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Abstract
With the development of modern partial differential equation (PDE) theory, the theory of linear PDE is becoming more
and more perfect. Non-linear PDE has become a research hotspot of many mathematicians. In fact, when describing
practical physical problems with PDEs, non-linear problems tend to be more general than linear problems, which are close
to real problems and have practical physical significance. Hyperbolic PDEs are a kind of important PDEs describing the
phenomena of vibration or wave motion. The solution of hyperbolic PDE can be decomposed into the form of multiplica-
tion of vibration and vibration or of exponential function and exponential function. Generally, the energy is infinite. A full
discrete convergence analysis method for non-linear hyperbolic equation based on finite element analysis is proposed. Tak-
ing second-order and fourth-order non-linear hyperbolic equation as examples, the full discrete convergence of non-linear
hyperbolic equation is analysed by finite element method and the super-convergence results are obtained.

Keywords: finite element analysis, nonlinearity, hyperbolic equation, fully discrete, convergence, error

1 Introduction

With the rapid development of science and technology, a variety of differential equation mathematical mod-
els have been pouring out [1,2]. The hyperbolic equation (group) model is one of the most important ones. It has
a wide application background in natural science. It belongs to one-dimensional wave equation describing string
vibration. Similarly, two-dimensional or three-dimensional wave equation can be derived from the vibration of
elastic film or three-dimensional elastomer [4]. In addition, the three-dimensional wave equation can also be
derived for the propagation of acoustic wave or electromagnetic wave. For example, the Maxwell equations de-
scribing electromagnetic fields are curled to simplify the standard vector wave equations [5]. When studying the
propagation of high-frequency electromagnetic waves along transmission lines in time and space, the concepts
of current intensity and voltage between coaxial and double lines of transmission lines can be introduced. They
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can be used as physical quantities to characterise the propagation process of such electromagnetic waves, and
the concepts of resistance and inductance per unit transmission line can be used to describe the characteristics
of dielectrics. According to the law, a set of telegraph equations can be established, which can be simplified to a
standard wave equation without loss [6]. In addition, hydrodynamic problems in aviation, meteorology, ocean,
petroleum exploration and other fields are reduced to solving non-linear hyperbolic partial differential equations
(PDEs; known as conservation laws in foreign literature). The basic difficulty of this kind of equation is that the
solution appears discontinuity. When the solution is solved by high-precision explicit scheme, the oscillation
will occur at the discontinuity [7]. Hyperbolic equations (systems) are widely used in many fields of mathemat-
ical physics and have profound physical background, such as wave equation. Therefore, they have been paid
more attention by mathematicians and engineering technicians. It is necessary to study them comprehensively
and thoroughly both theoretically and numerically [8,9]. In this paper, the full discrete convergence analysis of
the non-linear hyperbolic equation based on finite element analysis is presented. The full discrete convergence
of the non-linear hyperbolic equation is analysed comprehensively [10].

2 Application Theory of Algorithm

2.1 Full Discrete and Convergence Analysis of Second-Order Non-linear Hyperbolic Equations

2.1.1 Question Description

The following mixed problems are considered:
h(x,u)utt −

d
∑

i, j=1

∂

∂xi

(
ai j (x,u) ∂u

∂x j

)
−

d
∑

i=1
bi (x.u)uxi = f (x,u)(x, t) ∈ K× [0,T ]

u(x,0) = 0,ut (x,0) = 0
u(x, t) = 0 (x, t) ∈ ∂K× [0,T ]

(1)

where utt =
∂ 2u
∂ t2 , uxi =

∂u
∂xi

; K is a fully smooth bounded open domain in Rd , and the boundary ∂K is smooth
[11].

For the semi-discrete or fully discrete finite element method of the non-linear hyperbolic equation with only
x or h(x,u)≡ 1 in h(x,u), there are some research results [12,13]. If u is included in h(x,u), the error estimation
will suffer or fail to reach the convergence order [14] when defining the non-linear or predictor–corrector scheme,
and the error equation cannot be obtained by direct weighting method. In this paper, the finite element scheme
of second-order nonsexual hyperbolic equation [15] is defined when h contains u. Question (1) is assumed as
the following: for (x, p) ∈ K×R,
(1) ai j (·, ·) ∈ C2 (K×R);

∣∣ai j (x, p)
∣∣ ≤ C1,[ai j (x, p)]′p,[ai j (x, p)]p2

′′, it is bounded to P. ai j (x, p) = a ji (x, p),
d
∑

i,h=1
ai j (x, p)rir j ≥C0

d
∑

i=1
|ri|2, among them, ∀r = (r1,r2, ...,rd) ∈ Rd .

