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Abstract
In this paper, an accurate and efficient Chebyshev wavelet-based technique is successfully employed to solve the nonlinear
oscillation problems. Numerical examples are also provided to illustrate the efficiency and performance of these methods.
Homotopy perturbation methods may be viewed as an extension and generalization of the existing methods for solving
nonlinear equations. In addition, the use of Chebyshev wavelet is found to be simple, flexible, accurate, efficient and less
computational cost. Our analytical results are compared with simulation results and found to be satisfactory.
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1 Introduction

Most of the oscillation problems in engineering sciences are nonlinear, and it is difficult to solve such equa-
tions analytically. Recently, nonlinear oscillator models have been widely considered in physical and chemical
sciences. Due to the limitation of existing exact solutions, many approximate analytical and numerical ap-
proaches have been investigated. Many real-life problems that arise in several branches of pure and applied
science can be expressed using the nonlinear differential equations. Therefore, these nonlinear equations must
be solved using analytical/numerical methods. Many researchers have been working on various analytical meth-
ods for solving nonlinear oscillation systems in the last decades. Nowadays, the computational experience is
significant, and several numerical methods have been suggested and analyzed under certain conditions. These
numerical methods have been developed using different techniques such as Taylor series, homotopy perturba-
tion method, quadrature formula, variation iteration method and decomposition method [1–7]. Noor et al. [8]
have applied a sixth-order predictor–corrector iterative method for solving the nonlinear equations. Chun [9]
proposed a class of fifth-order and sixth-order iterative methods. In this paper, we apply the wavelet transform
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method and homotopy perturbation method for solving the nonlinear oscillation equations. The homotopy per-
turbation method was developed by He [10, 11] and has been applied to a wide class of nonlinear and linear
problems arising in various branches.

Recently, the homotopy perturbation method (HPM) [12–16] with expanding parameter is applied to solve
some of the nonlinear equations. Ren and Hu [17], Yu et al. [18] and Wu and He [19] developed the nonlinear
oscillation problem using HPM. Abbasbandy et al. [20] developed the homotopy perturbation method and the
decomposition method [21] for solving nonlinear equations. Ganji et al. [22] applied the oscillation systems
with nonlinearity terms such as the motion of a rigid rod rocking. Khudayarov and Turaev [23] developed the
mathematical model of the problem of nonlinear oscillations of a viscoelastic pipeline conveying fluid. Nasab et
al. [24] solved the nonlinear singular boundary value problems.

To our knowledge, no exact analytical expressions for oscillation problems are reported. However, it is
difficult for us to obtain the exact solution for these problems. The purpose of this paper was to derive the
approximate analytical expressions for some oscillation problems in engineering sciences.

2 Mathematical formulation of the problems

The general form of the differential equation describing the oscillations of single-degree-of-freedom systems
can be written as [25]:

ẍ+F(x) = 0 (1)

with initial conditions:

x(0) = l and ẋ(0) = 0 (2)

where F(x) represents the linear and nonlinear terms. A typical nonlinear conservative system that has been
the subject of many investigations is Duffing-type oscillator. This nonlinear oscillator represents the dynamic
behaviour of many engineering problems. Exact analytical solutions to the oscillatory problem in the form of
Eq. (1) are generally impossible, and therefore, some numerical solution is to be reported. The main goal is to
apply the discretization and linearization concepts to develop the HPM and CWM which can provide periodic
solutions for oscillatory problems.

3 Some properties of shifted second kind Chebyshev polynomials [26]

In this section, we discuss some relevant properties of the function

Un(x) =
sin(n+1)θ

sinθ
, x = cosθ (3)

These polynomials are orthogonal on [−1,1]

ie.,

1ˆ

−1

√
1− x2Um(x)Un(x)dx =

{
0, f or m 6= n,
π

2 , f or m = n.
(4)

The following properties of second kind Chebyshev polynomials [26] are of fundamental importance in the
sequel. They are eigenfunctions of the following singular Sturm–Liouville equation:

(1− x2)D2
ϕk(x)−3xDϕk(x)+ k(k+2)ϕk(x) = 0, (5)

https://www.sciendo.com


Application of modified wavelet and homotopy perturbation methods to nonlinear oscillation problems 353

where D≡ d
dx , and orthogonal polynomial may be generated using the recurrence relation

Uk+1(x) = 2xUk(x)−Uk−1(x), k = 1,2,3, ..., (6)

starting from U0(x) = 1 and U1(x) = 2x, or from Rodriguez formula

Un(x) =
(−2)n(n+1)!

