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Abstract
This paper is on the solutions of a fuzzy problem with triangular fuzzy number initial values by fuzzy Laplace transform.
In this paper, the properties of fuzzy Laplace transform, generalized differentiability and fuzzy arithmetic are used. The
example is solved in relation to the studied problem. Conclusions are given.
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1 Introduction

Many researchers study fuzzy logic [1,2]. Zadeh [3] and Dubois and Prade [4] introduced fuzzy number and
fuzzy arithmetic. Also, Kandel and Byatt [5] introduced the term ”fuzzy differential equation”. Firstly, Chang
and Zadeh introduced the concept of fuzzy derivative [6]. Dubois and Prade [7] followed up their approach.
Other methods were studied in several papers [8–12].

Fuzzy differential equations are important topic many fields. For example, population models [13] , civil
engineering [14], population dynamics model [15], growth model [16].

To solve fuzzy differential equation is useful by fuzzy Laplace transform. Firstly, Allahviranloo and Ahmadi
introduced fuzzy Laplace transform [17]. To solve problems in many areas of fuzzy differential equation, fuzzy
Laplace transform was used in many papers [18–22].

In this paper, the solutions of a fuzzy problem with triangular fuzzy number initial values are investigated
by fuzzy Laplace transform. Generalized differentiability, fuzzy arithmetic are used. Purpose of this study is to
investigate solutions using fuzzy Laplace transform for the studied problem.

It is given in section 2 preliminaries, in section 3 findings and main results, in section 4 conclusions.

†Corresponding author, hulyagultekin55@hotmail.com, hulya.citil@giresun.edu.tr

ISSN 2444-8656 doi:10.2478/AMNS.2019.2.00039

https://www.sciendo.com
http://dx.doi.org/10.2478/AMNS.2019.2.00039
https://www.sciendo.com
http://crossmark.crossref.org/dialog/?doi=10.2478/AMNS.2019.2.00039


408 Hülya Gültekin Çitil. Applied Mathematics and Nonlinear Sciences 4(2019) 407–416

2 Preliminaries

Definition 1. [23] A fuzzy number is a mapping u : R→ [0,1] satisfying the properties {x ∈ R | u(x)> 0} is
compact, u is normal, u is convex fuzzy set, u is upper semi-continuous on R.

Let RF show the set of all fuzzy numbers.

Definition 2. [24] Let be u ∈RF . [u]α = [uα ,uα ] = {x ∈ R | u(x)≥ α} ,0 < α ≤ 1 is α-level set of u. If α = 0,
[u]0 = cl {suppu}= cl {x ∈ R | u(x)> 0} .

Remark 1. [24] The parametric form [uα ,uα ] of a fuzzy number satisfying the following requirements is a
valid α-level set.

uα is left-continuous monotonic increasing (nondecreasing) bounded on (0,1],
uα is left-continuous monotonic decreasing (nonincreasing) bounded on (0,1],
uα and uα are right-continuous for α = 0,
uα ≤ uα , 0≤ α ≤ 1.

Definition 3. [23] The α- level set of A, [A]α =
[
Aα ,Aα

]
=
[
a+
(

a−a
2

)
α,a−

(
a−a

2

)
α

]
(A1 = A1, A1−Aα =

Aα −A1) is a symmetric triangular fuzzy number with support [a,a].

Definition 4. [8, 24, 25] Let be u,v ∈ RF . If u = v+w such that there exists w ∈ RF , w is the Hukuhara
difference of u and v, w = u	 v.

Definition 5. [24–26] Let be f : [a,b]→ RF and x0 ∈ [a,b] . If there exists f
′
(x0) ∈ RF such that for all h > 0

sufficiently small, ∃ f (x0 +h)	 f (x0) , f (x0)	 f (x0−h) and the limits hold

lim
h→0

f (x0 +h)	 f (x0)

h
= lim

h→0

f (x0)	 f (x0−h)
h

= f
′
(x0) ,

f is Hukuhara differentiable at x0.

