[\frac{n}{2}](1 - \frac{1}{n}[\frac{n}{2}])$, where [x] denotes the integer part of a real number k.

Proof. Let a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n be real numbers for which there exist real constants a, b, A and B, so that for each $i, i = 1, 2, \dots, n, a \le a_i \le A$ and $b \le b_i \le B$. Then the following inequality is valid (see [6]).

$$|n\sum_{i=1}^{n}a_{i}b_{i}-\sum_{i=1}^{n}a_{i}\sum_{i=1}^{n}b_{i}| \leq \alpha(n)(A-a)(B-b),$$
 (4)

where $\alpha(n) = n[\frac{n}{2}](1 - \frac{1}{n}[\frac{n}{2}])$. Equality holds if and only if $a_1 = a_2 = \cdots = a_n$ and $b_1 = b_2 = \cdots = b_n$. We choose $a_i := |\lambda_i|, b_i := |\lambda_i|, a = b := |\lambda_n|$ and $A = B := |\lambda_1|, i = 1, 2, \cdots, n$, inequality (4) becomes

$$\left|n\sum_{i=1}^{n}|\lambda_{i}|^{2}-\left(\sum_{i=1}^{n}|\lambda_{i}|\right)^{2}\right|\leq\alpha(n)(|\lambda_{1}|-|\lambda_{n}|)^{2}.$$
(5)

Since $E_{G_c}(G) = \sum_{i=1}^n |\lambda_i|, \sum_{i=1}^n |\lambda_i|^2 = \sum_{i=1}^n |\lambda_i|^2 = 2m + k$ and $E_{D_c}(G) \leq \sqrt{n(2m+k)}$, the inequality (5) becomes

$$n(2m+k) - (E_{D_c})^2 \le \alpha(n)(|\lambda_1| - |\lambda_n|)^2$$

 $(E_{D_c})^2 \ge 2mn + nk - \alpha(n)(|\lambda_1| - |\lambda_n|)^2.$

Hence equality holds if and only if $\lambda_1 = \lambda_2 = \cdots = \lambda_n$.

Corollary 6. Let G be a graph of order n and size m with $\gamma_c(G) = k$. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be a non-increasing arrangement of eigenvalues of $A_{D_c}(G)$. Then

$$E_{D_c}(G) \ge \sqrt{2mn + nk - \frac{n^2}{4}(|\lambda_1| - |\lambda_n|)^2}.$$
 (6)

Proof. Since $\alpha(n) = n[\frac{n}{2}](1 - \frac{1}{n}[\frac{n}{2}]) \le \frac{n^2}{4}$, therefore by (3), result follows.

Theorem 7. Let G be a graph of order n and size m with $\gamma_c(G) = k$. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be a non-increasing arrangement of eigenvalues of $A_{D_c}(G)$. Then

$$E_{G_c}(G) \ge \frac{|\lambda_1||\lambda_2|n + 2m + k}{|\lambda_1| + |\lambda_n|}. (7)$$

Proof. Let a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n be real numbers for which there exist real constants r and R so that for each $i, i = 1, 2, \dots, n$ holds $ra_i \le b_i \le Ra_i$. Then the following inequality is valid (see [11]).

$$\sum_{i=1}^{n} b_i^2 + rR \sum_{i=1}^{n} a_i^2 \le (r+R) \sum_{i=1}^{n} a_i b_i.$$
 (8)

Equality of (8) holds if and only if, for at least one i, $1 \le i \le n$ holds $ra_i = b_i = Ra_i$. For $b_i := |\lambda_i|$, $a_i := 1$ $r := |\lambda_n|$ and $R := |\lambda_1|$, $i = 1, 2, \dots, n$ inequality (8) becomes

$$\sum_{i=n}^{n} |\lambda_{i}|^{2} + |\lambda_{1}| |\lambda_{n}| \sum_{i=1}^{n} 1 \le (|\lambda_{1}| + |\lambda_{n}|) \sum_{i=1}^{n} |\lambda_{i}|.$$
(9)

Since $\sum_{i=1}^{n} |\lambda_i|^2 = \sum_{i=1}^{n} \lambda_i^2 = 2m + k$, $\sum_{i=1}^{n} |\lambda_i| = E_{D_c}(G)$, from inequality (9),

$$2m+k+|\lambda_1||\lambda_n|n \leq (\lambda_1+\lambda_n)E_{D_c}(G)$$

Hence the result.

