
ISSN 2444-8656 doi:10.2478/AMNS.2018.2.00037 
Open Access. © 2018 V.A. Bazhenov et al., published by Sciendo.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.

Applied Mathematics and Nonlinear Sciences 3(2) (2018) 475–486

Applied Mathematics and Nonlinear Sciences
https://www.sciendo.com

Intermittent transition to chaos in vibroimpact system

V.A. Bazhenov, O.S. Pogorelova,T.G. Postnikova †.

Kyiv National University of Construction and Architecture, 31, Povitroflotskiy avenu, Kyiv,
Ukraine

Submission Info

Communicated by Juan L.G. Guirao
Received 29th August 2018

Accepted 29th November 2018
Available online 1st December 2018

Abstract
Chaotic behaviour of dynamical systems, their routes to chaos, and the intermittency in particular are interesting and
investigated subjects in nonlinear dynamics. The studying of these phenomena in non-smooth dynamical systems is of the
special scientists’ interest. In this paper we study the type-III intermittency route to chaos in strongly nonlinear non-smooth
discontinuous 2-DOF vibroimpact system. We apply relatively new mathematical tool – continuous wavelet transform
CWT – for investigation this phenomenon. We show that CWT applying allows to detect and determine the chaotic motion
and the intermittency with great confidence and reliability, gives the possibility to demonstrate intermittency route to chaos,
to distinguish and analyze the laminar and turbulent phases.

Keywords: : vibroimpact system, chaotic behaviour, route to chaos, intermittency, continuous wavelet transform, surface of wavelet
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1 Introduction

At present chaotic dynamics is one of the most interesting and investigated subjects in nonlinear dynamics.
Just deterministic chaos is not an exceptional mode of dynamical systems behaviour; on the contrary, such
regimes are observed in many dynamical systems in mathematics, physics, chemistry, biology and medicine.
Therefore, the studying of chaotic dynamics is one of the main ways of modern natural science development.
Many monographs, papers and textbooks are devoted to chaos studying [1–4].

The routes to chaos in nonlinear dynamical systems are of the special scientists’ interest. It is known three
main routes to chaos in dynamical systems [1, 3]:

1) period-doubling route to chaos – the most celebrated scenario for chaotic vibrations, it is Feigenbaum
scenario;

†Corresponding author
Email address: posttan@ukr.net

https://www.sciendo.com
http://dx.doi.org/10.2478/AMNS.2018.2.00037
https://www.sciendo.com
http://crossmark.crossref.org/dialog/?doi=10.2478/AMNS.2018.2.00037


476 V.A. Bazhenov, O.S. Pogorelova,T.G. Postnikova. Applied Mathematics and Nonlinear Sciences 3(2018) 475–486

2) quasiperiodic route to chaos;

3) intermittency route to chaos by Pomeau and Manneville.

So the transition from the periodic oscillatory regimes to chaotic ones via intermittency is one of the main
routes to chaos in nonlinear dynamic systems. The studying of this phenomenon in non-smooth dynamical sys-
tems (in vibroimpact system in particular) is of the special scientists’ interest. Intermittency was discovered and
divided at three types by French scientists Yv.Pomeau and P.Manneville [5] in 1980 year. When intermittency
occurs one observes long regions of periodic motion with bursts of chaos that is the zones of turbulent and lami-
nar motion alternate in such regime under one value of control parameter. As one varies a control parameter the
chaotic bursts become more frequent and longer. Intermittency classification is based on different types of local
bifurcations after which the periodic motion loses the stability; so intermittency type is defined by multiplier
Flouqet value [4, 5]. It is known that periodic motion loses the stability when at least one Floquet multiplier
is larger then one. This may occur in three different ways: 1) a real Floquet multiplier crosses the unit circle
at (+1), intermittency that may occur in this case was called by Yv. Pomeau and P. Manneville as type-I in-
termittency; 2) two complex conjugate multipliers cross the unit circle simultaneously, intermittency that may
occur in this case was called as type-II intermittency ; 3) a real Floquet multiplier crosses the unit circle at (−1),
intermittency that may occur in this case was called as type-III intermittency.

In this paper we study the intermittent transition to chaos in strongly nonlinear non-smooth discontinuous
system. It is 2-DOF two-body vibroimpact system (Fig. 1). We had studied its dynamical behaviour in our
previous papers [6–9]. We had seen several zones of instability when the control parameter – external loading
frequency – had been varying. We had found many interesting phenomena under this frequency changing, we
had observed: discontinuous bifurcations, rare attractor, transient chaos, quasiperiodic route to chaos [9, 10].
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Fig. 1 Vibroimpact system model

Now for studying the intermittent transition to chaos in this system we
apply relatively young mathematical tool – continuous wavelet transform
CWT.