Definition 6. [24] Let be f : [a,b]→ RF and x0 ∈ [a,b] . If there exists f
′
(x0) ∈ RF such that for all h > 0

sufficiently small, ∃ f (x0 +h)	 f (x0) , f (x0)	 f (x0−h) and the limits hold

lim
h→0

f (x0 +h)	 f (x0)

h
= lim

h→0

f (x0)	 f (x0−h)
h

= f
′
(x0) ,

f is (1)-differentiable at x0. If there exists f
′
(x0) ∈ RF such that for all h > 0 sufficiently small, ∃ f (x0)	

f (x0 +h) , f (x0−h)	 f (x0) and the limits hold

lim
h→0

f (x0)	 f (x0 +h)
−h

= lim
h→0

f (x0−h)	 f (x0)

−h
= f

′
(x0) ,

f is (2)-differentiable.

Theorem 1. [27]Let f : [a,b]→ RF be fuzzy function and denote [ f (x)]α =
[

f
α
(x) , f α (x)

]
, for each α ∈

[0,1] .
(i) If the function f is (1)-differentiable, the lower function f

α
and the upper function f α are differentiable,[

f
′
(x)
]α

=
[

f
′

α
(x) , f

′

α (x)
]
,

(ii) If the function f is (2)-differentiable, the lower function f
α

and the upper function f α are differentiable,[
f
′
(x)
]α

=
[

f
′

α (x) , f
′

α
(x)
]
.
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Theorem 2. [27]Let f
′
: [a,b]→ RF be fuzzy function and denote [ f (x)]α =

[
f

α
(x) , f α (x)

]
, for each α ∈

[0,1] , the function f is (1)-differentiable or (2)-differentiable.

(i) If the functions f and f
′

are (1)-differentiable, the functions f
′

α
and f

′

α are differentiable,
[

f
′′
(x)
]α

=[
f
′′

α
(x) , f

′′

α (x)
]
,

(ii) If the function f is (1)-differentiable and the function f
′
is (2)-differentiable, the functions f

′

α
and f

′

α are

differentiable,
[

f
′′
(x)
]α

=

[
f
′′

α (x) , f
′′

α
(x)
]
,

(iii) If the function f is (2)-differentiable and the function f
′
is (1)-differentiable, the functions f

′

α
and f

′

α are

differentiable,
[

f
′′
(x)
]α

=

[
f
′′

α (x) , f
′′

α
(x)
]
,

(iv) If the functions f and f
′

are (2)-differentiable, the functions f
′

α
and f

′

α are differentiable,
[

f
′′
(x)
]α

=[
f
′′

α
(x) , f

′′

α (x)
]
.

Definition 7. [18, 19] Let f : [a,b]→ RF be fuzzy function. The fuzzy Laplace transform of f is

F (s) = L( f (t)) =

∞̂

0

e−st f (t)dt =

 lim
τ→∞

τ̂

0

e−st f (t)dt, lim
τ→∞

τ̂

0

e−st f (t)dt

 ,
F (s,α) = L

(
( f (t))α

)
=
[
L
(

f
α
(t)
)
,L
(

f α (t)
)]

,

L
(

f
α
(t)
)
=

∞̂

0

e−st f
α
(t)dt = lim

τ→∞

τ̂

0

e−st f
α
(t)dt,

L
(

f α (t)
)
=

∞̂

0

e−st f α (t)dt = lim
τ→∞

τ̂

0

e−st f α (t)dt.

Theorem 3. [18, 19]Suppose that f is continuous fuzzy-valued function on [0,∞) and exponential order α and
that f

′
is piecewise continuous fuzzy-valued function on [0,∞) .

If the function f is (1) differentiable,

L
(

f
′
(t)
)
= sL( f (t))	 f (0) ,

if the function f is (2) differentiable,

L
(

f
′
(t)
)
= (− f (0))	 (−sL( f (t))) .

Theorem 4. [18, 19]Suppose that f and f
′

are continuous fuzzy-valued functions on [0,∞) and exponential
order α and that f

′′
is piecewise continuous fuzzy-valued function on [0,∞) .