Theorem 8. Let G be a graph of order n and size m with $\gamma_c(G) = k$. If $\xi = |det A_{D_c}(G)|$, then

$$E_{D_c}(G) \ge \sqrt{2m + k + n(n-1)\xi^{\frac{2}{n}}}.$$
 (10)

Proof.

$$(E_{D_c}(G))^2 = \left(\sum_{i=1}^n |\lambda_i|\right)^2$$

= $\sum_{i=1}^n |\lambda_i|^2 + \sum_{i \neq j} |\lambda_i| |\lambda_j|.$

Employing the inequality between the arithmetic and geometric means, we obtain

$$rac{1}{n(n-1)}\sum_{i
eq j}|\lambda_i||\lambda_j|\geq \left(\prod_{i
eq j}|\lambda_i||\lambda_j|
ight)^{rac{1}{n(n-1)}}.$$

Thus,

$$(E_{D_G})^2 \ge \sum_{i=1}^n |\lambda_i|^2 + n(n-1) \left(\prod_{i \ne j} |\lambda_i| |\lambda_j| \right)^{\frac{1}{n(n-1)}}$$

$$\ge \sum_{i=1}^n |\lambda_i|^2 + n(n-1) \left(\prod_{i \ne j} |\lambda_i|^{2(n-1)} \right)^{\frac{1}{n(n-1)}}$$

$$= 2m + k + n(n-1) \xi^{\frac{2}{n}}.$$

Lemma 9. If $\lambda_1(G)$ is the largest minimum connected dominating eigenvalue of $A_{D_c}(G)$, then $\lambda_1 \geq \frac{2m+\gamma_c(G)}{n}$

Proof. Let X be any non-zero vector. Then we have $\lambda_1(A) = \max_{X \neq 0} \{\frac{X'AX}{X'X}\}$, see [16]. Therefore, $\lambda_1(A_{D_c}(G)) \geq \frac{J'AJ}{J'J} = \frac{2m + \gamma_c(G)}{n}$.

Next, we obtain Koolen and Moulton's [19] type inequality for $E_{D_c}(G)$.

Theorem 10. If G is a graph of order n and size m and $2m + \gamma_C(G) \ge n$, then

$$E_{D_c}(G) \le \frac{2m + \gamma_c(G)}{n} + \sqrt{(n-1)\left[(2m + \gamma_c(G)) - \left(\frac{2m + \gamma_c(G)}{n}\right)^2\right]}.$$
 (11)

Proof. Bearing in mind the Cauchy-Schwarz inequality,

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i\right)^2 \left(\sum_{i=1}^n b_i\right)^2.$$

Put $a_i = 1$ and $b_i = |\lambda_i|$ then

$$egin{split} \left(\sum_{i=2}^{n}a_{i}b_{i}
ight)^{2} &\leq (n-1)igg(\sum_{i=2}^{n}b_{i}igg)^{2} \ (E_{D_{c}}(G)-\lambda_{1})^{2} &\leq (n-1)(2m+\gamma_{c}(G)-\lambda_{1}^{2}) \ E_{D_{c}}(G) &\leq \lambda_{1}+\sqrt{(n-1)(2m+\gamma_{c}(G)-\lambda_{1}^{2})}. \end{split}$$

Let

$$f(x) = x + \sqrt{(n-1)(2m + \gamma_c(G) - x^2)}.$$
 (12)

For decreasing function

$$\begin{split} f'(x) &\leq 0 \\ \Rightarrow 1 - \frac{x(n-1)}{\sqrt{(n-1)(2m+\gamma_c(G)-x^2)}} &\leq 0 \\ x &\geq \sqrt{\frac{2m+\gamma_c(G)}{n}}. \end{split}$$

Since $(2m+k) \ge n$, we have $\sqrt{\frac{2m+\gamma_c(G)}{n}} \le \frac{2m+\gamma_c(G)}{n} \le \lambda_1$. Also $f(\lambda_1) \le f\left(\frac{2m+\gamma_c(G)}{n}\right)$.

i.e
$$E_{D_c}(G) \leq f(\lambda_1) \leq f\left(rac{2m+\gamma_c(G)}{n}
ight)$$
.
i.e $E_{D_c}(G) \leq f\left(rac{2m+\gamma_c(G)}{n}
ight)$

Hence by (12), the result follows.