(2) C2 ≤ h(x, p)≤C3, h(x, p) is Lipschitz continuous with respect to p.
(3) bi (x, p) and [bi (x, p)]′p are bounded [16]. (i = 1,2, ...,d), bi (◦,◦) ∈C1 (K×R).
(4) f (x, p) is Lipschitz continuous with respect to p, f (x,0) ∈ L2 (K).
(5)u, ut ,utt ∈ L∞

(
[0,T ] ;Hm+1∩W 1,∞

)
∩L2

(
[0,T ] ;Hm+1

)
, ut3 ∈ L∞

(
[0,T ] ;H1

)
, ut4 ∈ L∞

(
[0,T ] ;L2

)
, m+1> d

2 ,
m≥ 1.

Let w = ut , then the original question (1) becomes:
h(x,u)wt −

d
∑

i, j=1

∂

∂xi

(
ai j (x,u) ∂u

∂x j

)
−

d
∑

i=1
bi (x.u)uxi = f (x,u)(x, t) ∈ K× [0,T ]

w(x,0) = 0,x ∈ K
w(x, t) = 0 (x, t) ∈ ∂K× [0,T ]

(2)
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The variational equations corresponding to question equation (1) and question equation (2) are:
(h(u)utt ,V )+(a(u)5u,5V ) = (b(u)5u,5V )+( f (u) ,V )∀V ∈ H1

0 (K) , t ∈ [0,T ]
(u(0) ,V ) = (ut (0) ,V ) = 0 x ∈ K

u(·, t) ∈ H1
0 (K) [0,T ]

(3)


(h(u)wtt ,V )+(a(u)5u,5V ) = (b(u)5u,5V )+( f (u) ,V )∀V ∈ H1

0 (K) , t ∈ [0,T ]
(w(0) ,V ) = 0 x ∈ K

w(·, t) ∈ H1
0 (K) t ∈ [0,T ]

(4)

where ( f ,g) =
´

K f (x)g(x)dx; (a(p)5 f ,5g) =
d
∑

i,h=1

´
K ai j (x, p) ∂ f

∂xi

∂g
∂x j

dx, (b(p)5 f ,g) =
d
∑

i=1

(
bi (x, p) ∂ f

∂xi
,g
)

.

For the convenience of calculation, x appearing in the function is omitted, and the intervals [0, T] and region K

appearing in the space are also omitted. Also, ‖ f‖2 = ( f , f ), | f |21 =
d
∑

i=1

∥∥∥ ∂ f
∂xi

∥∥∥2
, ‖ f‖2

1 = ‖ f‖2 + | f |21 ‖·‖1 and |·|1
on H1

0 (K) are norms of the same order.
Let Sh ⊂H1

0 be a finite dimensional subspace with an approximation order of m+1. For ∀V ∪Sh, it satisfies
the usual approximation properties and inverse estimates of ‖V‖L∞≤C4h−

d
2 ‖V‖ and ‖V‖1≤Ch−1 ‖V‖. Elliptic

projection is considered: ũ(x, t) ∈ Sh and t ∈ [0,T ]are solved to satisfy:

(a(u)5u,5V ) = (a(u)5ũ,5V ) ∀V ∈ Sh (5)

For the projection function ũ(x, t), we assume that [3]‖ũ‖L∞, ‖5ũ‖L∞ and
∥∥∥5 ∂ ũ

∂ t

∥∥∥L∞ are uniformly bounded.
At the same time, the regularity results of elliptic equation and the properties of Sh can be obtained [4, 6, 7].

