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Abstract
In this article, we have presented a parametric finite difference method, a numerical technique for the solution of two
point boundary value problems in ordinary differential equations with mixed boundary conditions. We have tested pro-
posed method for the numerical solution of a model problem. The numerical results obtained for the model problem with
constructed exact solution depends on the choice of parameters. The computed result of a model problem suggests that
proposed method is efficient.

Keywords: Boundary Value Problem; Energy Equation; Mixed Boundary Condition; Parametric Difference Method.
AMS 2010 codes: 65L10, 65L12.

1 Introduction

There has been a great deal of interest in developing techniques for the accurate numerical solution of
two-point boundary value problems. In this article we have considered a parametric difference method for the
numerical solution of the boundary value problems with the form

u′′(x) = g(x,u,u′), a < x < b (1)

subject to the boundary conditions

u′(a) = α and p1u(b)+q1u′(b) = β ,

or
p0u(a)+q0u′(a) = α0 and u′(b) = β0,
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where α , β , p0 etc. are real constants and known. We assume that g is continuous function in ([a,b]×ℜ2,ℜ).

In many branches of engineering, humanity and sciences ordinary differential equations occur as mathe-
matical models. In general, these equations have solutions that can be expressed in restricted form only. So
it is essential to consider approximate solutions by means of numerical techniques. To solve these problems
numerically, we have many accurate numerical methods for instance, shooting-projection [1], collocation [2],
finite difference methods [3] available in the literature. However the relatively less advanced method, the
method of parameter differentiation is known in the literature and some historical development can be found
in [4]. The existence and uniqueness of the solution for the problem (1) are assumed. The specific assumption
on g(x,u,u′) to ensure the existence and uniqueness will not be considered in this article however I may refer
literature in [5–8].

In this article we shall develop a hybrid parametric difference method for the approximate numerical
solution of problems (1). We have performed a numerical experiment to demonstrate the effectiveness of the
method. We have achieved accuracy and bound on the error between the analytical and numerical approximation
solution of the problem. To the best of our knowledge, no method similar to the proposed method for the
numerical approximate solution has been discussed in the literature to date.

We have presented our work in this article as follows. In the next section we will discuss the parametric
difference method and in Section 3 we will derive our propose method. In Section 4 and 5, respectively, we
have estimated truncation error and discussed convergence under appropriate condition. The applications of the
proposed method to the model problems and numerical results have been produced to show the efficiency in
Section 6. Discussion and conclusion on the performance of the method are presented in Section 7.

2 The Parametric Difference Method

Following the ideas in [4], re-formulate the problem (1) either by introducing a physical parameter or identify
a physical parameter that appears either in the differential equation or in the boundary conditions as independent
variable. Let us introduce λ as physical parameter in differential equation (1), so we have obtained,

u′′(x) = g(x,u,u′)≡ f (x,λ ,u,u′), a < x < b (2)

and boundary conditions are
u′(a) = α and p1u(b)+q1u′(b) = β ,

or
p0u(a)+q0u′(a) = α0 and u′(b) = β0,

Now let introduce new variable y(x) = u̇ = du
dλ

, a differentiation of solution of problem (1) with respect to λ .
Differentiate problem (2) with respect to λ . Thus we have reduced the problem (2) into following system of
equations,

y′′ = F(
∂ f
∂λ

,y,y′),

u̇ = y(x) (3)

subject to the boundary conditions,

y′(a) = 0 and p1y(b)+q1y′(b) = 0,

or
p0y(a)+q0y′(a) = 0 and y′(b) = 0,
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and y(x) is known for some λ .