If the functions f and f
′
are (1) differentiable,

L
(

f
′′
(t)
)
= s2L( f (t))	 s f (0)	 f

′
(0) ,

if the function f is (1) differentiable and the function f
′
is (2) differentiable,

L
(

f
′′
(t)
)
=− f

′
(0)	

(
−s2)L( f (t))− s f (0) ,
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if the function f is (2) differentiable and the function f
′
is (1) differentiable,

L
(

f
′′
(t)
)
=−s f (0)	

(
−s2)L( f (t))	 f

′
(0) ,

if the functions f and f
′
are (2) differentiable,

L
(

f
′′
(t)
)
= s2L( f (t))	 s f (0)− f

′
(0) .

Theorem 5. [17, 19]Let be f (t), g(t) continuous fuzzy-valued functions and c1 and c2 constants, then

L(c1 f (t)+ c2g(t)) = (c1L( f (t)))+(c2L(g(t))) .

3 Findings and Main Results

We study the problem
u′′(t)+u(t) = [A]α , t > 0 (3.1)

u(0) = [B]α , u
′
(0) = [C]α (3.2)

by the fuzzy Laplace transform, where A, B and C are symmetric triangular fuzzy numbers with supports [a,a],
[b,b] and [c,c], respectively. Also, the α−level sets of A, B, C are

[A]α =
[
Aα ,Aα

]
=

[
a+
(

a−a
2

)
α,a−

(
a−a

2

)
α

]
,

[B]α =
[
Bα ,Bα

]
=

[
b+
(

b−b
2

)
α,b−

(
b−b

2

)
α

]
,

[C]α =
[
Cα ,Cα

]
=

[
c+
(

c− c
2

)
α,c−

(
c− c

2

)
α

]
.

In this paper, (i,j) solution means that u is (i) differentiable, u
′
is (j) differentiable.

Case 1) If u and u
′
are (1) differentiable, since

s2L(uα (t))	 suα (0)	u
′
α (0)+L(uα (t)) = L

(
[A]α

)
,

and using the fuzzy arithmetic and Hukuhara difference, yields the equations

s2L(uα (t))− suα (0)−u
′
α (0)+L(uα (t)) = L(Aα) ,

s2L(uα (t))− suα (0)−u
′
α (0)+L(uα (t)) = L

(
Aα

)
.

Using the initial values, we get

L(uα (t)) =
Aα

s(s2 +1)
+

sBα

s2 +1
+

Cα

s2 +1
,

L(uα (t)) =
Aα

s(s2 +1)
+

sBα

s2 +1
+

Cα

s2 +1
.

From this, taking the inverse Laplace transform of the above equations, the lower solution and the upper
solution are obtained as

uα (t) = Aα (1− cos(t))+Bα cos(t)+Cα sin(t) ,
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uα (t) = Aα (1− cos(t))+Bα cos(t)+Cα sin(t) .

Case 2) If u is (1) differentiable and u
′
is (2) differentiable, since

−u
′
α (0)	

(
−s2)L(uα (t))− suα (0)+L(uα (t)) = L

(
[A]α

)
,

and using the fuzzy arithmetic and Hukuhara difference, the equations

−u
′
α (0)−

(
−s2L(uα (t))

)
− suα (0)+L(uα (t)) = L(Aα) , (3.3)

−u
′
α (0)−

(
−s2L(uα (t))

)
− suα (0)+L(uα (t)) = L

(
Aα

)
(3.4)

are obtained. If L(uα (t)) in the equation (3.4) is replaced by the equation (3.3) and making the necessary
operations, we have

L(uα (t)) =
Aα

s(1− s4)
+

Cα

1− s4 +
s
(
Bα −Aα

)
1− s4 − s2Cα

1− s4 −
s3Bα

1− s4 . (3.5)

Taking inverse Laplace transform of the equation (3.5), the lower solution is obtained as

uα (t) = Aα

(
1− 1

4
et − 1

4
e−t − 1

2
cos(t)

)
+Cα

(
−1

4
et +

1
4

e−t +
1
2

sin(t)
)

+
(
Bα −Aα

)(
−1

4
et − 1

4
e−t +

1
2

cos(t)
)
−Cα

(
−1

4
et +

1
4

e−t − 1
2

sin(t)
)

−Bα

(
−1

4
et − 1

4
e−t − 1

2
cos(t)

)
.