Lemma: if the above assumptions are satisfied, then for p = 2,∞, s = 0, 1 there are:

‖(u− ũ)‖Lp(HS)+‖(u− ũ)t‖Lp(HS)+‖(u− ũ)tt‖Lp(HS) ≤Chm+1−s (6)

The interval [0,T ] is divided into N equal subintervals:0 = t0 < t1 < ... < tN−1 < tN = T · tn+1− tn = ∆t,
Un =U (tn), for the sake of simplicity of writing, the following marks are introduced:

Un+ 1
2 =

1
2
(
Un+1 +Un) ,(5 f n,5V ) =

d

∑
i=1

(
∂ f n

∂xi
,
∂V
∂xi

)
(7)

dtUn =
1
∆t

(
Un+1−Un) ,∂Un =Un+1−Un = ∆tdtUn (8)

∂
2
t Un =

1

(∆t)2

(
Un+1−2Un +Un+1) ,hn (U) = h(Un) (9)

hn+ 1
2 (U) =

1
2
(
hn+1 (U)+hn (U)

)
,EUn+1 = 2Un−Un−1 (10)

_

h
n+1

(U) = h
(
EUn+1) ,_hn+ 1

2
(U) =

1
2

(
_

h
n+1

(U)+hn (u)
)

(11)

Also, let U−u=U− ũ+ ũ−u= a+Z, a=U− ũ, Z = ũ−u, w= ut , w̃= ũt , W−w=W−w̃+w̃−w= θ +d,
θ =W − w̃, d = w̃−w.

Question (1) is defined as:

(h(U)n)∂
2
t +(a(Un)5Un,5V )+λ

(
5
(
Un+1−2Un +Un−1) ,5V

)
= (b(Un)5Un,V )+( f (Un) ,V )∀V ∈ Sh

(12)
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2.1.2 Fully Discrete Convergence Analysis of Second-Order Non-linear Hyperbolic Equations based on
Finite Element Analysis

It is known that the solution of the equation (12) is unique. The error equation is obtained from equations
(12), (10), (8) and (6):(

h(Un)∂
2
t an,V

)
+(a(Un)5an,5V )+λ

(
5
(
an+1−2an +an−1) ,5V

)
= (An,V )− (Bn,5V )− (Cn,5V )+(Dn,V )

(13)
where

An = h(Un)
(
un

tt0−∂
2
t un)+un

tt
[
h(un)−h(Un)∂

2
t Zn + f (Un)− f (un)

]
(14)

Bn = [a(Un)−a(un)]5ũn (15)

Cn = λ5
(
Zn+1−2Zn +Zn−1)+λ5

(
un+1−2un +un−1) (16)

Dn = [b(Un)5an +(b(Un)−b(un))5ũn]+b(un)5Zn = Dn
1 +Dn

2 (17)

Let Q =
∥∥∥ ∂ ũ

∂ t

∥∥∥L∞ (L∞)+ 1, ∆t,h are taken to satisfy C4C5(∆t)2h−
d
2 ≤ Q. According to (1.10) and inverse

estimates, it can be seen that
∥∥dta0

∥∥
L∞ ≤ Q,

∥∥dtU0
∥∥

L∞ ≤ 2Q.
If inductive assumption max

0≤n≤M−2
‖dtan‖L∞ ≤ Q, then max

0≤n≤M−2
‖dtUn‖L∞ ≤ 2Q.

Taking the test function V = an+1−an−1 = ∂ 2
t an + ∂ 2

t an−1 = ∆t
(
dtan +dtan−1

)
, it can rewrite or estimate

the two ends of the error equation.(
h(Un)∂ 2

t an,V
)
= (h(Un)dtan,dtan)−

(
h(Un)dtan−1,dtan−1

)
=
[(

h(Un)dtan−1,dtan−1
)

−
(
h
(
Un−1

)
dtan−1,dtan−1

)]
−
(
h(Un)−h

(
Un−1

)
dtan−1,dtan−1

) (18)

It is known

|An +Dn
1| ≤C∆t(||an||21 + ||Zn||2)+ |||dtan||2 + ||dtan−1||2 + ||∂ 2

t Zn||2 (19)

The following estimates are highlighted:

B =
(
[a(Un)−a(un)]5ũn.5

(
an+1−an−1)) (20)

Be aware:
M−1

∑
n=1

B(1)
1 =

([
a
(
UM)−a

(
uM)]5ũM,5aM)− ([a(U1)−a

(
u1)]5ũ1,5a1) (21)

And UM−uM = a1 +Z1 +∆t
M−1
∑

n=1
(dtan +dtZn). We can get:

∣∣∣∣∣M−1

∑
n=1

B(1)
1

∣∣∣∣∣≤C∆t
M−1

∑
n=1

(
‖dtan‖2 +‖dtZn‖2

)
+X

∥∥aM
∥∥2

1 +C
(∥∥Z1∥∥2

+
∥∥a1∥∥2

1

)
(22)

