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Abstract
In this paper is studied a fuzzy Sturm-Liouville problem with the eigenvalue parameter in the boundary condition. Impor-
tant notes are given for the problem. Integral equations are found of the problem.
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1 Introduction

Firstly, Zadeh introduced the concept of fuzzy numbers and fuzzy arithmetic [22]. The major application
of fuzzy arithmetic is fuzzy differential equations. Fuzzy differential equations are suitable models to model
dynamic systems in which there exist uncertainties or vaguness. Fuzzy differential equations can be examined
by several approach, such as Hukuhara differentiability, generalized differentiability, the concept of differential
inclusion etc [1], [3], [4]- [5], [6]- [9], [11], [13]- [15] [17], [19]- [20].

In this paper is on a fuzzy Sturm-Liouville problem with the eigenvalue parameter in the boundary condition.
Important notes are given for the problem. Integral equations are found of the problem.

2 Preliminaries

Definition 1. [18] A fuzzy number is a function u : R→ [0,1] satisfying the properties:u is normal, u is convex
fuzzy set, u is upper semi-continuous on R, cl {xεR | u(x)> 0} is compact, where cl denotes the closure of a
subset.
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Let RF denote the space of fuzzy numbers.

Definition 2. [15] Let uεRF . The α-level set of u, denoted , [u]α , 0 < α ≤ 1, is

[u]α = {xεR | u(x)≥ α} .

If α = 0, the support of u is defined

[u]0 = cl {xεR | u(x)> 0} .

The notation, [u]α = [uα ,uα ] denotes explicitly the α-level set of u.We refer to u and u as the lower and
upper branches of u,respectively.

The following remark shows when [uα ,uα ] is a valid α-level set.

Remark 1. [10,15] The sufficient and necessary conditions for [uα ,uα ] to define the parametric form of a fuzzy
number as follows:

uα is bounded monotonic increasing (nondecreasing) left-continuous function on (0,1] and right-continuous
for α = 0 ,

uα is bounded monotonic decreasing (nonincreasing) left-continuous function on (0,1] and right-continuous
for α = 0,

uα ≤ uα , 0≤ α ≤ 1.

Definition 3. [15] For u,vεRF and λ ∈R, the sum u+v and the product λu are defined by [u+ v]α = [u]α +[v]α ,
[λu]α = λ [u]α where means the usual addition of two intervals (subsets) of R and λ [u]α means the usual
product between a scalar and a subset of R.

The metric structure is given by the Hausdorff distance

D : RF ×RF → R+∪{0} ,

by
D(u,v) = sup

α∈[0,1]
max{|uα − vα | , |uα − vα |} .

Definition 4. [18] If A is a symmetric triangular numbers with supports [a,a], the α−level sets of A is [A]α =[
a+
(

a−a
2

)
α,a−

(
a−a

2

)
α

]
.

Definition 5. [16] u,v ∈ RF , [u]
α = [uα ,uα ] , [v]

α = [vα ,vα ] , the product uv is defined by

[uv]α = [u]α [v]α , ∀α ∈ [0,1] ,

where
[u]α [v]α = [uα ,uα ] [vα ,vα ] = [wα ,wα ] ,

wα = min{uαvα ,uαvα ,uαvα ,uαvα} ,

wα = max{uαvα ,uαvα ,uαvα ,uαvα} .

Definition 6. [15, 21] Let u,v ∈ RF .If there exists w ∈ RF such that u = v+w, then w is called the Hukuhara
difference of fuzzy numbers u and v,and it is denoted by w = u	 v.