4 Graphs with equal Dominating and c-Dominating Energy

Its a natural question to ask that for which graphs the dominating energy and c-dominating energy are equal. To answer this question, we characterize graphs with equal dominating energy and c-dominating energy. The graphs considered in this section are trees, cubic graphs, unicyclic graphs, block graphs and cactus graphs.

Theorem 11. Let G = T be a tree with at least three vertices, then $E_D(G) = E_{D_c}(G)$ if and only if every internal vertex of T is a support vertex.

Proof. Let G = T be a tree of order at least 3. Let $F = \{u_1, u_2, \cdots, u_k\}$ be the set of internal vertices of T. Then clearly F is the minimal dominating set of G. Therefore in $A_D(G)$ the values of $u_i = 1$ in the diagonal entries. Further, observe that $\langle F \rangle$ is connected. Hence F is the minimal connected dominating set. Therefore, $A_D(G) = A_{D_c}(G)$. In general, $A_D(G) = A_{D_c}(G)$ is true if every minimum dominating set is connected. In other words, $A_D(G) = A_{D_c}(G)$ if $\gamma(G) = \gamma_c(G)$. Therefore, the result follows from Theorem 2.1 in [2].

In the next three theorems we characterize unicyclic graphs with $A_D(G) = A_{D_c}(G)$. Since, $A_D(G) = A_{D_c}(G)$ if $\gamma(G) = \gamma_c(G)$. Therefore, the proof of our next three results follows from Theorem 2.2, Theorem 2.4 and Theorem 2.5 in [2].

Theorem 12. Let G be a unicyclic graph with cycle $C = u_1u_2 \cdots , u_nu_1 \ n \ge 5$ and let $X = \{v \in C : d_G(v) \ge 2\}$. Then $E_D(G) = E_{D_c}(G)$ if the following conditions hold:

- 1. (a). Every $v \in V N[X]$ with $d_G(V) \ge 2$ is a support vertex.
- 2. (b). $\langle X \rangle$ is connected and $|X| \leq 3$.
- 3. (c). If $\langle X \rangle = P_1 or P_3$, both vertices in N(X) of degree at least 3 are supports and if $\langle X \rangle = P_2$, at least one vertex in N(X) of degree at least three is a support.

Theorem 13. Let G be unicyclic graph with $|V(G)| \ge 4$ containing a cycle $C = C_3$, and let $X = \{v \in C : d_G(v) = 2\}$. Then $E_D(G) = E_{D_c}(G)$ if the following conditions hold:

- 1. (a). Every $v \in V N[X]$ with $d_G(V) \ge 2$ is a support vertex.
- 2. (b). There exists some unique $v \in C$ with $d_G(v) \ge 3$ or for every $v \in C$ of $d_G(v) \ge 3$ is a support.

Theorem 14. Let G be unicyclic graph with $|V(G)| \ge 5$ containing a cycle $C = C_4$, and let $X = \{v \in C : d_G(v) = 2\}$. Then $E_D(G) = E_{D_c}(G)$ if the following conditions hold:

- 1. (a). Every $v \in V N[X]$ with $d_G(V) \ge 2$ is a support vertex.
- 2. (b). If |X| = 1, all the three remaining vertices of C are supports and if $|X| \ge 2$, C contains at least one support.

Theorem 15. Let G be a connected cubic graph of order n, Then $E_D(G) = E_{D_c}(G)$ if $G \cong K_4, \overline{C_6, K_{3,3}}$, G_1 or G_2 where G_1 and G_2 are given in Fig. 4.

Theorem 16. Let G be a block graph of with $l \ge 2$. Then $E_D(G) = E_{D_c}(G)$ if every cutvertex of G is an end block cutvertex.

Proof. Since $E_D(G) = E_{D_c}(G)$ if $\gamma(G) = \gamma_c(G)$. Therefore, the result follows from Theorem 2 in [7].

We conclude this paper by posing the following open problem for the researchers:

Open Problem: Construct non- cospectral graphs with unequal domination and connected domination numbers having equal dominating energy and c-dominating energy.