Similar estimates can be obtained as follows:∣∣∣∣∣M−1

∑
n=1

B(1)
1

∣∣∣∣∣≤C∆t
M−1

∑
n=1

(
‖dtan‖2 +‖dtZn‖2 +‖an‖2

1 +
∥∥an+1∥∥2

1 +‖Z
n‖2 +

∥∥Zn+1∥∥2
)
+X

∥∥aM
∥∥2

1+C
(∥∥a1∥∥2

+
∥∥Z1∥∥2

)
(23)
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Using inverse estimation and distribution integral, it can get:∣∣(Cn,5
(
an+1−an+1

))∣∣≤C∆t
[
(∆t)4h−2

]∥∥∂ 2
t Zn
∥∥2

1 +(∆t)4 +‖dtan‖2 +
∥∥dtan−1

∥∥∣∣∣∣ M
∑

n=1

(
bi (un)Zn

x ,a
n+1−an−1

)∣∣∣∣≤ ∣∣∣∣ M
∑

n=1

(
bi (un)Zn

x ,a
n+1−an−1

)∣∣∣∣+2
∣∣∣∣(bi

(
uM−1

)
ZM−1,aM− 1

2
x

)
−
(

bi
(
u1
)

Z1,a
1
2
x

)
−∆t

M−1
∑

n=2

(
bi (un) Zn−Zn−1

∆t

)∣∣∣∣+Zn−1 bt(un)−bt(un−1)
∆t , an− 1

2
x

∣∣∣∣
≤C∆t

M
∑

n=1

(
‖Zn‖2 +‖dtan‖2 +

∥∥dtan−1
∥∥2

+X
(∥∥aM

∥∥2
1 +
∥∥aM−1

∥∥2
1

))
+C
(∥∥ZM−1

∥∥2
+
∥∥Z1
∥∥2

+
∥∥∥a

1
2

∥∥∥2

1
+C∆t

M−1
∑

n=2

(∥∥dtZn−1
∥∥2
)
+
∥∥Zn−1

∥∥2
+
∥∥∥a

1
2

∥∥∥2

1

)
(24)

It is noticed that m≥ 1, (∆t)2 = O
(
hm+1

)
, the lemma shows that:

∥∥ZM−1∥∥2
+
∥∥ZM

∥∥2
+C∆t

M−1

∑
n=1

(
‖Zn‖2 +

∥∥Zn+1∥∥2
+‖dtZn‖2 +

∥∥Zn−1∥∥2
+(∆t)4h−2∥∥∂

2
t Zn
∥∥2

1

)
≤Ch2m+2 (25)

For error equation, the sum can be solved from n=1,2, ...,M− 1, and it is noted that
∥∥a0
∥∥

1 = 0,
∥∥a1
∥∥

1 +∥∥dta0
∥∥≤C(∆t)2. Using inductive hypothesis and the above estimates, we can get:

C2
∥∥dtaM−1

∥∥2
+
(
a
(
UM−1

)
5aM−1,5aM

)
+λ

∣∣aM−aM−1
∣∣2
1 ≤C

(
h2m+2 +(∆t)4

)
+2X

(∥∥aM
∥∥2

+
∥∥aM−1

∥∥2
)
+C∆t

M−1
∑

n=1

(
‖dtan‖2 +‖an‖2

1 +
∥∥an+1

∥∥2
1

) (26)

If λ > dC1
4 , V = min

{
λ − dC1

4 , C0
4

}
> 0, so:

λ
∣∣aM−aM−1∣∣2

1 +
(
a
(
UM−1)5aM)≥V

(∣∣aM−aM−1∣∣2
1 +
∣∣aM +aM−1∣∣2

1

)
≥C

(∥∥aM
∥∥2

1 +
∥∥aM−1∥∥2

1

)
(27)

If ∆t,X is appropriately small, the Gronwall inequality can be applied to equation (27):∥∥dtaM−1∥∥2
+
∥∥aM

∥∥2
1 +
∥∥aM−1∥∥2

1 ≤C
(
(∆t)4 +h2m+2

)
(28)

It can be seen immediately that h,∆t is sufficiently small and max
0≤n≤M−1

‖dtan‖L∞ ≤ Q, so the inductive hy-

pothesis holds for m = N - 1 [18].
Theorem: If ai j, bi, f, h and u satisfy the above conditions, m+1 > d

2 , m≥ 1, λ ≥ dC1
4 , then when h, ∆t are

sufficiently small:

max
0≤n≤M−1

{∥∥∥dt(U−u)n−1
∥∥∥+∥∥∥(U−u)n− 1

2

∥∥∥+h
∥∥∥(U−u)n− 1

2

∥∥∥
1

}
≤C

(
hm+1 +(∆t)2

)
(29)

If the super-convergence analysis is completed by V = Un+1−Un−1 in the question (1), then the question
(1) is stable.