Similarly, the upper solution is obtained as

uα (t) = Aα

(
1− 1

4
et − 1

4
e−t − 1

2
cos(t)

)
+Cα

(
−1

4
et +

1
4

e−t +
1
2

sin(t)
)

+(Bα −Aα)

(
−1

4
et − 1

4
e−t +

1
2

cos(t)
)
−Cα

(
−1

4
et +

1
4

e−t − 1
2

sin(t)
)

−Bα

(
−1

4
et − 1

4
e−t − 1

2
cos(t)

)
.

Case 3) If u is (2) differentiable and u
′
is (1) differentiable, since

−suα (0)	
(
−s2)L(uα (t))	u

′
α (0)+L(uα (t)) = L

(
[A]α

)
,

we have the equations

− suα (0)−
(
−s2L(uα (t))

)
−u

′
α (0)+L(uα (t)) = L(Aα) , (3.6)

− suα (0)−
(
−s2L(uα (t))

)
−u

′
α (0)+L(uα (t)) = L

(
Aα

)
, (3.7)

If L(uα (t)) in the equation (3.7) is replaced by the equation (3.6) , we get

L(uα (t)) =
Aα

s(1− s4)
+

Cα

1− s4 +
s
(
Bα −Aα

)
1− s4 − s2Cα

1− s4 −
s3Bα

1− s4 .
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From this, the lower solution is obtained as

uα (t) = Aα

(
1− 1

4
et − 1

4
e−t − 1

2
cos(t)

)
+Cα

(
−1

4
et +

1
4

e−t +
1
2

sin(t)
)

+
(
Bα −Aα

)(
−1

4
et − 1

4
e−t +

1
2

cos(t)
)
−Cα

(
−1

4
et +

1
4

e−t − 1
2

sin(t)
)

−Bα

(
−1

4
et − 1

4
e−t − 1

2
cos(t)

)
.

Similarly, the upper solution is obtained as

uα (t) = Aα

(
1− 1

4
et − 1

4
e−t − 1

2
cos(t)

)
+Cα

(
−1

4
et +

1
4

e−t +
1
2

sin(t)
)

+(Bα −Aα)

(
−1

4
et − 1

4
e−t +

1
2

cos(t)
)
−Cα

(
−1

4
et +

1
4

e−t − 1
2

sin(t)
)

−Bα

(
−1

4
et − 1

4
e−t − 1

2
cos(t)

)
.

Case 4) If u is (2) differentiable and u
′
is (2) differentiable, since

s2L(uα (t))	 suα (0)−u
′
α (0)+L(uα (t)) = L

(
[A]α

)
,

we have the equations

s2L(uα (t))− suα (0)−u
′
α (0)+L(uα (t)) = L(Aα) ,

s2L(uα (t))− suα (0)−u
′
α (0)+L(uα (t)) = L

(
Aα

)
,

Using the initial values, the lower and upper solutions are obtained as

L(uα (t)) =
Aα

s(s2 +1)
+

sBα

s2 +1
+

Cα

s2 +1
,

L(uα (t)) =
Aα

s(s2 +1)
+

sBα

s2 +1
+

Cα

s2 +1
.

From this, solutions are obtained as

uα (t) = Aα (1− cos(t))+Bα cos(t)+Cα sin(t) ,

uα (t) = Aα (1− cos(t))+Bα cos(t)+Cα sin(t) .

Example 1. Consider the problem

u′′(t)+u(t) = [0]α , y(0) = [1]α , y
′
(0) = [2]α (3.8)

by fuzzy Laplace transform, where [0]α = [−1+α,1−α] , [1]α = [α,2−α] , [2]α = [1+α,3−α] .
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(1,1) solution is
uα (t) = (−1+α)(1− cos(t))+α cos(t)+(1+α)sin(t) ,

uα (t) = (1−α)(1− cos(t))+(2−α)cos(t)+(3−α)sin(t) ,

[u(t)]α = [uα (t) ,uα (t)] ,

(1,2) solution is

uα (t) = (−1+α)

(
1− 1

4
et − 1

4
e−t − 1

2
cos(t)

)
+(3−α)

(
−1

4
et +

1
4

e−t +
1
2

sin(t)
)