Definition 7. [2,15] Let f : [a,b]→RF and t0 ∈ [a,b] .We say that f is Hukuhara differential at t0, if there exists
an element f

′
(t0) ∈ RF such that for all h > 0 sufficiently small, ∃ f (t0 +h)	 f (t0) , f (t0)	 f (t0−h) and the

limits (in the metric D)

lim
h→0

f (t0 +h)	 f (t0)
h

= lim
h→0

f (t0)	 f (t0−h)
h

= f
′
(t0) .
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Definition 8. [12] If p
′
(x) = 0, r (x) = 1 and Ly = p(x)y

′′
+ q(x)y in the fuzzy differential equation(

p(x)y
′
)′

+ q(x)y+ λ r (x)y = 0, p(x), p
′
(x), q(x) , r (x) , are continuous functions and positive, the fuzzy

differential equation
Ly+λy = 0 (2.1)

is called a fuzzy Sturm-Liouville equation.

Definition 9. [12] [y(x,λ 0)]
α =

[
y(x,λ 0) ,y(x,λ 0)

]
6= 0, we say that λ = λ 0 is eigenvalue of (2.1) if the fuzzy

differential equation (2.1) has the nontrivial solutions y(x,λ 0) 6= 0 , y(x,λ 0) 6= 0.

3 Findings and Main Results

Consider the fuzzy boundary value problem

τu = u
′′
+q(x)u,

τu+λu = 0,x ∈ (−1,1) (3.1)

u(−1)+u
′
(−1) = 0, (3.2)

λβu(1)+ γu
′
(1) = 0, (3.3)

where q(x) is continuous function and positive on [-1,1] , λ > 0 and β ,γ > 0.

Let u1 (x,λ ) and u2 (x,λ ) be linearly independent solutions of the classical differential equation τu+λu= 0.
Then, the general solution of the fuzzy differential equation (3.1) is

[u(x,λ )]α = [uα (x,λ ) ,uα (x,λ )],

uα (x,λ ) = aα (λ )u1 (x,λ )+bα (λ )u2 (x,λ ) ,

uα (x,λ ) = cα (λ )u1 (x,λ )+dα (λ )u2 (x,λ ) .

Also,
[ϕ(x,λ )]α = [ϕ

α
(x,λ ) ,ϕα (x,λ )]

be the solution of the equation (3.1) satisfying the conditions

u(−1) = 1,u
′
(−1) =−1 (3.4)

and
[χ(x,λ )]α = [χ

α
(x,λ ) ,χα (x,λ )]

be the solution of the equation (3.1) satisfying the conditions

u(1) = γ,u
′
(1) =−λβ (3.5)

where
ϕ

α
(x,λ ) = c1α (λ )u1 (x,λ )+ c2α (λ )u2 (x,λ ) ,

ϕα (x,λ ) = c1α (λ )u1 (x,λ )+ c2α (λ )u2 (x,λ )
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χ
α
(x,λ ) = c3α (λ )u1 (x,λ )+ c4α (λ )u2 (x,λ )

χα (x,λ ) = c3α (λ )u1 (x,λ )+ c4α (λ )u2 (x,λ ) .

From here, yields

W
(

ϕ
α
,χ

α

)
(x,λ ) = (c1α (λ )c4α (λ )− c2α (λ )c3α (λ ))W (u1,u2)(x,λ ) (3.6)

W (ϕα ,χα)(x,λ ) = (c1α (λ )c4α (λ )− c2α (λ )c3α (λ ))W (u1,u2)(x,λ ) (3.7)

Also, since u1 (x,λ ) and u2 (x,λ ) are linearly independent solutions of the classical differential equation
τu+λu = 0,the solution of the equation is

u(x,λ ) = a(λ )u1 (x,λ )+b(λ )u2 (x,λ ) .

ϕ(x,λ ) be the solution of the classical differential equation τu+λu = 0 satisfying the conditions u(−1) =
1,u

′
(−1) =−1. Using boundary conditions, we have

a(λ )u1 (−1,λ )+b(λ )u2 (−1,λ ) = 1,

a(λ )u
′
1 (−1,λ )+b(λ )u

′
2 (−1,λ ) =−1.

From this, a(λ ) , b(λ ) are obtained as

a(λ ) =
u
′
2 (−1,λ )+u2 (−1,λ )
W (u1,u2)(−1,λ )

,b(λ ) =
−u1 (−1,λ )−u

′
1 (−1,λ )

W (u1,u2)(−1,λ )
.