We wish to determine the approximate numerical solution u(x) of the problem (2) for different values of λ

and λ0 ≤ λ ≤ λM. We define M−1 numbers of nodal points in [λ0,λM], as λ0 < λ1 < λ2 < ...... < λM using a
uniform step length H such that λi = λ0+ jH, j = 0,1, ..,M. Also, we define N−1 numbers of nodal points in
[a,b], the domain in which the solution of the problem (1) is desired, as a≤ x0 < x1 < x2 < ...... < xN = b using a
uniform step length h such that xi = x0 + ih, i = 0,1, ..,N. To simplify the expression we denote the numerical
approximation of u(x) at the node x = xi as ui. Let us denote Fi as the approximation of the theoretical value of
the source function F( ∂ f

∂λ
,y(x),y′(x)) at node x = xi, i = 0,1,2, .....,N. Let write a system of equations (3) at

nodal point xi in notational form as,

y′′i = Fi

u̇i = yi

subject to the boundary conditions

y′0 = 0 and p1yN +q1y′N = 0,

or
p0y0 +q0y′0 = 0 and y′(b) = 0,

Following the idea in [9], we propose our difference method for the numerical solution of problem (3) as follows,

yi− yi−1 = hy′i−1 +
h2

6
(2Fi−1 +Fi), i = 1,2, ..,N,

y′i− y′i−1 =
h
2
(Fi +Fi−1), i = 1,2, ..,N,

u j−1−u j =−H(yi−1 +((λ0−a)+(( j−1)H− (i−1)h))y′i−1), j = 1,2, ..,M. (4)

which is a system of linear/ nonlinear equations depending on forcing function g(x,u,u′). We solve system of
equations (4) by applying an appropriate iterative method.

3 Derivation of the Difference Method

In this section we outline the derivation and development of the proposed finite difference method. We
approximate first problem in (3) as a linear combination of y(x),y′(x) and F( ∂ f

∂λ
,y,y′),

a0yi−1 +a1yi +a2hy′i−1 +a3hy′i +h2(b0Fi−1 +b1Fi) = 0 (5)

where a0, · · · ,b1 are constant. To determine these constants, we expand each term in the above expression in a
Taylor series about a node xi and compare the coefficients of hp, p = 0, · · · ,3 in the both sides of the expression.
So we obtained a system of linear equations in a0, · · · ,b1. Solving the system of equations, we got

(a0,a1,a2,a3,b0,b1) = (−1,1,−1,0,−1
3
,−1

6
) (6)

Substituting these constants from (6) in (5), we obtained

yi− yi−1−hy′i−1−
h2

6
(2Fi−1 +Fi) = 0 (7)

Following the similar idea as above, we derive following equations,

y′i− y′i−1 =
h
2
(Fi +Fi−1),

u j−1−u j =−H(yi−1 +((λ0−a)+(( j−1)H− (i−1)h))y′i−1) (8)
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4 Local Truncation Error

The local truncation error in the difference method (4) using the exact arithmetic may be calculated by using
Taylor series expansion at the nodal points x = xi, i = 1,2, ..,N. Thus the truncation error Ti in the first equation
of the method (4) may be written as :

Ti−1 =−
h4

24
y(4)i , 1≤ i≤ N. (9)

Similarly we can obtain truncation error in second equation of method (4) at x = xi, i = 1,2, ..,N as given below,

T ′i =−h3

3
y(4)i , 1≤ i≤ N. (10)

The truncation error in final equation of method (4) at λ j−1, j = 1,2, ..,M and xi−1, i = 1,2, ..,N is,

T∗ =
H
2

ü j−1−
((λ0−a)+(( j−1)H− (i−1)h))2

2
y′′i−1. (11)

Thus we have obtained a truncation error at each node of order O(H +h2) if λ0 = a.

5 Convergence of the Difference Method

Let us assume the following conditions [10],

(i) u(x) and u′(x) are finite

(ii) g(x,u(x),u′(x)) is continuous in ([a,b]×ℜ
2,ℜ)

(iii)
∂g
∂u

and
∂g
∂u′

exist and are continuous in [a,b]

(iv)
∂g
∂u

> 0 and | ∂g
∂u′
|< w in [a,b] for some positive real number w.

