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Abstract
In this paper we study the modified equal-width equation, which is used in handling simulation of a single dimensional wave
propagation in nonlinear media with dispersion processes. Lie point symmetries of this equation are computed and used
to construct an optimal system of one-dimensional subalgebras. Thereafter using an optimal system of one-dimensional
subalgebras, symmetry reductions and new group-invariant solutions are presented. The solutions obtained are cnoidal
and snoidal waves. Furthermore, conservation laws for the modified equal-width equation are derived by employing two
different methods; the multiplier method and Noether approach.
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1 Introduction

In this paper we study the third-order modified equal-width (MEW) equation

ut +3αu2ux−βutxx = 0, α 6= 0, β 6= 0, (1)

where α and β are non-zero real parameters. Equation (1) is used in handling the simulation of a single di-
mensional wave propagation in nonlinear media with dispersion processes [1]. Some researchers have used
different techniques and methods to construct travelling wave solutions of (1). Recently MEW equation (1) was
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investigated in [1], where the researchers employed extended simple equation method and also the exp(−ϕ(ξ ))
expansion method to generate travelling wave solutions of the equation. In [2], dynamical system technique
for integer order was used and travelling wave solutions of the MEW equation were found, which comprised of
solitary, periodic waves and also kink and anti-kink wave solutions. Homotopy perturbation method was applied
to (1) and numerical solution of the MEW equation was obtained in [3].

In our study we use an entirely different approach to obtain new exact travelling wave solutions, namely
cnoidal and snoidal wave solutions of MEW equation (1). Moreover, for the first time we derive conservation
laws of the MEW equation by employing both the Noether approach as well as the multiplier approach.

2 Exact solutions of (1) constructed on optimal system

In this section, we first compute Lie point symmetries of (1) and then use them to construct an optimal system
of one-dimensional subalgebras. Subsequently, we utilise this optimal system of one-dimensional subalgebras
to obtain symmetry reductions and group-invariant solutions of (1) [4–8].

2.1 Lie point symmetries of (1)

The vector field

X = τ(t,x,u)
∂

∂ t
+ξ (t,x,u)

∂

∂x
+η(t,x,u)

∂

∂u
, (2)

where τ , ξ and η depend on t, x and u is a Lie point symmetry of equation (1) if

pr(3)X∆|∆=0 = 0, (3)

where
∆≡ ut +3αu2ux−βutxx

and pr(3)X is the third prolongation [6] of (2) defined as

pr(3)X = X +ζt
∂

∂ut
+ζx

∂

∂ux
+ζtx

∂

∂utx
+ζtxx

∂

∂utxx
. (4)

Here ζt , ζx, ζtx and ζtxx are determined by

ζt = Dt(η)−utDt(τ)−uxDt(ξ ),

ζx = Dx(η)−utDx(τ)−uxDx(ξ ),

ζtx = Dx(ζt)−uttDx(τ)−utxDx(ξ ),

ζtxx = Dx(ζtx)−uttxDx(τ)−utxxDx(ξ ),

(5)

where the total derivatives Dt and Dx are defined as

Dt =
∂

∂ t
+ut

∂

∂u
+utt

∂

∂ut
+utx

∂

∂ux
+ · · · ,

Dx =
∂

∂x
+ux

∂

∂u
+uxx

∂

∂ux
+uxt

∂

∂ut
+ · · · .

(6)

Expanding (3) and splitting on derivatives of u yields an overdetermined system of linear homogeneous partial
differential equations (PDEs). Solving these equations we obtain the values of τ , ξ and η , which lead to three
Lie point symmetries of (1) given by

X1 =
∂

∂ t
, X2 =

∂

∂x
, X3 = 2t

∂

∂ t
−u

∂

∂u
.

The infinitesimal generator X3 represents scaling symmetry whereas the one-parameter groups generated by X1
and X2 demonstrate time and space-invariance of the MEW equation.
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2.2 Optimal system of one-dimensional subalgebras

We now calculate an optimal system of one-dimensional subalgebras by using Lie point symmetries of (1)
obtained in the previous subsection. We employ the method given in [6]. We first construct the commutator
table. Thereafter we compute adjoint representation using the Lie series

Ad(exp(εXi))X j =
∞

∑
n=0

εn

n!
(adXi)

n(X j) = X j− ε[Xi,X j]+
ε2

2!
[Xi, [Xi,X j]]−·· · ,

where ε is a real number and [Xi,X j] denotes the commutator defined by

[Xi,X j] = XiX j−X jXi.