Then,

ϕ(x,λ ) =
1

W (u1,u2)(−1,λ )

{(
u
′
2 (−1,λ )+u2 (−1,λ )

)
u1 (x,λ )

−
(

u1 (−1,λ )+u
′
1 (−1,λ )u2 (x,λ )

)}
.

Again, χ(x,λ ) be the solution of the classical differential equation τu+ λu = 0 satisfying the conditions
u(1) = γ,u

′
(1) =−λβ . Similarly, χ(x,λ ) is obtained as

χ(x,λ ) =
1

W (u1,u2)(−1,λ )

{(
λβu2 (1,λ )+ γu

′
2 (1,λ )

)
u1 (x,λ )

−
(

λβu1 (1,λ )+ γu
′
1 (1,λ )

)
u2 (x,λ )

}
Thus,

[ϕ(x,λ )]α = [ϕ
α
(x,λ ) ,ϕα (x,λ )] = [c1 (α) ,c2 (α)]ϕ(x,λ )

is the solution of the equation (3.1) satisfying the conditions (3.4) and

[χ(x,λ )]α = [χ
α
(x,λ ) ,χα (x,λ )] = [c1 (α) ,c2 (α)]χ(x,λ )

is the solution of the equation (3.1) satisfying the conditions (3.5), where [c1 (α) ,c2 (α)] = [1]α . We take
[1]α = [α,2−α] . From here,
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W α (x,λ ) = α
2
(

ϕ(x,λ )χ
′
(x,λ )−χ(x,λ )ϕ

′
(x,λ )

)
(3.8)

W α (x,λ ) = (2−α)2
(

ϕ(x,λ )χ
′
(x,λ )−χ(x,λ )ϕ

′
(x,λ )

)
(3.9)

are obtained. Computing the value ϕ(x,λ )χ
′
(x,λ )−χ(x,λ )ϕ

′
(x,λ ), we have

W (u1,u2)(x,λ )
W (u1,u2)(−1,λ )W (u1,u2)(1,λ )

{(
u1 (−1,λ )+u

′
1 (−1,λ )

)(
λβu2 (1,λ )+ γu

′
2 (1,λ )

)
−
(

u2 (−1,λ )+u
′
2 (−1,λ )

)(
λβu1 (1,λ )+ γu

′
1 (1,λ )

)}
Considering the equations (3.6) and (3.7), the value c1α (λ )c4α (λ )− c2α (λ )c3α (λ ) is

α2

W (u1,u2)(−1,λ )W (u1,u2)(1,λ )

{(
u1 (−1,λ )+u

′
1 (−1,λ )

)(
λβu2 (1,λ )+ γu

′
2 (1,λ )

)
−
(

u2 (−1,λ )+u
′
2 (−1,λ )

)(
λβu1 (1,λ )+ γu

′
1 (1,λ )

)}
and the value c1α (λ )c4α (λ )− c2α (λ )c3α (λ ) is

(2−α)2

W (u1,u2)(−1,λ )W (u1,u2)(1,λ )

{(
u1 (−1,λ )+u

′
1 (−1,λ )

)(
λβu2 (1,λ )+ γu

′
2 (1,λ )

)
−
(

u2 (−1,λ )+u
′
2 (−1,λ )

)(
λβu1 (1,λ )+ γu

′
1 (1,λ )

)}
Consequently,

W
(

ϕ
α
,χ

α

)
(x,λ ) =

α2

(2−α)2W (ϕα ,χα)(x,λ ) .

Theorem 1. The Wronskian functions W
(

ϕ
α
,χ

α

)
(x,λ ) and W (ϕα ,χα)(x,λ ) are independent of variable x

for x∈ (−1,1), where functions ϕ
α
,χ

α
,ϕα ,χα are the solution of the fuzzy boundary value problem (3.1)-(3.3).