Under above conditions problem (1) will posses unique solution [7]. However the forcing function F( ∂ f
∂λ

,y,y′)
in (3) may be written as,

F(
∂ f
∂λ

,y,y′)≡ ∂ f
∂u

y+
∂ f
∂u′

y′+
∂ f
∂λ

(12)

Let us assume Mi = ( ∂ f
∂y )i, M′i = ( ∂ f

∂y′ )i and using (12), we can write difference method (4) as follows,

− (1+
h2

3
Mi−1)yi−1 +(1− h2

6
Mi)yi−

h2

6
M′i y

′
i−h(1+

h
3

M′i−1)y
′
i−1 =

h2

6
(2(

∂ f
∂λ

)i−1 +(
∂ f
∂λ

)i),

− h
2

Mi−1yi−1−
h
2

Miyi +(1− h
2

M′i)y
′
i− (1− h

2
M′i−1)y

′
i−1 =

h
2
((

∂ f
∂λ

)i−1 +(
∂ f
∂λ

)i), i = 1,2, ..,N

(13)

Let Yi and yi be respectively an exact solution and approximate solution of the system of equations (3). Let us
define εi = yi−Yi, an error between the exact analytical and numerical approximation solution of the problem
(3) and similarly we can define ε ′i = y′i−Y ′i . Let us write (13) in matrix form

Dεεε +T = 000, (14)
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where matrix D is of order 2(N−1)×2(N−1), moreover we have partitioned the D in the following manner,

D =


A11

... A12

· · ·
... · · ·

A21
... A22


where each matrix A is of order (N−1)× (N−1) and these matrices are,

A11 =



−1− h2

3 M0 1− h2

6 M1 0
−1− h2

3 M1 1− h2

6 M2
. . . . . .

−1− h2

3 MN−2 1− h2

6 MN−1

0 −1− h2

3 MN−1


N−1×N−1

an upper diagonal matrix with bandwidth of 1,

A12 =



−h2

6 M′1 0
−h− h2

3 M′1 −h2

6 M′2
. . . . . .

−h− h2

3 M′N−2 −h2

6 M′N−1

0 −h− h2

3 M′N−1 −h2

6 M′N


N−1×N−1

a lower diagonal matrix with bandwidth of 1,

A21 =



−h
2 M0 −h

2 M1 0
−h

2 M1 −h
2 M2

. . . . . .

−h
2 MN−2 −h

2 MN−1

0 −h
2 MN−1


N−1×N−1

an upper diagonal matrix with bandwidth of 1 and finally,

A22 =



1− h
2 M′1 0

−1− h
2 M′1 1− h

2 M′2
. . . . . .

−1− h
2 M′N−2 1− h

2 M′N−1
0 −1− h

2 M′N−1 1− h
2 M′N


N−1×N−1

a lower diagonal matrix with bandwidth of 1,

εεε = (ε0,ε1, ..,εN−1,ε
′
1, ..,ε

′
N)

t ,

and
T = (T0,T1, ..,TN−1,T ′1, ..,T

′
N)

t .
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are 1×2(N−1) matrices.
Let us assume that either M′i < 0 or M′ 6= 2

h for i = 1,2, ..,N. These either assumptions ensure that diagonal
block matrices A11 and A22 are invertible. Moreover A−1

11 < 0 a negative definite but A−1
22 > 0 a positive definite

if |M′i |< 2
h . Let us assume

|A12A−1
22 A21A−1

11 |< 1 (15)

hence block matrix D is invertible [11].
Let us define,

a∗2 = ‖A12A−1
22 ‖∞ and a∗1 = ‖A21A−1

11 ‖∞.

and

S∗i =

{
−h2

6 (2Mi−1 +Mi), 1≤ i≤ N−1
−1− h2

3 Mi−1, i = N

and

S∗i =

{
1− h

2 M′i , i = 1
−h

2(M
′
i−1 +M′i), 2≤ i≤ N

sum of the elements in a row of the matrices A11 and A22 respectively. Let S∗min = min{S∗i },1≤ i≤ N and
S∗max = max{S∗i},1≤ i≤ N. Thus

‖A−1
11 ‖∞ ≤

1
|S∗min|

and ‖A−1
22 ‖∞ ≤

1
|S∗max|

.