The table of commutators of Lie point symmetries of equation (1) and adjoint representations of the symmetry
group of (1) on its Lie algebra are presented in Table 1 and Table 2, respectively. Consequently, Table 1 and
Table 2 are used to compute an optimal system of one-dimensional subalgebras for equation (1).

Table 1. Lie brackets for equation (1)

[ , ] X1 X2 X3
X1 0 0 2X1
X2 0 0 0
X3 −2X1 0 0

Table 2. Adjoint representation of subalgebras

Ad X1 X2 X3
X1 X1 X2 −2εX1 +X3
X2 X1 X2 X3
X3 e2ε X1 X2 X3

Thus following [6] and utilising Tables 1 and 2 we can obtain an optimal system of one-dimensional subalgebras,
which is given by {X1 + cX2,X3 +aX2}, where c and a are arbitrary constants.

2.3 Solutions and symmetry reductions

We now utilise the optimal system of one-dimensional subalgebras obtained above in the previous subsection
and find group-invariant solutions and symmetry reductions for equation (1).

Consider the first operator X1 + cX2 of the optimal system. This operator has two invariants

ξ = x− ct and U = u,

which give the group-invariant solution U = U(ξ ). Using ξ as our new independent variable, equation (1) is
transformed into the nonlinear ordinary differential equation (ODE)

cβU ′′′(ξ )+3αU2(ξ )U ′(ξ )− cU ′(ξ ) = 0. (7)

We now use the extended Jacobi elliptic function expansion method [9] to obtain travelling wave solutions
of (1). We assume that solutions of the third-order nonlinear ODE (7) can be expressed in the form

U(ξ ) =
M

∑
i=−M

AiH(ξ )i, (8)

where M is a positive integer obtained by the balancing procedure and Ai are constants to be determined. Here
H(ξ ) satisfies the nonlinear first-order ODE

H ′(ξ ) =−
√

(1−H2(ξ ))(1−ω +ωH2(ξ )) (9)
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or
H ′(ξ ) =

√
(1−H2(ξ ))(1−ωH2(ξ )) . (10)

We recall that the Jacobi cosine-amplitude function

H(ξ ) = cn(ξ |ω) (11)

is a solution to (9), whereas the Jacobi sine-amplitude function

H(ξ ) = sn(ξ |ω) (12)

is a solution to (10). Here ω is a parameter such that 0≤ ω ≤ 1 [9, 10].
We note that when ω → 1, then cn(ξ |ω) → sech(ξ ) and sn(ξ |ω) → tanh(ξ ). Also, when ω → 0, then

cn(ξ |ω)→ cos(ξ ) and sn(ξ |ω)→ sin(ξ ).

2.3.1 Cnoidal wave solutions

Considering the nonlinear ODE (7), the balancing procedure yields M = 1. Thus (8) takes the form

U(ξ ) = A−1H−1(ξ )+A0 +A1H(ξ ). (13)