(2n+1)!
√

1− x2
Dn
[
(1− x2)

n+ 1
2

]
(7)

3.1 Shifted second kind Chebyshev polynomials

The shifted second kind Chebyshev polynomials are defined on the interval [0,1] by U∗n (x) =Un(2x−1). All
the results of second kind Chebyshev polynomials can be easily transformed to give the corresponding results
for their shifted forms. The orthogonality relation with respect to the weight function

√
x− x2 is given by

1ˆ

0

√
x− x2U∗n (x)U

∗
m(x)dx =

{
0, f or m 6= n,
π

8 , f or m = n.
(8)

The first derivative U∗n (x) is given in the following corollary.
Corollary 1. The first derivative of the shifted second kind Chebyshev polynomial is given by

DU∗n (x) = 4
n−1

∑
k=0,(k+n)odd

(k+1)U∗k (x) (9)

3.2 Shifted second kind Chebyshev operational matrix of derivatives (S2KCOM)

Wavelets constitute a family of functions constructed from dilation and translation of a single function called
the mother wavelet. When the dilation parameter a and the translation parameter b vary continuously, we have
the following family of continuous wavelet:

ψa,b(t) = |a|
−1
2 ψ

(
t−b

a

)
, a,b ∈ℜ, a 6= 0 (10)

Shifted second kind Chebyshev wavelets ψnm (t) = ψ (k,n,m, t) have four arguments: k, n can assume any
positive integer, m is the order of second kind Chebyshev polynomials and tis the normalized time. They are
defined on the interval [0,1] by

ψnm (t) =

{
2
(k+3)

2√
π

U∗m
(
2kt−n

)
f or t ∈

[ n
2k ,

n+1
2k

]
0, f or otherwise

m = 0,1, .....M, n = 0,1, .....,2k−1 (11)

3.3 Function Approximation

A function f (t) defined on the interval [0,1] may be expanded in terms of second kind Chebyshev wavelets
as

f (t) =
∞

∑
n=0

∞

∑
m=0

cnmψnm(t), (12)

where

cnm = 〈 f (t),ψnm(t)〉ω =

1ˆ

0

ω(t) f (t)ψnm(t)dt, (13)
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and ω(t) =
√

t− t2. If the infinite series is truncated, then f (t) can be approximated as

f (t)≈
2k−1

∑
n=0

M

∑
m=0

cnmψnm(t) =CT
ψ(t), (14)

where C and ψ(t) are 2k(M+1)×1 matrices defined by

C=
[
c0,0,c0,1, ...c0,M, ....c2k−1,M, ....c2k−1,1, ...........c2k−1,M

]T (15)

ψ(t)=
[
ψ0,0(t),ψ0,1(t), ..........ψ0,M(t), .....ψ2k−1,M(t), ...............ψ2k−1,1(t), .....ψ2k−1,M(t)

]T (16)

3.4 Solution pertaining to the nonlinear differential equations using shifted second kind Chebyshev
wavelet method (S2KCWM) and homotopy perturbation method

In this section, we give some numerical results obtained using the algorithms presented in the previous
sections. We consider the following examples.
Example 1.

We consider the nonlinear differential equation [27]

ẍ+
x

1+µ x2 = 0 (17)

with initial conditions:

x(0) = l and ẋ(0) = 0 (18)

Wavelet method:
Eq. (17) is solved using the wavelet scheme,

CT D2
ψ(t)+

CT ψ(t)

1+µ(CT ψ(t))2 = 0 (19)

Moreover, the initial conditions are

CT
ψ(t) = l, CT Dψ(t) = 0, at t = 0 (20)

Using Eq. (19) and Eq. (20), the following system of algebraic equations can be obtained

64c2 +
2c0 +(8t−4)c1 +

(
32t2−32t +6

)
c2

1+µ(2c0 +(8t−4) c1 +(32t2−32t +6) c2)
2 = 0 (21)

2c0−4c1 +6c2 = l (22)

8c1−32c2 = 0 (23)

The suggested method of solution x(t) is approximated as follows (Appendix B):

x(t) =CT
ψ(t) (24)
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Homotopy perturbation method:
Solving the nonlinear Eq. (17) using a new approach of homotopy perturbation method (Appendix A)

x(t) = cos t
(

l +
l3µ

64
− 50l3µ2

18432

)
+ cos3t

(
13l4µ2

6144
− l3µ

64

)
+ cos5t

(
11l4µ2

18432

)
(25)