Proof. Derivating of equations W
(

ϕ
α
,χ

α

)
(x,λ ) and W (ϕα ,χα)(x,λ ) according to variable x and using the

functions [ϕ(x,λ )]α , [χ(x,λ )]α are the solutions of the equation (3.1)

W
′
(

ϕ
α
,χ

α

)
(x,λ ) = 0 and W

′
(ϕα ,χα)(x,λ ) = 0.

are obtained. The proof is complete.

W α (λ ) =W
(

ϕ
α
,χ

α

)
(x,λ ) , W α (λ ) =W (ϕα ,χα)(x,λ ) . (3.10)

Theorem 2. The eigenvalues of the fuzzy boundary value problem (3.1)-(3.3) if and only if are consist of the
zeros of functions W α (λ ) and W α (λ ).
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Proof. Let be λ = λ 0 is the eigenvalue. We show that W α (λ 0) = 0 and W α (λ 0) = 0 . We assume that
W α (λ 0) 6= 0 or W α (λ 0) 6= 0. Let be W α (λ 0) 6= 0. Then, the functions ϕ

α
(x,λ 0) and χ

α
(x,λ 0) are linearly

independent. So, the general solution of the equation (3.1)

[u(x,λ 0)]
α = [uα (x,λ 0) ,uα (x,λ 0)], (3.11)

uα (x,λ 0) = aα (λ 0)ϕ
α
(x,λ 0)+bα (λ 0)χ

α
(x,λ 0) , (3.12)

uα (x,λ 0) = cα (λ 0) ϕα (x,λ 0)+dα (λ 0)χα (x,λ 0) . (3.13)

Using the boundary condition (3.2) and using the solution function [ϕ(x,λ 0)]
α = [ϕ

α
(x,λ 0) ,ϕα (x,λ 0)]

satisfies the boundary condition (3.2),

bα (λ 0)
(

χ
α
(−1,λ 0)+χ

′

α
(−1,λ 0)

)
= 0,

dα (λ 0)
(

χα (−1,λ 0)+χ
′

α (−1,λ 0)
)
= 0

are obtained. Again, using (3.4), (3.10), we have

bα(λ 0)W α (λ 0) = 0, dα (λ 0)W α (λ 0) = 0.

From this, since W α (λ 0) 6= 0, bα(λ 0) = 0 is obtained. Similarly, using the boundary condition (3.3), we
obtained aα (λ 0) = 0. Thus, uα (x,λ 0) = 0, λ 0 is not an eigenvalue. That is, we have a contradiction. Similarly,
if W α (λ 0) 6= 0, uα (x,λ 0) = 0 is obtained. λ 0 is not an eigenvalue.

Let λ 0 be zero of W α (λ ) and W α (λ ). Then,

ϕ
α
(x,λ 0) = k1χ

α
(x,λ 0) , ϕα (x,λ 0) = k2χα (x,λ 0) . (3.14)

That is, the functions ϕ
α
, χ

α
and ϕα , χα are linearly dependent. Also, since [χ(x,λ )]α satisfies the bound-

ary condition (3.3), χ
α
(x,λ 0) and χα (x,λ 0) satisfy the boundary condition (3.3). In addition, from (3.14) the

functions ϕ
α
(x,λ 0) and ϕα (x,λ 0) satisfy the boundary condition (3.3). So, [ϕ(x,λ 0)]

α satisfies the boundary
condition (3.3). Hence, [ϕ(x,λ 0)]

α is the solution of the boundary value problem (3.1)-(3.3) for λ = λ 0. Thus,
λ = λ 0 is the eigenvalue. The proof is complete.