Substitution of U from (13) into (7) and utilising (9) we obtain

H(ξ )4
β cA−1−H(ξ )6

β cA1 +H(ξ )4
β cA1−7H(ξ )2

β cA−1−12β cω A−1

+6β cω
2A−1 +3H(ξ )10

α ω A1
3−6H(ξ )8

α ω A1
3−H(ξ )8cω A1

+6H(ξ )7
α A0A1

2 +3H(ξ )6
α ω A1

3−3α ω A−1
3−3H(ξ )6

α A1
3 +3H(ξ )8

α A1
3

−H(ξ )6cA1 +H(ξ )4cA1 +H(ξ )4cA−1−3H(ξ )2
α A−1

3−H(ξ )2cA−1

−10H(ξ )6
β cω

2A1−2H(ξ )6
β cω

2A−1−7H(ξ )8
β cω A1 +14H(ξ )8

β cω
2A1

−6H(ξ )10
β cω

2A1 +21H(ξ )2
β cω A−1−14H(ξ )2

β cω
2A−1−3H(ξ )4

β cω A1

−10H(ξ )4
β cω A−1 +2H(ξ )4

β cω
2A1 +10H(ξ )4

β cω
2A−1 +10H(ξ )6

β cω A1

+H(ξ )6
β cω A−1 +3H(ξ )8

α ω A0
2A1 +3H(ξ )8

α ω A−1A1
2 +6H(ξ )9

α ω A0A1
2

−6H(ξ )α ω A−1
2A0−3H(ξ )2

α ω A−1A0
2−3H(ξ )2

α ω A−1
2A1 +12H(ξ )3

α ω A−1
2A0

+3H(ξ )4
α ω A0

2A1 +3H(ξ )4
α ω A−1A1

2 +6H(ξ )4
α ω A−1A0

2 +6H(ξ )4
α ω A−1

2A1

+6H(ξ )5
α ω A0A1

2−6H(ξ )5
α ω A−1

2A0−6H(ξ )6
α ω A0

2A1−6H(ξ )6
α ω A−1A1

2

−3H(ξ )6
α ω A−1A0

2−3H(ξ )6
α ω A−1

2A1−12H(ξ )7
α ω A0A1

2 +6H(ξ )α A−1
2A0

+3H(ξ )2
α A−1A0

2 +H(ξ )2cω A−1 +3H(ξ )2
α A−1

2A1 +6H(ξ )2
α ω A−1

3

−H(ξ )4cω A1−6H(ξ )3
α A−1

2A0−2H(ξ )4cω A−1−3H(ξ )4
α A−1A1

2

−3H(ξ )4
α A0

2A1−3H(ξ )4
α A−1

2A1−3H(ξ )4
α A−1A0

2 +2H(ξ )6cω A1

−6H(ξ )5
α A0A1

2−3H(ξ )4
α ω A−1

3 +3H(ξ )6
α A−1A1

2 +3H(ξ )6
α A0

2A1

+H(ξ )6cω A−1 +6β cA−1 +3α A−1
3 = 0.

The above equation can be separated on like powers of H(ξ ) to obtain an overdetermined system of eleven
algebraic equations

A0A1
2 = 0,

A−1
2A0−ω A−1

2A0 = 0,

2ω A−1
2A0−A−1

2A0 = 0,
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A0A1
2−2ω A0A1

2 = 0,

α A1
3−2β cωA1 = 0,

ω A0A1
2−ω A−1

2A0−A0A1
2 = 0,

2β cω
2A−1−α ω A−1

3 +α A−1
3−4β cω A−1 +2β cA−1 = 0,

3α ω A−1A1
2 +3α ω A0

2A1−6α ω A1
3 +14β cω

2A1 +3α A1
3−7β cω A1− cω A1 = 0,

6α ω A−1
3−3α ω A−1

2A1−3α ω A−1A0
2−14β cω

2A−1−3α A−1
3 +3α A−1

2A1

+3α A−1A0
2 +21β cω A−1−7β cA−1 + cω A−1− cA−1 = 0,

3α ω A1
3−3α ω A−1

2A1−3α ω A−1A0
2−6α ω A−1A1

2−6α ω A0
2A1−2β cω

2A−1

+3α A−1A1
2−10β cω

2A1 +3α A0
2A1−3α A1

3 +β cω A−1 +10β cω A1−β cA1 + cω A−1

+2cω A1− cA1 = 0,

6α ω A−1
2A1−3α ω A−1

3 +6α ω A−1A0
2 +3α ω A−1A1

2 +3α ω A0
2A1 +10β cω

2A−1

+2β cω
2A1−3α A−1

2A1−3α A−1A0
2−3α A−1A1

2−3α A0
2A1−10β cω A−1

−3β cω A1 +β cA−1 +β cA1−2cω A−1− cω A1 + cA−1 + cA1 = 0.

Solving the above system of equations we obtain

ω =
8β +3k−1

16β
, A0 = 0, A1 =±

√
c(3k+8β −1)

8α
, A−1 =−

3β ± k
β +1

A1

with k =
√

8β 2 +1.
Thus reverting to the original variables the solutions of (1) are

u(t,x) =±
√

c(3k+8β −1)
8α

{
cn(ξ |ω )−

(
3β ± k
β +1

)
nc(ξ |ω )

}
, (14)

where nc = 1/cn.