The wavelet transform (WT) serves the purpose of analysis or synthe-
sizing a wide variety of generic signals at different frequencies and with
different resolution. WT arose in 80-th years of XX century. Now it is
state-of-art technique for nonstationary signals analysis. There are quite
a few articles, books, and textbooks written on them [11–14]. There is
developed Software: Wavelet Toolbox in Matlab, Mathcad and so on [15].

Mathematical transformations are applied to signals to obtain a further information from signal that is not
readily available in the raw signal. There is number of transformations that can be applied, among which the
Fourier transforms (FT) are probably by far the most popular.

The FT gives the frequency information of the signal, which means that it tells us how much of each fre-
quency exists in the signal, but it does not tell us when in time these frequency components exist. This infor-
mation is not required when the signal is stationary. When the signal is not stationary it is suitably to use the
WT, more exactly when the time localization of the spectral components are needed, a transform giving the
time-frequency representation of the signal is needed. The Wavelet transform is a transform of this type. It
provides the time-frequency representation. (There are other transforms which give this information too, such
as short time Fourier transform, Wigner distributions, etc.). Wavelet transform is capable of providing the time
and frequency information simultaneously, hence giving a time-frequency representation of the signal. The WT
was developed as an alternative to the short time Fourier Transform (STFT).

Like the FT the continuous wavelet transform (CWT) uses inner products to measure the similarity between
a signal and an analyzing function. In the FT the analyzing functions are the complex exponents e jωt . The
resulting transform is a function of a single variable ω . In the STFT the analyzing functions are windowed
complex exponentials w(t)e jωt , and the result is the function of two variables. The STFT coefficients F(ω,τ)
represent the match between the signal and a sinusoid with angular frequency ω in an interval of a specified
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length centered at τ .
In CWT the analyzing function is a wavelet ψ . The CWT compares the signal to shifted and compressed or

stretched versions of a wavelet. Stretching or compressing a function is collectively referred to as dilatation or
scaling and corresponds to the physical notion of scale. By comparing the signal to the wavelet at various scales
and positions we obtain a function of two variables. There are many different admissible wavelets that can be
used in the CWT. While it may seen confusing that there are so many choices for the analyzing wavelet it is
actually a strength of wavelet analysis. Depending on what signal features we are trying to detect, we are free to
select a wavelet that facilitates our detection of that feature.

Intermittency route to chaos has some complexity for analysis. At first it occurs much less then period
doubling route (which occurs the most often and is studied in the best way). At second "the catching" of
intermittency in system motion is not such simple task. The continuous wavelet transform CWT is useful
exactly for this task solving.

The chaotic motion and the intermittency in different mechanical and physical systems were studied in
[16–22] with WT applying.

The goals of this paper are the following:

1. To study the intermittency route to chaos in 2-DOF two-body vibroimpact system.

2. To apply the continuous wavelet transform CWT for this studying and to show its use for intermittency
"catching" and chaoticity anlysis.

2 The background for studying the intermittent transition to chaos in vibroimpact system

For these goals achievement we consider the model of 2-DOF two-body vibroimpact system (Fig. 1) which
we have studied it our previous works [6,7,9] and have obtained the amplitude-frequency response [7] in wide
range of control parameter by parameter continuation method (Fig. 2). The regions of unable motion are drawn
by grey colour. Here we’ll give only short model description.

Fig. 2 Amplitude-frequency response in wide
range of excitation frequency

Fig. 3 Floquet multipliers behaviour at DE
region

This model is formed by the main body m1 and attached one m2 , which can play the role of percussive
or non-percussive dynamic damper. Bodies are connected by linear elastic springs with stiffness k1 and k2 and
dampers with damping coefficients c1 and c2. (The damping force is taken as proportional to first degree of
velocity with coefficients c1 and c2.)
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The differential equations of its movement are:

ẍ1 =−2ξ1ω1ẋ1−ω
2
1 x1−2ξ2ω2χ(ẋ1− ẋ2)−

−ω
2
2 χ(x1− x2 +D)+

1
m1

[F(t)−Fcon(x1− x2)],

ẍ2 =−2ξ2ω2(ẋ2− ẋ1)−ω
2
2 (x2− x1−D)+

1
m2

Fcon(x1− x2),

(1)

where ω1 =

√
k1

m1
, ω2 =

√
k2

m2
; ξ1 =

c1

2m1ω1
, ξ2 =

c2

2m2ω2
; χ =

m2

m1
.

