

Applied Mathematics and Nonlinear Sciences 4(1) (2019) 57-60

Applied Mathematics and Nonlinear Sciences

https://www.sciendo.com

Proof without words: Periodic continued fractions

Amara Chandoul †

Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro Brasília - DF 70910-900, Brazil

Submission Info

Communicated Juan Luis García Guirao Received 6th February 2019 Accepted 22nd March 2019 Available online 26th April 2019

Abstract

In this paper, We give a generalization the resut of Roger B. Nelsen, by giving a closed form expression for x = $[a_0, a_1, \cdots, a_k, \overline{b_1, \cdots, b_m}],$

Keywords: Continued fractions, periodic, proof without words.

AMS 2010 codes: 65H04, 11Y65, 13M10.

1 Introduction

Let $x := x_0$ be a real number. Set $a_0 = [x]$, the greatest integer in x and $\frac{1}{x_0 - a_0}$ its complete quotients.

Set $a_i = [x_i]$, the greatest integer in x_i and $x_{i+1} = \frac{1}{x_i - a_i}$ for all $i \ge 1$. Then,

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots}}}$$

The algorithm stops after finitely many steps if and only if x is rational. The above expansion is called The simple continued fraction of x. It is customarily written $x = [a_0, a_1, \dots, a_n, \dots]$.

We call convergents of x the reduced fractions difined by:

$$\frac{p_0}{a} = a_0,$$

Email address: amarachandoul@yahoo.fr

ISSN 2444-8656

doi:10.2478/AMNS.2019.1.00006

\$ sciendo

[†]Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro Brasília - DF 70910-900, Brazil

$$\frac{p_1}{q_1} = a_0 + \frac{1}{a_1},$$
...,
$$\frac{p_n}{q_n} = a_0 + \frac{1}{a_1 + a_2 + a_3 + \dots + a_n}, \dots.$$

If there exists $k \ge 0$ and m > 0 such that whenever r > k, we have $a_r = a_{r+m}$, the continued fraction is said periodic, with period $(b_1, \cdots, b_m) = (a_{k+1}, \cdots, a_{k+m})$ and pre-period (a_0, a_1, \cdots, a_k) , which can be written for simplicity $x = [a_0, a_1, \cdots, a_k, \overline{b_1, \cdots, b_m}]$. These so-called periodic continued fractions are precisely those that represent quadratic irrationalities.

We find a closed form expression for $x = [a_0, a_1, \dots, a_k, \overline{b_1, \dots, b_m}]$, which generalized a previous resut of Roger B. Nelsen.

2 Main result

Lemma 1. Let
$$x > 0$$
 such that $x = a + \frac{b}{cx}$, then $x = \frac{1}{2} \left(a^2 + \sqrt{a^2 + 4\frac{b}{c}} \right)$

Proof. Consider the Following figure:

We have
$$(2x-a)^2 = a^2 + 4\frac{b}{c}$$
, then $x = \frac{1}{2}\left(a^2 + \sqrt{a^2 + 4\frac{b}{c}}\right)$.

Lemma 2. If
$$x = [\overline{a_0, a_1, \dots, a_n}]$$
, then $x = \frac{p_n - q_{n-1}}{q_n} + \frac{p_{n-1}}{q_n x}$.

Proof. We have $x = [\overline{a_0, a_1, \cdots, a_n}] = [a_0, a_1, \cdots, a_n, x] = \frac{p_n x - p_{n-1}}{q_n x - q_{n-1}}$. Then, $q_n x^2 = (p_n - q_{n-1}) + p_{n-1}$. which gives $x = \frac{p_n - q_{n-1}}{q_n} + \frac{p_{n-1}}{q_n x}$. Completing the proof.

Theorem 3. The periodic continued fraction $[\overline{a_0, a_1, \dots, a_n}]$ equals

$$\frac{1}{2} \left[\left(\frac{p_n - q_{n-1}}{q_n} \right)^2 + \sqrt{\left(\frac{p_n - q_{n-1}}{q_n} \right)^2 + 4 \frac{p_{n-1}}{q_n}} \right].$$

Corollary 4 (Theorem [1]). The periodic continued fraction [a,b] equals

$$\frac{1}{2}\left(a^2+\sqrt{a^2+4\frac{a}{b}}\right).$$

Corollary 5. The periodic continued fraction $[\overline{a,b,c}]$ equals

$$\frac{1}{2}\left[\left(a+\frac{c-b}{bc+1}\right)^2+\sqrt{\left(a+\frac{c-b}{bc+1}\right)^2+4\frac{ab+1}{bc+1}}\right].$$

Example 6. As examples, notice that $[\overline{1}] = [\overline{1,1,1}] = \frac{1}{2} \left(1 + \sqrt{5} \right), [\overline{a}] = [\overline{a,a}] = [\overline{a,a,a}] = \frac{1}{2} \left(a^2 + \sqrt{a^2 + 4} \right), [\overline{3,1,2}] = \frac{1}{2} \left(\frac{100}{9} + \sqrt{\frac{148}{9}} \right).$

Corollary 7. Let $x = [a_0, a_1, \dots, a_k, \overline{b_1, \dots, b_m}]$, be a periodic continued fraction, with period (b_1, \dots, b_m) and pre-period (a_0, a_1, \dots, a_k) .

Note $\frac{p_i}{q_i} = [a_0, a_1, \dots, a_i]$, for all $0 \le i \le k$ and $\frac{p'_j}{q'_j} = [b_1, \dots, b_j]$ for all $0 \le j \le m$. Then,

$$x = \frac{p_k \left(\frac{1}{2} \left[\left(\frac{p'_m - q'_{m-1}}{q'_m}\right)^2 + \sqrt{\left(\frac{p'_m - q'_{m-1}}{q_n}\right)^2 + 4\frac{p'_{m-1}}{q'_m}} \right] \right) + p_{k-1}}{q_k \left(\frac{1}{2} \left[\left(\frac{p'_m - q'_{m-1}}{q'_m}\right)^2 + \sqrt{\left(\frac{p'_m - q'_{m-1}}{q_n}\right)^2 + 4\frac{p'_{m-1}}{q'_m}} \right] \right) + q_{k-1}}.$$

Example 8. As examples, notice that

$$[1,2,3,4,5,2,\overline{1,1,1,4}] = \frac{225\sqrt{7} + 43}{157\sqrt{7} + 30},$$

$$[1,2,2,n,\overline{1,2n}] = \frac{7\sqrt{n^2 + 2n} + 3}{5\sqrt{n^2 + 2n} + 2},$$

$$[1,2,2,1,4,n,\overline{n,2n}] = \frac{57\sqrt{n^2 + 2} + 10}{33\sqrt{n^2 + 2} + 7}.$$

3 Conclusions

We find a closed form expression for $x = [a_0, a_1, \cdots, a_k, \overline{b_1, \cdots, b_m}]$, which generalized a previous resut of Roger B. Nelsen.

Acknowledgment

The author would like to thank the editor and the anonymous referee who kindly reviewed the earlier version of this manuscript and provided valuable suggestions and comments.

References

[1] Roger B. Nelsen (2018) Periodic Continued Fractions Via a Proof Without Words, Mathematics Magazine, 91:5, 364-365, Doi:10.1080/0025570X.2018.1456151