References

- [1] C. Adiga, A. Bayad, I. Gutman and S. Srinivas, *The minimum covering energy of a graph*, Kragujevac Journal of Science 34 (2012), 39–56.
- [2] S.Arumugam, J. Paulraj Joseph, On graphs with equal domination and connected domination numbers, Discrete Math. 206 (1999) 45-49.
- [3] A. Aslam, S. Ahmad, M. A. Binyamin, W. Gao, Calculating topological indices of certain OTIS Interconnection networks, Open Chemistry, 2019, 17, 220-228.
- [4] A. Balban, Chemical applications of graph theory, Academic Press (1976).
- [5] R. Bapat, Graphs and Matrices, Hindustan Book Agency (2011).
- [6] M. Biernacki, H. Pidek and C. Ryll-Nardzewski, Sur une inégalité entre des intégrales définies, Univ. Marie Curie-Sktoodowska A4 (1950), 1–4.
- [7] X. Chen, L. Sun and H. Xing, *Characterization of graphs with equal domination and connected domination numbers*, Discrete Math. 289(2004) 129–135.
- [8] C. Coulson and G. Rushbrooke, *Note on the method of molecular orbitals*, Mathematical Proceedings of the Cambridge Philosophical Society 36 (1940), 193–200.
- [9] V. Consonni and R. Todeschini, *New spectral index for molecule description*, MATCH Communications in Mathematical and in Computer Chemistry 60 (2008), 3–14.
- [10] D. Cvetković, P. Rowlinson and S. Simić, Eigenspaces of Graphs, Cambridge University Press (1997).
- [11] J. Diaz and F. Metcalf, Stronger forms of a class of inequalities of G. Pólya-G.Szegö and L. V. Kantorovich, Bulletin of the American Mathematical Society 69 (1963), 415–418.
- [12] W. Gao, Z. Iqbal, M. Ishaq, A. Aslam, R. Sarfraz, Topological aspects of dendrimers via distance based descriptors, IEEE Access, 2019, 7(1), 35619-35630.
- [13] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungszentrum Graz 103 (1978), 1–22.
- [14] I. Gutman and O. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
- [15] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra and its Applications 414 (2006), 29–37.
- [16] F. Harary, Graph Theory, Addison-Wesely, Reading, 1969.
- [17] G. Indulal, I. Gutman and A. Vijayakumar, *On distance energy of graphs*, MATCH Communications in Mathematical and in Computer Chemistry 60 (2008), 461–472.
- [18] M. Jooyandeh, D. Kiani and M. Mirzakhah, *Incidence energy of a graph*, MATCH Communications in Mathematical and in Computer Chemistry 62 (2009), 561–572.
- [19] J. Koolen and V. Moulton, Maximal energy graphs, Advances in Applied Mathematics 26 (2001), 47–52.
- [20] J. Liu and B. Liu, *A Laplacian-energy like invariant of a graph*, MATCH Communications in Mathematical and in Computer Chemistry 59 (2008), 355–372.
- [21] B. McClelland, Properties of the latent roots of a matrix: The estimation of π -electron energies, The Journal of Chemical Physics 54 (1971), 640–643.
- [22] I. Milovanovć, E. Milovanovć and A. Zakić, *A short note on graph energy*, MATCH Communications in Mathematical and in Computer Chemistry 72 (2014), 179–182.

- [23] M. Naeem, M. K. Siddiqui, J. L. G. Guirao, W. Gao, New and modified eccentric indices of octagonal grid O_n^m , 2018, 3, 209-228.
- [24] J. Rada, Energy ordering of catacondensed hexagonal systems, Discrete Applied Mathematics 145 (2005), 437–443.
- [25] M. Rajesh Kanna, B. Dharmendra and G. Sridhara, *The minimum dominating energy of a graph*, International Journal of Pure and Applied Mathematics 85 (2013), 707–718.
- [26] H. Sachs, beziehungen zwischen den in einem graphen enthaltenen kreisen und seinem charakteristischen polynom, Ibid. 11 (1963), 119–134.
- [27] E. Sampathkumar and H. Walikar, *The connected domination number of a graph*, Journal of Mathematical and Physical Sciences 13 (1979), 607–613.
- [28] I. Shparlinski, On the energy of some circulant graphs, Linear Algebra and its Applications 414 (2006), 378–382.
- [29] N. Trinajstić, Chemical graph theory, CRC Press (1992).
- [30] A. R. Virk, M, Quraish, Some invariants of flower graph, Appl. Math. Nonl. Sc., 2018, 3, 427-432
- [31] B. Zhou, *Energy of a graph*, MATCH Communications in Mathematical and in Computer Chemistry 51 (2004), 111–118.