External loading is periodic one: F(t) = Pcos(ωt +ϕ0), T =
2π

ω
is its period.

Impact is simulated by contact interaction force Fcon according to contact quasistatic Hertz’s law:

Fcon(z) = K[H(z)z(t)]3/2,

K =
4
3

q
(δ1 +δ2)

√
A+B

,δ1 =
1−ν1

2

E1π
,δ2 =

1−ν2
2

E2π
,

(2)

where z(t) is the relative closing in of bodies, z(t) = x2− x1; A , B , and q are constants characterizing the local
geometry of the contact zone; νi and Ei are respectively Poisson’s ratios and Young’s modulus for both bodies,
H(z) is the discontinuous step Heviside function. The numerical parameters of this system are following:

m1=1000 kg, ω1=6.283 rad·s-1, ξ1=0.036, E1=2.1 ·1011 N·m2, ν1=0.3,
m2= 100 kg, ω2=5.646 rad·s-1, ξ2=0.036, E2=2.1·1011 N·m2, ν2=0.3,

P=500 N, A=B=0.5 m-1, q=0.318, ϕ0=0.

3 The numerical results

We had considered the region KL of unstable motion at amplitude-frequency response (Fig. 2) before [9,10].
There we had observed quasiperiodic route to chaos and transient chaos. Now we examine the region DE of
unstable motion. At points D and E the stable (1,1)-regime loses the stability, real Floquet multiplier crosses the
unit circle at (−1) (Fig. 3). (1,1)-regime – is periodic regime with T period and one impact per cycle.

There are two plots which show the whole motion picture very visibly and obviously (Fig. 4,5).
At these Figures we see the change of system dynamic states when the control parameter is varied. Let us

have an attentive look at dependence of the largest Lyapunov exponent on control parameter that is external
loading frequency (Fig. 4). Lyapunov exponents characterize the kind of dynamical system motion because they
measure the divergence rate of nearby phase trajectories. In order to have a criterion for chaos one need only
calculate the largest exponent which tells whether nearby trajectories diverge (λ > 0) or converge (λ < 0) on
the average. Its sign is chaos criterion. For regular motions λ ≤ 0, but for chaotic motion λ > 0 that is positive
Lyapunov exponent imply chaotic dynamics. We had written about the largest Lyapunov exponent estimation in
non-smooth vibroimpact system in [9, 23]. We see that the positive largest Lyapunov exponent corresponds to
the motion in external frequency range 6.07 rad·s-1< ω <6.29 rad·s-1. Here the motion is chaotic one. Further
we’ll show other motion characteristics in order to confirm its chaoticity.

At Fig. 5 the bifurcation diagram is depicted. The bifurcation diagram is a widely used technique for inves-
tigation different states of a dynamical system as parameter is varied. At Fig. 5 the value of control parameter (a
forcing frequency) is plotted on the horizontal axis and the values of phase coordinate x2(t) at Poincaré points
are plotted on the vertical axis. There is only one value of one point coordinate in Poincaré map for (1,1)-regime,
we see one point along vertical line at bifurcation diagram for ω <6.07 rad·s-1 and ω >6.38 rad·s-1. There are 2
separate points along vertical line for (2,2) and (2,3)-periodic regimes. They are the regimes with 2T period and
2 or 3 impacts per cycle. There are unbroken vertical lines for chaotic regime.
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Fig. 4 The largest Lyapunov exponent dependence on control parameter

Fig. 5 Bifurcation diagram

Let us now discuss more in details the transition to chaos. At the left border under ω =6.07 rad·s-1 (1,1)-
regime loses stability and becomes (2,2)-regime when the control parameter ω is increasing. Then intermittency
appears simultaneously with period doubling. The amplitude of subharmonic is growing and the amplitude of
main frequency is decreasing [4]. When the subharmonic amplitude becomes the big one signal loses regularity,
and turbulent bursts arise.

At first among wide laminar phases the narrow and rare turbulent bursts occur. They are the bursts of
vibrations with low frequencies and small amplitudes. These bursts have the pale non pronounced colour at the
plots of the wavelet surface protections. It is type-III intermittency. The projections of wavelet surface in wide
and narrow time ranges demonstrate this phenomenon very well (Fig. 6).