2.3.2 Snoidal wave solutions

We now obtain snoidal wave solutions for equation (1). Here again M = 1. Substituting the value of U from
(13) into (7) and making use of (10) we obtain

3H(ξ )6
α A1

3−H(ξ )4cA1 +H(ξ )2cA−1 +3H(ξ )2
α A−1

3 +3H(ξ )4
α A−1

2A1

+3H(ξ )4
α A−1A0

2 +H(ξ )6
β cA1−H(ξ )4

β cA−1−H(ξ )4
β cA1 +7H(ξ )2

β cA−1

+3H(ξ )4
α A−1A1

2 +3H(ξ )4
α A0

2A1 +3H(ξ )10
α ω A1

3−3H(ξ )8
α ω A1

3−H(ξ )8cω A1

−6H(ξ )7
α A0A1

2−3H(ξ )6
α A−1A1

2−3H(ξ )6
α A0

2A1 +H(ξ )6cω A−1 +H(ξ )6cω A1

+6H(ξ )5
α A0A1

2−3H(ξ )4
α ω A−1

3−3α A−1
3−6H(ξ )7

α ω A0A1
2−3H(ξ )6

α ω A−1
2A1

−3H(ξ )6
α ω A−1A0

2−3H(ξ )6
α ω A−1A1

2−3H(ξ )6
α ω A0

2A1−6H(ξ )5
α ω A−1

2A0

+3H(ξ )4
α ω A−1

2A1 +3H(ξ )4
α ω A−1A0

2 +6H(ξ )9
α ω A0A1

2 +3H(ξ )8
α ω A−1A1

2

+3H(ξ )8
α ω A0

2A1−3H(ξ )8
α A1

3 +H(ξ )6cA1−H(ξ )4cA−1−6β cA−1

+7H(ξ )2
β cω A−1−H(ξ )4

β cω A1−8H (ξ )4
β cω A−1−H(ξ )4

β cω
2A−1 +8H(ξ )6

β cω A1

+H(ξ )6
β cω A−1 +H(ξ )6

β cω
2A1 +H(ξ )6

β cω
2A−1−7H(ξ )8

β cω A1−7H(ξ )8
β cω

2A1

−3H(ξ )2
α A−1A0

2−6H (ξ )α A−1
2A0 +3H(ξ )2

α ω A−1
3−3H(ξ )2

α A−1
2A1

−H(ξ )4cω A−1 +6H(ξ )3
α A−1

2A0 +6H(ξ )10
β cω

2A1 +6H(ξ )3
α ω A−1

2A0 = 0.
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Splitting on powers of H(ξ ) yields the following overdetermined system of algebraic equations:

A−1
2A0 = 0,

A0A1
2 = 0,

α A−1
3 +2β cA−1 = 0,

ω A−1
2A0 +A−1

2A0 = 0,

ω A0A1
2 +A0A1

2 = 0,

α A1
3 +2β cωA1 = 0,

ω A−1
2A0−A0A1

2 = 0,

3α ω A−1A1
2 +3α ω A0

2A1−3α ω A1
3−7β cω

2A1−3α A1
3−7β cω A1− cω A1 = 0,

3α ω A−1
3 +3α A−1

3−3α A−1
2A1−3α A−1A0

2 +7β cω A−1 +7β cA−1 + cA−1 = 0,

β cω
2A−1−3α ω A−1

2A1−3α ω A−1A0
2−3α ω A−1A1

2−3α ω A0
2A1 +β cω

2A1

+3α A1
3−3α A−1A1

2−3α A0
2A1 +β cω A−1 +8β cω A1 +β cA1 + cω A−1 + cω A1 + cA1 = 0,

3α ω A−1
2A1−3α ω A−1

3 +3α ω A−1A0
2−β cω

2A−1 +3α A−1
2A1 +3α A−1A0

2 +3α A−1A1
2

+3α A0
2A1−8β cω A−1−β cω A1−β cA−1−β cA1− cω A−1− cA−1− cA1 = 0.

Solving the above system of equations we get

β =− 1
1+ω

, A−1 = A0 = 0, A1 =±
√

2c(β +1)
α

.

Reverting to original variables we obtain solutions of (1) as

u(t,x) =±
√

2c(β +1)
α

sn(ξ |ω ) . (15)

We now consider the second operator X3 + aX2 of the optimal system. This symmetry operator yields two
invariants J1 = ex t−a/2 and J2 = ut1/2. Thus J2 = f (J1) provides a group-invariant solution to (1). That is

u = t−1/2 f (ex t−a/2).