So, we have
1

S∗min
= max{ 1

|S∗min|
,

1
|S∗max|

} (16)

But we know in [11] that

‖D−1‖∞ ≤
max{‖A−1

11 ‖∞,‖A−1
22 ‖∞}(1+a∗2)(1+a∗1)

(1+a∗2)+(1+a∗1)− (1+a∗2)(1+a∗1)
(17)

Each term in (17) is well defined, so from (14)

‖εεε‖∞ ≤
max{‖A−1

11 ‖∞,‖A−1
22 ‖∞}(1+a∗2)(1+a∗1)

(1+a∗2)+(1+a∗1)− (1+a∗2)(1+a∗1)
‖T‖∞ (18)

It follows from (13), (14) and (18) that ‖εεε‖→ 0 as h→ 0. Thus we conclude that method (4) will converge.

6 Numerical Results

In this section we have considered model problems to perform the numerical experiment. In these model
problems, we consider different number of noddle points for both xi and λ j. In computation of maximum
absolute error MAE between the analytical solution u(λ j) and computed numerical solution u j of the problem,
we have used the following formula,

MAE = max
1≤ j≤M

∣∣u(λ j)−u j
∣∣.

We have respectively applied Gauss-Seidel and Newton-Raphson method to solve the system of linear and
nonlinear equations those arise from the method (4). The solutions are computed on different values of N
and M. The iteration is continued until either the maximum difference between two successive iterates is less
than 10−8 or the number of iterations reached 103. All computations were performed on a Windows 2007
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Ultimate operating system in the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core
i3-2330M, 2.20 Ghz PC.

Problem 1. The model nonlinear problem that arises in mathematical modeling of the isothermal packed-bed
reactor [4],

1
Npe

u′′(x)+u′(x)−λun = 0, 0 < x < 1

subject to boundary conditions

u′(0) = 0, and u(1)+
1

Npe
u′(1) = 1.

The problem is to find solutions corresponding to a given value of Npe and n for a range of values of λ .
In this problem we identify λ as a parameter. Let the constructed analytical solution of the problem is
u(x) = Npe

Npe−1 exp(x2−x3). The MAE for n = 2, different values of N, M and range of values of λ is presented in
Tables 1-4.

Problem 2. The model nonlinear boundary value problem that arises in analysis of the confinement of a
plasma column by radiation pressure [12, 13] with different boundary conditions,

u′′(x) = λ sinh(λu(x)), 0 < x < 1

subject to boundary conditions
u′(0) = 1, and u(1) = 0.

The problem is to find solutions for a range of values of λ . In this problem we identify λ as a parameter. Let
the constructed analytical solution of the problem is u(x) = sinh(x). The MAE for different values of N, M and
range of values of λ are presented in Table 5.

Table 1 Maximum absolute error (Problem 1).

MAE

N

M λ 16 32 64 128 256

.19 .82138918(-1) .75354241(-1) .69477819(-1) .93044417(-8) .57223819(-1)

.199 .86510330(-1) .79471337(-1) .73395520(-1) .66898733(-1) .60657050(-1)

8 .1999 .87102056(-1) .79883814(-1) .93044417(-8) .67304015(-1) .61004162(-1)

.20 .93044417(-8) .93044417(-8) .93044417(-8) .93044417(-8) .93044417(-8)

.201 .87558843(-1) .80390550(-1) .74223734(-1) .67704059(-1) .61429124(-1)

.21 .91972984(-1) .84560312(-1) .93044417(-8) .71391739(-1) .93044417(-1)

.19 .96539810(-1) .89871243(-1) .84503368(-1) .78302220(-1) .71302131(-1)

.199 .10187446(0) .94899289(-1) .89246385(-1) .82724325(-1) .75411789(-1)

16 .1999 .10245341(0) .95427811(-1) .90004981(-1) .83180606(-1) .75825751(-1)

.20 .93044417(-8) .93044417(-8) .93044417(-8) .93044417(-8) .93044417(-8)

.201 .10313483(0) .96064523(-1) .90328887(-1) .83708838(-1) .76336697(-1)

.21 .10851809(0) .10116192(0) .95119081(-1) .88291369(-1) .80537640(-1)
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Table 2 Maximum absolute error (Problem 1).