We use wavelet Morlet for continuous wavelet transform CWT. Here and further all plots are fulfilled for
attached body. Its mass is much less the main body mass. So its oscillatory amplitudes are more big and their
changes are seen better, so the plots are more obvious ones.

Then when ω is increasing the turbulence grows quickly, the turbulent bursts become more frequent. Some-
times in laminar phases subharmonic disappears and only main frequency remains.

We’ll show the intermittency under ω =6.13 rad·s-1 where it is pronounced (Fig. 7). Oscillogram at this
Figure is typical for type-III intermittency [4]. Let us have an attentive look at projection of wavelet surface. It
is well seen the regions where chaotic motion in turbulent phases and it’s high and low frequencies are interrupted
and only one high frequency remains that is laminar regions occur interrupted by chaos.

At Fig. 8 we show the small time region that is picked out by red oval. At this Fig. we see very obviously
the sharp change of chaotic motion into almost periodic one.

The surface of wavelet coefficients is shown at Fig. 9. We see very clearly how chaotic motion with many
different high and low frequencies (which are not constant in time) is changing by the periodic motion with only
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Fig. 6 Time series and wavelet surface projection for intermittency under ω =6.076 rad·s-1 (Color online)

one high frequency.
At Fig. 10 the phase trajectories and Poincaré maps are shown for regions of chaotic (turbulent phase) and

periodic (laminar phase) motions under intermittency (ω =6.13 rad·s-1). These plots underline the regimes
changing. They confirm and give the confidence in presence of almost periodic motion at this region.

Thus we see that surfaces of wavelet coefficients and their projections obtained by continuous wavelet trans-
form CWT give the possibility to find and "catch" the intermittency with great confidence and reliability.

We succeeded in finding the intermittency in non-smooth strongly nonlinear vibroimpact system. The CWT
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Fig. 7 Time series and wavelet surface projection for intermittency under ω =6.13 rad·s-1 (Color online)

Fig. 8 Time series and wavelet surface projection for intermittency under ω=6.13 rad·s-1 (region inside red oval at Fig. 7)
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Fig. 9 Surface of wavelet coefficients for intermittency under ω =6.13 rad·s-1 (Color online)

Fig. 10 Phase trajectories and Poincare maps for the regions of chaotic and periodic motions under intermittency
(ω =6.13 rad·s-1)

was very useful for this studying.
Then the whole chaos is beginning. .For chaotic motion under ω =6.2 rad·s-1 we show time series and

wavelet surface projection at Fig. 11.
We see many low frequencies which guarantee continuous Fourier spectrum. They are not constant in time.

The more high frequency (subharmonic) is not constant in time too. It is typical for non regular motion.
For confirming the chaoticity of this motion we show its phase trajectories and Poincare map at Fig. 12.
At Fig. 13 the surface of wavelet coefficients is depicted. It is seen well not a regular set of frequencies

which are not constant in time, they change in time. We see also many not regular low frequencies which are
not constant in time too.

Now let us have a look at the right border of bifurcation diagram at Fig. 5. Under ω =6.37 rad·s-1 (1,1)-
regime loses stability and becomes at first (2,2)-regime and then (2,3)-regime (under ω =6.3 rad·s-1) when the
control parameter ω is decreasing. Under further decreasing of external frequency ω the vibroimpact system im-
mediately finds itself in chaotic motion. We don’t observe intermittent regime. Already under ω =6.295 rad·s-1

(even 6.2951 rad·s-1) we see the whole chaos with continuous Fourier spectrum, with lot of low frequencies
which are not constant in time. The view of wavelet surface projection is analogous to Fig. 11.
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Fig. 11 Time series and wavelet surface projection for chaotic regime under ω =6.2 rad·s-1 (Color online)

Fig. 12 Phase trajectories and Poincare map for chaotic motion under ω =6.2 rad·s-1
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Fig. 13 Surface of wavelet coefficients for chaotic motion under ω =6.2 rad·s-1 (Color online)

4 Conclusions

1. Strongly nonlinear non-smooth discontinuous vibroimpact system demonstrates type-III intermittency
route to chaos when control parameter (frequency of external loading) is increasing. Intermittency is
observing after period doubling. Intermittency occurs only under increasing the external frequency after
the loss of stability by main oscillatory regime – at the left border of bifurcation diagram. At its right
border when the external frequency is decreasing intermittency isn’t observed – the vibroimpact system
immediately after period doubling finds itself in chaotic motion.