2.2 Fully Discrete Convergence Analysis of Fourth-Order Non-linear Hyperbolic Equations

2.2.1 Question Description

The following fourth-order non-linear hyperbolic equations are considered:
utt + γ∆2u−∆ut + f (u) = 0,(X , t) ∈Ω× (0,T ]

u(X , t) = ∆u(X , t) = 0,(X , t) ∈ ∂Ω× (0,T ]
u(X ,0) = u0 (X) ,ut (X ,0) = u1 (X) ,X ∈Ω

(30)
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where Ω ∈ R2is a bounded convex polygon region with Lipschitz continuous boundary, ∂Ω is the boundary of
Ω, T ∈ (0,+∞), γ is a positive fixed value, X = (x,y), f (u) is a global Lipschitz continuous about u, that is,
there exists a constant C greater than 0. Let

| f (u1)− f (u2)| ≤C |u1−u2| (31)

In this paper, W m,p is used to denote the usual Sobolev spaces, whose norms and seminorms are denoted as
‖·‖m,p and |·|m,p, respectively. Especially when p = 2, W m,p is denoted as Hm (Ω), and the corresponding norms
and seminorms are denoted as ‖·‖m and |·|m.

‖ϕ‖L∞(0,Y ;HK(Ω)) /‖ϕ‖HK(Ω),‖ϕ‖L2(0,Y ;HK(Ω)) /

(ˆ t

0
‖ϕ‖2

HK(Ω)ds
) 1

2

(32)

2.2.2 Fully Discrete Convergence Analysis of Fourth-Order Non-linear Hyperbolic Equations based on
Finite Element Analysis

Let ~p =−∇u, v = ∇ ·~p, then the problem equation (30) is equivalent to the following problem:
utt + γ∆v+ v+ vt + f (u) = 0,(X , t) ∈Ω× (0,T ]

v−∇ ·~p = 0,(X , t) ∈Ω× (0,T ]
~p+∇u = 0,(X , t) ∈Ω× (0,T ]

u(X , t) = v(X , t) = 0,(X , t) ∈ ∂Ω× (0,T ]
u(X ,0) = u0,ut (X ,0) = u1,X ∈Ω

(33)

The variational question of equation (30) is to find {u,v,~p} [0,T ]→ H1
0 (Ω)×H1

0 (Ω)×
(
L2 (Ω)

)2 so that:
(utt ,φ) = γ (∇v,∇φ)+(v,φ)+( f (u) ,φ) = 0,∀φ ∈ H1

0 (Ω)
(v,χ)+(~p,∇χ) = 0,∀φ ∈ H1

0 (Ω)

(~p,~w)+(∇u,~w) = 0,∀~w ∈
(
L2 (Ω)

)2

u(X ,0) = u0,ut (X ,0) = u1,X ∈Ω

(34)

Considering the semi-discrete scheme of equation (34), {uh,vh,~ph} : [0,T ]→Mh×Mh× ~Wh is obtained, so
that: 

(uhtt ,φh)+ γ (∇vh,∇φh)+(vh,φh)+(vht ,φh)+( f (uh) ,φh) = 0,∀φh ∈Mh
(vh,χh)+(~ph,∇χh) = 0,∀χh ∈Mh

(~ph,~wh)+(∇uh,~wh) = 0,∀~wh ∈ ~Wh
uh (0) = Rhu0,uht (0) = Rhu1,X ∈Ω

uh (0) =
_

Rh (−∇u0) ,X ∈Ω

(35)

It is easy to verify that equation (35) has unique solutions. The super-approximation and super-convergence
results of mixed element solutions are given in the semi-discrete scheme [19].
Theorem 1: Supposing that {u,v,~p} and {uh,vh,~ph} are the solutions of equation (30) and equation (35), respec-
tively. When u,v ∈ H3 (Ω), utt , vt , vtt ∈ H2 (Ω), ~p ∈

(
H2 (Ω)

)2, there are the following super-approximation
properties:

‖Ihu−uh‖1 ≤Ch2

[
‖u‖3 +

(ˆ t

0
R2ds

) 1
2
]

(36)

‖Ihv− vh‖1 ≤Ch2

[
‖v‖3 +

(
‖v‖2

2 +

ˆ t

0
R1ds

) 1
2
]

(37)
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‖Πh~p−~ph‖0 ≤Ch2

[
‖~p‖2 +‖v‖3 +

(ˆ t

0
R2ds

) 1
2
]

(38)

where R1 = ‖u‖2
2 +‖utt‖2

2 +‖v‖
2
2 +‖vtt‖2

2 ,R2 = ‖vt‖2
2 +R1.

Let:
u−uh = (u−Rhu)+(Rhu−uh) = η +ξ (39)

v− vh =
(

v−
_

Rhv
)
+
(

_

Rhv− vh

)
= τ + τ (40)

~p−~ph =
(
~p−

_

Rh~p
)
+
(

_

Rh~p−~ph

)
=~p+~θ (41)

From equations (30) and (35), the following error equation can be obtained:
(ξtt ,φh)+ γ (∇τ,∇φh)+(τ,φh)+(τt ,φh)

= (ηtt ,φh)− (τ,φh)− (τt ,φh)− ( f (u)− f (uh) ,φh)

(τ,χh)+
(
~θ ,∇χh

)
=−(τ,χh)(

~θ ,~wh

)
+(∇ξ ,~wh) = 0

(42)

In equation (42), φh = τt in formula 1, and for t in the second and third formulas, derivatives are obtained.
And then χh = ξtt and ~wh = ∇ξtt , respectively, there are:

(ξtt ,τt)+ γ (∇τ,∇τt)+(τ,τt)+(τt ,τt)
=−(ηtt ,τt)− (τ,τt)− (τt ,τt)− ( f (u)− f (uh) ,τt)

(τt ,ξtt)+
(
~θt ,∇ξtt

)
=−(τ,ξtt)(

~θt ,∇ξtt

)
+(∇ξt ,∇ξtt) = 0

(43)

According to equation (43):

1
2

d
dt ‖∇ξt‖2

0 +
γ

2
d
dt ‖∇τ‖2

0 +
1
2

d
dt ‖τ‖

2
0 +‖τ‖

2
0

=−(ηtt ,τt)− (r,τt)− (rt ,τt)− ( f (u)− f (uh) ,τt)+(τt ,ξtt) =
5
∑

i=1
Ai

(44)

Let estimate Ai (i = 1,2, ...,5) in turn.
Using Schwarz inequality, Young inequality and interpolation theory, the following conclusions are ob-

tained:
2

∑
i=1

Ai ≤C (‖ηtt‖0 +‖r‖0)‖τt‖0 ≤Ch4
(
‖utt‖2

2 +‖vtt‖2
2

)
+

1
2
‖τt‖2

2 (45)

Since f satisfies the Lipschitz condition, there are:

A4 ≤C‖u−uh‖0‖τt‖0 ≤C
(
‖ξ‖2

0 +h4 ‖u‖2
2 +

1
2
‖τt‖2

0

)
(46)

Using derivative transfer techniques, there are:

A3 = (rtt ,τ)−
d
dt

(rt ,τ)≤C
(

h4 ‖vtt‖2
2 +‖τ‖

2
0

)
− d

dt
(rt ,τ) (47)

A5 = (rtt ,ξt)+
d
dt

(rt ,ξt)≤C
(

h4 ‖vtt‖2
2 +‖ξt‖2

0

)
− d

dt
(rt ,ξt) (48)
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By introducing the above estimates of Ai into equation (44), we can obtain that:

min{1,γ}
2

d
dt

(
‖ξt‖2

1 +‖τ‖
2
1

)
≤Ch4

(
‖u‖2

2 +‖utt‖2
2 +‖v‖

2
2 +‖utt‖2

2

)
+C
(
‖ξ‖2

0 +‖ξt‖2
0 +‖τ‖

2
0

)
− d

dt [(rt ,τ)− (rt ,ξt)]
(49)

The two ends of the equation are multiplied by 2
min{1,γ} , and then integrated from 0 to t. It is noted that