Lemma 1. Let λ = s2. The lower and the upper solutions ϕ
α
(x,λ ) ,ϕα (x,λ ) satisfy the following integral

equations for k=0 and k=1:

(
ϕ

α
(x,λ )

)(k)
= (Cos(s(x+1)))(k)− 1

s
(Sin(s(x+1)))(k) (3.15)

+
1
s

xˆ

−1

(Sin(s(x− y)))(k) q(y)
(

ϕ
α
(y,λ )

)(k)
dy,

(ϕα (x,λ ))(k) = (Cos(s(x+1)))(k)− 1
s
(Sin(s(x+1)))(k)+ (3.16)

1
s

xˆ

−1

(Sin(s(x− y)))(k) q(y)(ϕα (y,λ ))(k) dy.
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Proof. Since
[ϕ(x,λ )]α = [ϕ

α
(x,λ ) ,ϕα (x,λ )]

is the solution of the equation (3.1), the equation

[ϕ
α
(y,λ ) ,ϕα (y,λ )]

′′
+q(y) [ϕ

α
(y,λ ) ,ϕα (y,λ )]+λ [ϕ

α
(y,λ ) ,ϕα (y,λ )] = 0

is provided. Using the Hukuhara differentiability and fuzzy arithmetic,

[ϕ
′′

α
(y,λ ) ,ϕ

′′

α (y,λ )]+ [q(y)ϕ
α
(y,λ ) ,q(y)ϕα (y,λ )]+ [λϕ

α
(y,λ ) ,λϕα (y,λ )] = 0

is obtained. From here, yields

ϕ
′′

α
(y,λ )+q(y)ϕ

α
(y,λ )+λϕ

α
(y,λ ) = 0,

ϕ
′′

α (y,λ )+q(y)ϕα (y,λ )+λϕα (y,λ ) = 0.

Substituing the identity q(y)ϕ
α
(y,λ ) =−λϕ

α
(y,λ )−ϕ

′′

α
(y,λ ) in the right side of (3.15)

xˆ

−1

Sin(s(x− y))q(y)ϕ
α
(y,λ )dy = −s2

xˆ

−1

Sin(s(x− y))ϕ
α
(y,λ )dy

−
xˆ

−1

Sin(s(x− y))ϕ
′′

α
(x,λ )dy

On integrating by parts twice and using (3.4)

xˆ

−1

Sin(s(x− y))ϕ
′′

α
(x,λ )dy = Sin(s(x+1))− sϕ

α
(x,λ )+ sCos(s(x+1))

+s2

xˆ

−1

Sin(s(x− y))ϕ
α
(y,λ )dy

is obtained. Substituing this back into the previous equality yields

xˆ

−1

Sin(s(x− y))q(y)ϕ
α
(y,λ )dy = Sin(s(x+1))− sϕ

α
(x,λ )+ sCos(s(x+1))

From here, we have

ϕ
α
(x,λ ) =Cos(s(x+1))− 1

s
Sin(s(x+1))+

1
s

xˆ

−1

Sin(s(x− y))q(y)ϕ
α
(y,λ )dy.

Similarly ϕα (x,λ ) is found. Derivating in these equations according to x, the derivative equations are
obtained.
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Lemma 2. Let λ = s2. The lower and the upper solutions χ
α
(x,λ ) ,χα (x,λ ) satisfy the following integral

equations for k=0 and k=1:(
χ

α
(x,λ )

)(k)
= −β (Cos(s(x+1)))(k)+

λα

s
(Sin(s(x+1)))(k) (3.17)

−1
s

1ˆ

x

(Sin(s(x− y)))(k) q(y)
(

χ
α
(y,λ )

)(k)
dy

(χα (x,λ ))(k) = −β (Cos(s(x+1)))(k)+
λα

s
(Sin(s(x+1)))(k) (3.18)

−1
s

1ˆ

x

(Sin(s(x− y)))(k) q(y)(χα (y,λ ))(k) dy.

Proof. Substituing the identity q(y)χ
α
(y,λ ) = −λ χ

α
(y,λ )− χ

′′

α
(y,λ ) in the right side of (3.17), integrating

by parts twice and using (3.5) yields (3.17) for k=0. Similarly, the equation (3.18) is found for k=0. Derivating
in these equations according to x, the derivative equations are obtained.
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