The velocity becomes

ẋ(t) = sin t
(
−l− l3µ

64
+

50l3µ2

18432

)
+3sin3t

(
−13l4µ2

6144
+

l3µ

64

)
−5sin5t

(
11l4µ2

18432

)
(26)

Example 2.
We consider equation [28]

ẍ+
x

1+α x+β x2 = 0 (27)

with the initial conditions

x(0) = l and ẋ(0) = 0 (28)

Wavelet method:
The wavelet scheme of Eq. (27) is

CT D2
ψ(t)+

CT ψ(t)

1+α (CT ψ(t))+β (CT ψ(t))2 = 0 (29)

The initial conditions are

CT
ψ(t) = l, CT Dψ(t) = 0, at t = 0 (30)

Using Eq. (29) and Eq. (30), the following system of algebraic equations can be obtained

64c2 +
2c0 +(8t−4)c1 +

(
32t2−32t +6

)
c2

1+α (2c0 +(8t−4) c1 +(32t2−32t +6) c2)+β (2c0 +(8t−4) c1 +(32t2−32t +6) c2)
2 = 0 (31)

2c0−4c1 +6c2 = l (32)

8c1−32c2 = 0 (33)

The solution of x(t) is approximated as follows (Appendix B):

x(t) =CT
ψ(t) (34)

Homotopy perturbation method:
Solving the nonlinear Eq. (27) using a new approach of homotopy perturbation method, we get

x(t) = l cos t + sin2
( t

2

) [(2α l2

3
+

β l3

4

)
cos t +

β l3

8
cos 2t +

4αl2

3
+

β l3

8

]
(35)

The velocity becomes

ẋ(t) =−l sin t +2sin
( t

2

)
cos
( t

2

) [
−
(

2α l2

3
+

β l3

4

)
sin t− β l3

4
sin 2t

]
(36)
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Example 3.
We consider the differential equation [29]

ü+u+ ς u3 = 0 (37)

with initial conditions:

u(0) = l and u̇(0) = 0 (38)

Wavelet method:
Eq. (37) is solved using the wavelet scheme,

CT D2
ψ(t)+

(
CT

ψ(t)
)
+ ς
(
CT

ψ(t)
)3

= 0 (39)

Moreover, the initial conditions are

CT
ψ(t) = l, CT Dψ(t) = 0, at t = 0 (40)

Using Eq. (39) and Eq. (40), the following system of algebraic equations can be obtained

64c2 +
(
2c0 +(8t−4)c1 +

(
32t2−32t +6

)
c2
)
+ ς

(
2c0 +(8t−4)c1 +

(
32t2−32t +6

)
c2
)3

= 0 (41)

2c0−4c1 +6c2 = l (42)

8c1−32c2 = 0 (43)

The solution of u(t) is approximated as follows (Appendix B):

u(t) =CT
ψ(t) (44)

Homotopy perturbation method:
Solving the nonlinear Eq. (37) using a new approach of homotopy perturbation method, we get

u(t) = l cos t− ς l3

32
(cos t− cos3t) (45)

The velocity becomes

u̇(t) =−l sin t +
ς l3

32
(sin t−3sin3t) (46)

4 Numerical simulation and discussion

To illustrate the applicability, accuracy and effectiveness of the proposed method, we have compared the
approximate analytical solution of the nonlinear differential equations with numerical data. The function ode
45 (Runge–Kutta method) in MATLAB software, which is a function of solving the initial value problems, is
used. In Figure 1(a–c), we have plotted the numerical solution and the approximate solution derived by our
proposed method using HPM and CWM. The figure shows the behaviour of the solution for various values of
the parameter. From the figure, it is observed that the variation in the approximate solution is small, when µ ≤ 1.
From Figure 1(a–c), it is also observed that the amplitude depends upon the initial conditions. Figure 2 represents
the displacement and velocity versus time t. From the figure, it is noted that the amplitude of displacement and
velocity are equal.

Figure 3(a–c) denotes the displacement versus time for various values of the parameters α and β . The
numerical solution is compared with our analytical results in Figure 3(a–c) and found to be satisfactory. Dis-
placement and velocity are shown in Figure 4. Here also, the amplitude of displacement and velocity are equal.
Figure 5 shows the displacement versus time for the oscillation problem (Eq. (45)). Displacement and velocity
versus time are shown in Figure 6. All the result also confirmed for the problem Eq. (37).
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Fig. 1 (a–c) Comparison of CWM (Eq.(24), HPM (Eq.(25) and numerical method (MATLAB result) for various
parameter values. Fig.1(a) l = 0.5 and µ = 0.01 Fig.1(b) l = 0.5 and µ = 0.1 Fig.1(c) l = 0.5 and µ = 1.