2. The continuous wavelet transform CWT is very useful for studying of chaotic motion and intermittency.
Its theory and existing Software allow to detect and determine these phenomena with great confidence and
reliability. Wavelet transform applying gives the possibility to demonstrate intermittency route to chaos
and to distinguish and analyze the laminar and turbulent phases. The plots of wavelet coefficients surfaces
and their projections give very obvious presentation of these regimes, especially the color plots online.
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[19] Rubežić, Vesna and Djurović, Igor and Sejdić, Ervin. (2017). Average wavelet coefficient-based detec-
tion of chaos in oscillatory circuits. COMPEL-The international journal for computation and mathematics
in electrical and electronic engineering, 36(1), 188-201. https://pdfs.semanticscholar.org/1256/
8fd8dc29a0775c7c4ff62b0bf76002c45f87.pdf

[20] Xu, G. S., Wan, B. N., & Zhang, W. (2006). Application of wavelet multiresolution analysis to the study of
self-similarity and intermittency of plasma turbulence. Review of scientific instruments, 77(8), 083505. DOI:
10.1063/1.2336754

[21] Afonin, V. V.,& Boletskaya, T. K. (2011). Wavelet analysis of II and III type intermittency. Nelineinaya
Dinamika [Russian Journal of Nonlinear Dynamics], 7(3), 427-436. http://www.mathnet.ru/links/
7e3856783d52c5800e8670c2e59515ed/nd268.pdf

[22] Koronovskii, A.A., & Khramov, A.E. (2001). An effective wavelet analysis of the transition to chaos via intermittency.
Technical Physics Letters, 27(1), 3. https://ir.stonybrook.edu/xmlui/bitstream/handle/11401/
69631/TPLv27i1final.pdf?sequence=2

[23] Bazhenov V.A., Pogorelova O.S., & Postnikova T.G. (2017). Lyapunov exponents estimation for strongly nonlinear
nonsmooth discontinuous vibroimpact system. Strength of Materials and Theory of Structures, 99, 90-105. http:
//opir.knuba.edu.ua/files/zbirnyk-99/06-99_.pdf

 https://doi.org/10.21042/AMNS.2016.1.00014
 https://doi.org/10.21042/AMNS.2016.1.00014
http://opir.knuba.edu.ua/files/zbirnyk-100/01-100_baz_pog_pos.pdf
http://opir.knuba.edu.ua/files/zbirnyk-100/01-100_baz_pog_pos.pdf
http://cseweb.ucsd.edu/~baden/Doc/wavelets/polikar_wavelets.pdf
http://cseweb.ucsd.edu/~baden/Doc/wavelets/polikar_wavelets.pdf
 https://doi.org/10.21042/AMNS.2016.2.00042
https://www.mathworks.com/help/wavelet/ref/cwt.html
http://www.scielo.org.mx/pdf/rmf/v52n2/v52n2a11.pdf
 https://doi.org/10.31349/RevMexFis.64.283
 https://doi.org/10.31349/RevMexFis.64.283
https://pdfs.semanticscholar.org/1256/8fd8dc29a0775c7c4ff62b0bf76002c45f87.pdf
https://pdfs.semanticscholar.org/1256/8fd8dc29a0775c7c4ff62b0bf76002c45f87.pdf
http://www.mathnet.ru/links/7e3856783d52c5800e8670c2e59515ed/nd268.pdf
http://www.mathnet.ru/links/7e3856783d52c5800e8670c2e59515ed/nd268.pdf
https://ir.stonybrook.edu/xmlui/bitstream/handle/11401/69631/TPLv27i1final.pdf?sequence=2
https://ir.stonybrook.edu/xmlui/bitstream/handle/11401/69631/TPLv27i1final.pdf?sequence=2
http://opir.knuba.edu.ua/files/zbirnyk-99/06-99_.pdf
http://opir.knuba.edu.ua/files/zbirnyk-99/06-99_.pdf
https://www.sciendo.com


486 V.A. Bazhenov, O.S. Pogorelova,T.G. Postnikova. Applied Mathematics and Nonlinear Sciences 3(2018) 475–486

T
hi
s
pa
ge
is
in
te
nt
io
na
lly

le
ft
bl
an
k

https://www.sciendo.com

	Introduction
	The background for studying the intermittent transition to chaos in vibroimpact system
	The numerical results
	Conclusions