τ (0) = ξt (0) = ξ (0) = 0, ‖ξ‖2
0 ≤ C

´ t
0 ‖ξt‖2

0ds, and then according to inequality
´ t

0

´ s
0 ϕ2dsdτ ≤ C

´ t
0 ϕ2ds,

there are:
‖ξt‖2

1 +‖τ‖
2
1 ≤Ch4

´ t
0

(
‖u‖2

2 +‖utt‖2
2 +‖v‖

2
2 +‖utt‖2

2

)
ds

+C
´ t

0

(
‖τ‖2

1 +‖ξt‖2
1 +‖ξ‖

2
0

)
ds− 1

min{1,γ} [(rt ,τ)− (ξt)]

≤Ch4
[
‖vt‖2

2 +
´ t

0

(
‖u‖2

2 +‖utt‖2
2 +‖v‖

2
2 +‖utt‖2

2

)
ds
]

+C
´ t

0

(
‖τ‖2

1 +‖ξt‖2
1

)
ds+ 1

2

(
‖τ‖2

1 +‖ξt‖2
1

) (50)

The Gronwall inequality is used to obtain:

‖ξt‖1 +‖τ‖ 1 ≤Ch2
(
‖vt‖2

2 +

ˆ t

0
R1ds

) 1
2

(51)

On the other hand, if it is noticed that ξ (0) = ∇ξ (0) = 0, it can get from ‖ξ‖2
1 ≤C

´ t
0 ‖ξt‖2

1ds:

‖ξ‖2
1 ≤C

ˆ t

0
‖ξt‖2

1ds≤Ch4
[ˆ t

0

(
‖vt‖2

2 +

ˆ s

0
R1dτ

)
≤Ch4

ˆ t

0
R2ds

]
(52)

Namely:

‖ξ‖1 ≤Ch2
(ˆ t

0
R2ds

) 1
2

(53)

In the third form of equation (42), ~wh = ~θ is obtained from Schwarz inequality.∥∥∥~θ∥∥∥2

0
=
(
~θ ,~θ

)
=−

(
∇ξ ,~θ

)
≤C

∥∥∥∇ξ ‖0‖ ~θ
∥∥∥∥∥∥ 0 (54)

According to equation (54), there are:

∥∥∥~θ∥∥∥
0
<C‖ξ‖1 ≤Ch2

(ˆ t

0
R2ds

) 1
2

(55)

By using the trigonometric inequality, it can obtain:

‖Ihu−uh‖1 ≤C (‖Ihu−Rhu‖1 +‖Rhu−uh‖1)≤Ch2

[
‖u‖3 +

(ˆ t

0
R2ds

) 1
2
]

(56)

The theorem is proved.
In order to obtain global super-convergence, the adjacent four elements are merged into one large element

processing operators I2
2h and Π2

2h: 
I2
2hIhu = I2

2hu,∀u ∈ H2 (Ω)∥∥I2
2hu−u

∥∥
1 ≤Ch2‖u‖3,∀u ∈ H3 (Ω)∥∥I2

2huh
∥∥

1 ≤C‖uh‖1,∀uh ∈Mh

(57)
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Π2

2hΠh~p = Π2
2h~p,∀~p ∈ (H2(Ω))2∥∥Π2

2h~p−~p0
∥∥

0 ≤Ch2‖~p‖2,∀~p ∈ (H2 (Ω))2∥∥Π2
2h~ph

∥∥
0 ≤C‖~ph‖1,∀~ph ∈ ~Wh

(58)

Combining theorem 1 and the properties of operators above, the global super-convergence results can be
obtained as follows.
Theorem 2: Under the condition of Theorem 1, there are:

∥∥I2
2huh−u

∥∥
1 ≤Ch2

[
‖u‖3 +

(ˆ t

0
R2ds

) 1
2
]

(59)

∥∥I2
2hvh− v

∥∥
1 ≤Ch2

[
‖v‖3 +

(
‖vt‖2

2 +

ˆ t

0
R1ds

) 1
2
]

(60)

∥∥Π
2
2h~ph−~p

∥∥
0 ≤Ch2

[
‖~p‖2 +

(
‖v‖3 +

ˆ t

0
R2ds

) 1
2
]

(61)

It is proved that: According to equations (36) and (57), using trigonometric inequalities, the following results
are obtained: ∥∥I2

2huh−u
∥∥

1 =
∥∥I2

2huh− I2
2hIhu+ I2

2hIhu−u
∥∥

1
≤C‖uh− Ihu‖1 +C

∥∥I2
2hu−u

∥∥
1

≤C‖uh− Ihu‖1 +Ch2‖u‖3

≤Ch2
[
‖u‖3 +

(´ t
0 R2ds

) 1
2
] (62)