Fig. 2 Plot of displacement and velocity for oscillator Eq. (26) with weak nonlinearity and small amplitude oscillations
l = 1.1 and µ = 0.1.

5 Conclusion

In this paper, a wavelet technique has been employed for the approximate solution successfully to solve the
well-known nonlinear oscillator differential equations such as Duffing equation with different parameters. There
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Fig. 3 Comparison of CWM (Eq. (34), HPM (Eq. (35) and numerical method (MATLAB result) for various parameter
values. Fig. 3 (a) l = 0.1, α = 1and β = 0.5 Fig.3 (b) l = 0.1, α = 1 and β = 2 Fig. 3 (c) l = 0.1, α = 2 and β = 0.5.

Fig. 4 Plot of displacement and velocity for oscillator Eq. (36) with weak nonlinearity and small amplitude oscillations
l = 0.1, α = 1, β = 2.

is no need for iterations for achieving sufficient accuracy in numerical results. The results are also obtained via
CWM, HPM and numerical solution. Moreover, the proposed method is used to compare CWM, HPM, and NM
iteration with the nonlinear part. The effects of constant parameters on responses of the system for approximate
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Fig. 5 Comparison of CWM (Eq. (44), HPM (Eq. (45) and numerical method (MATLAB result) for fixed parameter
values l = 0.5, ς = 0.2.

Fig. 6 Plot of displacement and velocity for oscillator Eq. (46) with weak nonlinearity and small amplitude oscillations
l = 0.5, ς = 0.2.

solution are also shown in figures.
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APPENDIX

Appendix A

Approximate analytical solution of oscillations [27] using HPM
Eq. (17) can be rewritten as follows:

ẍ(t)+ x(t)+µ (x(t))2ẍ(t) = 0 (A1)
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This equation is in the form

ẍ(t)+ x(t) =−µ f
(

x, ẋ,
(i)
x
)

(A2)

where

f
(

x, ẋ,
(i)
x
)
= [x(t)] 2ẍ(t) (A3)

The solution of Eq. (A.2) is

x(t) = x0 + ∑
k≥1

µkx(k)0 (t)
k!

(A4)

Using HPM, we get the following Eq. (A.1)

ẍ(0)0 (t)+ x(0)0 (t) = 0 (A5)

ẍ(1)0 (t)+ x(1)0 (t) = f
(

x0, ẋ0,
(i)
x0

)
−Λ

(1)
0 x0(t) (A6)

ẍ(2)0 (t)+ x(2)0 (t) = 2 f (1)
(

x0, ẋ0,
(i)
x0

)
−2Λ

(1)
0 _Λ

(2)
0 x0(t) (A7)

The solution of Eq. (A.5) with initial conditions and is x(0)0 (0) = lẋ(0)0 (0) = 0,

x(0)0 (t) = l cos t (A8)

From Eq. (A.5), Eq. (A.8) and Eq. (A.6), we yield,

ẍ(1)0 (t)+ x(1)0 (t) = µ l3cos3t−Λ
(1)
0 l cos t = l cos t

(
3l2

4
−Λ

(1)
0

)
+

l3µ

4
cos 3t (A9)

Neglect the presence of a secular term in Eq. (A.9),

Λ
(1)
0 −

3l2

4
= 0 (A10)

From Eq. (A.9) using initial conditions x(1)0 (0) = 0 and ẋ(1)0 (0) = 0,

x(1)0 (t) =
l3µ

32
(cos t− cos3t) (A11)

Using Eqns. (A.8), (A.10), and (A.11) in Eq. (A.7), we yields,

ẍ(2)0 (t)+ x(2)0 (t) =
(

3l4

128
−Λ

(2)
0

)
l cos t− 13l4µ2

128
cos 3t− 11l4µ2

128
cos 5t (A12)

Neglect the presence of a secular term in Eq. (A.12),

Λ
(2)
0 −

3l4

128
= 0 (A13)
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From Eq. (A.12) using initial conditions: x(2)0 (0) = 0 and ẋ(2)0 (0) = 0, we get

x(2)0 (t) =
13l4µ2

1024
(cos 3t− cos t)+

11l4µ2

3072
(cos 5t− cos t) (A14)

Substituting x(0)0 (t), x(1)0 (t), x(2)0 (t) in Eq. (A.4), we get the solution of Eq. (25) in the text.
Approximate analytical solution of oscillations [28] using HPM
Eq. (27) can be rewritten as follows:

ẍ(t)+ x(t)+
(

α x(t)+β (x(t))2
)

ẍ(t) = 0 (A15)

This equation is in the form

ẍ(t)+ x(t) =− f
(

x, ẋ,
(i)
x
)

(A16)

where f
(

x, ẋ,
(i)
x
)
=
(
α x(t)+β (x(t)) 2

)
ẍ(t)

The above equation can be rewritten as follows:

ẍ(0)0 (t)+ x(0)0 (t) = 0 (A17)

ẍ(1)0 (t)+ x(1)0 (t) =− f
(

x, ẋ,
(i)
x
)
−Λ

(1)
0 x0(t) (A18)

The solution of Eq. (A.17) with initial conditions and x(0)0 (0) = l is ẋ(0)0 (0) = 0,

x(0)0 (t) = l cos t (A19)

From Eq. (A.17), Eq. (A.19) and Eq. (A.18), we yield,

ẍ(1)0 (t)+ x(1)0 (t) = α l2cos2t +β l3cos3t−Λ
(1)
0 l cos t (A20)

=

(
3β l3

4
−Λ

(1)
0

)
l cos t +

α l2

2
(1+ cos 2t)+

β l3

4
cos 3t (A21)

Avoid the presence of a secular term in Eq. (A.21), i.e.,

Λ
(1)
0 −

3β l3

4
= 0 (A22)

The solution of Eq. (A.22) using initial conditions x(1)0 = 0 and ẋ(1)0 = 0, can be obtained as follows:

x(1)0 (t) = sin2
( t

2

) [(2α l2

3
+

β l3

4

)
cos t +

β l3

8
cos 2t +

4αl2

3
+

β l3

8

]
(A23)

Substituting x(0)0 (t), x(1)0 (t) in Eq. (A.4), we get a solution of Eq. (35) in the text.
Approximate analytical solution of oscillations [29] using HPM
Eq. (37) can be rewritten as follows:

ü(t)+u(t) =−ς u3 (A24)
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This equation is in the form

ü(t)+u(t) =−ς f
(

u, u̇,
(i)
u
)

(A25)

where f
(

u, u̇,
(i)
u
)
= [u(t)] 3

The above equation can be rewritten as follows:

ü(0)0 (t)+u(0)0 (t) = 0 (A26)

ü(1)0 (t)+u(1)0 (t) =−ς f
(

u, u̇,
(i)
u
)
−Λ

(1)
0 l cos t (A27)

We obtain the solution of Eq. (A.26) with initial conditions u(0)0 (0) = l and u̇(0)0 (0) = 0, and we get

u(0)0 (t) = l cos t (A28)

From Eq. (A.26), Eq. (A.28) and Eq. (A.27), we yield,

ü(1)0 (t)+u(1)0 (t) =−ς l3cos3t−Λ
(1)
0 l cos t (A29)

=−
(

3ς l3

4
−Λ

(1)
0

)
l cos t− ς l3

4
cos 3t (A30)

Avoid the presence of a secular term in Eq. (A.30), i.e.,

Λ
(1)
0 −

3ς l3

4
= 0 (A31)

We obtain the solution of Eq. (A.30) using initial conditions u(1)0 (0) = l and u̇(1)0 (0) = 0, and we get

u(1)0 (t) =
−ς l3

32
(cos(t)− cos(3t)) (A32)

Substituting u(0)0 (t), u(1)0 (t) in Eq. (A.4), we get a solution of Eq. (45) in the text.

Appendix B

Shifted second Chebyshev kind wavelets operational matrix of derivatives:
We solve the nonlinear equation using the algorithm described in shifted second kind Chebyshev wavelet

method for the case corresponding to m = 2, k = 0. To obtain the approximate solution of x(t) and u(t). Using
Eq. (17), Eq. (27), and Eq. (37), the two operational matrices D and D2 can be obtained

D =

0 0 0
4 0 0
0 8 0

 ,D2 =

 0 0 0
0 0 0

32 0 0

 (B1)

ψ(t) =

√
2
π

 2
8t−4

32t2−32t +6

 ,CT =

√
π

2
[

c0 c1 c2
]

(B2)
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The second kind Chebyshev wavelet expansion of a function, to define the residual, ℜ(t) of this equation can be
written as follows:

ℜ(t) =CT D2
ψ(t)+FT

1 ψ(t)(ψ(t))T DTC+FT
2 ψ(t)(ψ(t))TC−GT T

1 ψ(t) (B3)

The approximate solution is

x(t) =CT
ψ(t) (B4)
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