MAE

N=M

λ 16 32 64 128 256

.19 .96539810(-1) .98467313(-1) .10002618(0) .93044417(-8) .93044417(-8)

.199 .10187446(0) .10409938(0) .10581468(0) .10681983(0) .10737519(0)

.1999 .10245141(0) .10459718(0) .10633237(0) .10736809(0) .10792833(0)

.20 .93044417(-8) .93044417(-8) .93044417(-8) .93044417(-8) .93044417(-8)

.201 .10313483(0) .10540088(0) .10712849(0) .10813649(0) .10870439(0)

.21 .10851809(0) .11108328(0) .11298846(0) .93044417(-8) .93044417(-8)

Table 3 Maximum absolute error (Problem 1).

MAE

M

N λ 4 8 16 32

.19 .58880460(-1) .82138918(-1) .96539810(-1) .10463663(0)

.199 .61741766(-1) .86510330(-1) .10187446(0) .11056767(0)

16.1999 .93044417(-8) .87102056(-1) .10245341(0) .11112830(0)

.20 .93044417(-8) .93044417(-8) .93044417(-8) .93044417(-8)

.201 .62708415(-1) .87558843(-1) .10313483(0) .11192413(0)

.21 .65576933(-1) .91972984(-1) .10851809(0) .11790539(0)

Table 4 Maximum absolute error (Problem 1).

MAE

M

N λ 64 128 256

.19 .10895841(0) .11119245(0) .11232845(0)

.199 .11521111(0) .11761030(0) .11882679(0)

16.1999 .11581678(0) .11824594(0) .11947899(0)

.20 .93044417(-8) .93044417(-8) .93044417(-8)

.201 .12292860(0) .12553489(0) .12686017(0)

.21 .82138918(-1) .75354241(-1) .69477819(-1)
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Table 5 Maximum absolute error (Problem 2).

MAE

N

M λ 4 8 16

.10 .11055857(0) .11045857(0) .11032658(0)

8 .15 .17244926(0) .17190818(0) .17155264(0)

.20 .23749650(0) .23588327(0) 00000

We considered a nonlinear model problem to test the computational result of the proposed method. The
numerical results for model problem 1 which is presented in table 1-4, for different values of N, M and range
of values of λ . The results are presented in table 1, errors do not grow as either N or M increases for λ = .20.
Thus we conclude that proposed method is convergent for λ = .20. However, such convergence is slow for
small value of parameter λ . The convergence of the proposed method depends on the value of the parameter
λ . Also proposed method produces growing error as either M or λ increase while N remains fixed. Thus we
observed that the proposed method does not converge for same parameter λ and fixed N as M increases. We
have drawn this observation from the result presented in table 3-4 for considered problem 1. It seems the rate
of the convergence is substantially very low. Under these observations, we have found computational result in
numerical experiment for the example 2.

7 Conclusion

A parametric finite difference method to find the numerical solution of two point boundary value problems
with uniform mesh has been developed and discussed. The method discretizes the problem (1) at the discrete
nodal points and is transformed into a system of algebraic equations given by (4). The propose method produces
an approximate numerical solution of the model problems with the uniform step size. We have discussed the
convergence of the proposed method, but we have not estimated exact rate of convergence. The numerical
results for the model problems showed that the proposed method is convergent for large values of N. The idea
presented in this article leads to the possibility to develop efficient computational method for the numerical
solution of higher order boundary value problems. Works in these directions are in progress.
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