+

(
−1

4
et − 1

4
e−t +

1
2

cos(t)
)
− (1+α)

(
−1

4
et +

1
4

e−t − 1
2

sin(t)
)

−α

(
−1

4
et − 1

4
e−t − 1

2
cos(t)

)
,

uα (t) = (1−α)

(
1− 1

4
et − 1

4
e−t − 1

2
cos(t)

)
+(1+α)

(
−1

4
et +

1
4

e−t +
1
2

sin(t)
)

+

(
−1

4
et − 1

4
e−t +

1
2

cos(t)
)
− (3−α)

(
−1

4
et +

1
4

e−t − 1
2

sin(t)
)

−(2−α)

(
−1

4
et − 1

4
e−t − 1

2
cos(t)

)
,

[u(t)]α = [uα (t) ,uα (t)] ,

(2,1) solution is

uα (t) = (−1+α)

(
1− 1

4
et − 1

4
e−t − 1

2
cos(t)

)
+(1+α)

(
−1

4
et +

1
4

e−t +
1
2

sin(t)
)

+

(
−1

4
et − 1

4
e−t +

1
2

cos(t)
)
− (3−α)

(
−1

4
et +

1
4

e−t − 1
2

sin(t)
)

−α

(
−1

4
et − 1

4
e−t − 1

2
cos(t)

)
,

uα (t) = (1−α)

(
1− 1

4
et − 1

4
e−t − 1

2
cos(t)

)
+(3−α)

(
−1

4
et +

1
4

e−t +
1
2

sin(t)
)

+

(
−1

4
et − 1

4
e−t +

1
2

cos(t)
)
− (1+α)

(
−1

4
et +

1
4

e−t − 1
2

sin(t)
)

−(2−α)

(
−1

4
et − 1

4
e−t − 1

2
cos(t)

)
,

[u(t)]α = [uα (t) ,uα (t)] ,

and (2,2) solution is

uα (t) = (−1+α)(1− cos(t))+α cos(t)+(3−α)sin(t) ,

uα (t) = (1−α)(1− cos(t))+(2−α)cos(t)+(1+α)sin(t) ,
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[u(t)]α = [uα (t) ,uα (t)] .

If
∂uα (t)

∂α
> 0,

∂uα (t)
∂α

< 0, uα (t)≤ uα (t) ,

the (i,j) solution (i=1,2) is a valid α−level set. According to this, since sin(t)≥−1, (1,1) solution is a valid
α−level set, since et− e−t > 0, (1,2) solution is a valid α−level set, (2,1) solution is not a valid α−level set as
et−e−t−2 > 0, that is (2,1) solution is not a valid α−level set for t > 0.881374, since sin(t)≤ 1, (2,2) solution
is a valid α−level set.

Also, since for (1,1) solution,
u1 (t) = cos(t)+2sin(t) = u1 (t) ,

u1 (t)−uα (t) = (1−α)(1+ sin(t)) = uα (t)−u1 (t) ,

for (1,2) solution,
u1 (t) = cos(t)+2sin(t) = u1 (t) ,

u1 (t)−uα (t) = (1−α)

(
1+

1
2

et − 1
2

e−t
)
= uα (t)−u1 (t) ,

for (2,1) solution,
u1 (t) = cos(t)+2sin(t) = u1 (t) ,

u1 (t)−uα (t) = (1−α)

(
1− 1

2
et +

1
2

e−t
)
= uα (t)−u1 (t) ,

for (2,2) solution,
u1 (t) = cos(t)+2sin(t) = u1 (t) ,

u1 (t)−uα (t) = (1−α)(1− sin(t)) = uα (t)−u1 (t) ,

all of the solutions are symmetric triangular fuzzy numbers.

4 Conclusions

In this paper, solutions of a fuzzy problem with symmetric triangular fuzzy number inital values are investi-
gated by fuzzy Laplace transform. Generalized differantiability, fuzzy arithmetic are used. Example is solved.
It is shown whether the solutions are valid α−level sets or not. If inital values are symmetric triangular fuzzy
numbers, then the solutions are symmetric triangular fuzzy numbers for any time.

.
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