According to equation (57) and equation (37), using trigonometric inequalities, similar proofs can be ob-
tained as follows: ∥∥I2

2hvh− v
∥∥

1 =Ch2

[
‖v‖3 +

(
‖vt‖2

2 +

ˆ t

0
R1ds

) 1
2
]

(63)

According to equations (58) and (38), the triangular inequality is used to obtain:∥∥Π2
2h~ph−~p

∥∥
0 =

∥∥Π2
2h~ph−Π2

2hΠh~p+Π2
2hΠh~p−~p

∥∥
0

≤C‖~ph−Πh~p‖0 +C
∥∥Π2

2h~p−~p
∥∥

0
≤C‖~ph−Πh~p‖0 +Ch2‖~p‖2

≤Ch2
[
‖~p‖2 +‖v‖3 +

(´ t
0 R2ds

) 1
2
] (64)

The theorem can be proved.
Note 1: If interpolation is used directly and the high precision results of bilinear elements Q11 and Q10×Q10
are used, and the reciprocal transfer technique of time t is used, when u,ut ,utt ,v,vt ∈ H3 (Ω), vtt ∈ H2 (Ω)v and
~p ∈

(
H2 (Ω)

)2, the following super-approximation results are obtained:

‖Ihu−uh‖1 ≤Ch2
[ˆ t

0

(
‖u‖2

2 +‖utt‖2
3 +‖vt‖2

3 +‖vtt‖2
2 +‖ut‖2

3 +‖v‖
2
3

)
ds
] 1

2

(65)

‖Ihu−uh‖1 ≤Ch2
[
‖ut‖2

2 +‖vt‖2
3 +‖v‖

2
3 +

ˆ t

0

(
‖u‖2

2 +‖utt‖2
3 +‖v‖

2
3 +‖vt‖2

3 +‖vtt‖2
2

)
ds
] 1

2

(66)

‖Πh~p−~ph‖0 ≤Ch2

[
‖~p‖2 +‖u‖3 +

[ˆ t

0

(
‖u‖2

2 +‖utt‖2
3 +‖vt‖2

3 +‖vtt‖2
3 +‖vt‖2

3 +‖v‖
2
3

)
ds
] 1

2
]

(67)
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Compared with theorem 1, we can see that the method of combining interpolation with projection is used to
reduce the smoothness of ut ,utt ,vt .
Note 2: Many well-known incompatible elements can be verified, such as EQrot

1 elements in rectangular meshes,
Qrot

1 elements in square meshes or constrained rotating Q1 elements (equivalent to P1 incompatible elements in
rectangular meshes), because their compatibility errors can only be estimated as follows:

∑
K∈Γh

ˆ
∂K

∂v
∂n

φhds = O
(
h2)‖v‖3‖φh‖h = O(h)‖v‖3‖φh‖0,φh ∈Mh (68)

where ‖·‖h =

(
∑
K
|·|21,K

) 1
2

is a module on ,Mh so the result of Theorem 1 cannot be obtained up to now. However,

under the condition of theorem 1, if the condition vt ∈H3 (Ω), ~pt ∈
(
H2 (Ω)

)2 is added, the super-approximation
results with O

(
h2
)

orders in semi-discrete scheme can also be obtained by using the derivative transfer tech-
nique. The total degree of freedom of the mixed element scheme given here is only 4NP (where NP is the
number of all nodes in the partition of Ω) [20].

3 Conclusions

Hyperbolic PDEs are PDEs describing vibration or wave phenomena. One of its typical examples is the
wave equation and the wave equation when n = 1. It can be used to describe the small transverse vibration of
string, which is called string vibration equation. This is the first PDE to be systematically studied. In the process
of neural propagation, neural transmission signals and the rate of change in time and space are mathematically
represented as a class of initial boundary value problems for non-linear quasi-hyperbolic equations. The non-
linear hyperbolic equation is a new type of non-linear evolution equation with profound physical background.
In this paper, the full discrete convergence analysis method of non-linear hyperbolic equation based on finite
element analysis is used to analyse the full discrete convergence of second-order and fourth-order non-linear
hyperbolic equation and obtain the super-convergence results. There is a certain value in the study of non-linear
hyperbolic equation.
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