Substituting the above value of u in (1), we obtain the third-order nonlinear ODE

aβ z3 f ′′′(z)+β (3a+1)z2 f ′′(z)+(aβ −a+β )z f ′(z)+6αz f (z)2 f ′(z)− f (z) = 0,

where z = ex t−a/2.

3 Conservation laws of the modified equal width equation (1)

In the section we derive conservation laws for (1) by employing two different techniques, namely the multi-
plier method and Noether approach.

Conservation laws have several important uses in the study of partial differential equations, especially for
determining conserved quantities and constants of motion, detecting integrability and linearizations, finding
potentials and nonlocally-related systems, as well as checking the accuracy of numerical solution methods [11–
17].
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3.1 Conservation laws of (1) using multiplier approach

We look for zeroth-order multiplier Λ=Λ(t,x,u). Thus, the determining equation for this multiplier is stated
as

δ

δu

{
Λ(t,x,u)

(
ut +3αu2ux−βutxx

)}
= 0, (16)

where δ/δu is the Euler-Lagrange operator defined as

δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
−DtD2

x
∂

∂utxx

and the total derivatives Dt and Dx are defined as in (6). The above equation yields

utΛu +3αu2uxΛu−βutxxΛu +6αuuxΛ−Dt(Λ)−Dx(3αu2
Λ)+βD2

xDt(Λ) = 0,

which on expanding gives

utΛu +3αu2uxΛu−βuxxtΛu +6αuuxΛ−Λt −utΛu−3αu2
Λx−6αuuxΛ−3αu2uxΛu +βΛtxx

+βutΛuxx +βuxΛtux +βutuxΛuux +βutxΛux +βuxΛtux +βutuxΛuux +βu2
xΛtuu +βutu2

xΛuuu

+βutxuxΛuu +βutxΛux +βutxuxΛuu +βuxxΛtu +βuxxutΛuu +βuxxtΛu = 0.

Splitting the above equation on derivatives of u, we obtain

Λuu = 0, Λux = 0, Λtu = 0, βΛtxx−3αu2
Λx−Λt = 0.

By solving the above equations we get two multipliers given by

Λ1(t,x,u) = u

and
Λ2(t,x,u) = 1.

Corresponding to these two multipliers, we obtain the following two conservation laws:

T t
1 =

1
2

u2 +
1
2

βu2
x ,

T x
1 =

3
4

αu4−βuutx

and

T t
2 = u,

T x
2 = αu3−βutx.

3.2 Conservation laws of (1) using Noether’s theorem

In this subsection we derive conservation laws for the modified equal-width equation (1) using Noether’s
theorem [18, 19]. This equation as it is does not have a Lagrangian. In order to apply Noether’s theorem we
transform equation (1) to a fourth-order equation which will have a Lagrangian. Thus using the transformation
u =Vx, equation (1) becomes

Vtx +3αV 2
x Vxx−βVtxxx = 0. (17)

It can readily be verified that a Lagrangian for equation (17) is given by

L =−1
2

VxVt −
1
4

αV 4
x −

1
2

βVxxVtx (18)
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because δL /δV = 0 on (17). Here δ/δV is the Euler-Lagrange operator defined as

δ

δV
=

∂

∂V
−Dt

∂

∂Vt
−Dx

∂

∂Vx
+D2

x
∂

∂Vxx
+DtDx

∂

∂Vtx
.

Consider the vector field

X = τ(t,x,V )
∂

∂ t
+ξ (t,x,V )

∂

∂x
+η(t,x,V )

∂

∂V
, (19)

where τ , ξ and η depend on t, x and V . To determine Noether point symmetries X of (17) we insert the value of
L from (18) in the determining equation

pr[2]X(L )+L [Dt (τ)+Dx (ξ )] = Dt
(
Bt)+Dx (Bx) , (20)

where Bt = Bt(t,x,V ) and Bx = Bx(t,x,V ) are gauge terms and pr[2]X is the second prolongation of X defined as

pr[2]X = X +ζt
∂

∂Vt
+ζx

∂

∂Vx
+ζxx

∂

∂Vxx
+ζtx

∂

∂Vtx
(21)

with ζt , ζx, ζxx and ζtx as defined in (5). Expansion of equation (20) and separating with respect to derivatives
of V yields an overdetermined system of linear PDEs. Thereafter solving these PDEs we obtain the following
Noether point symmetries together with their gauge functions:

X1 =
∂

∂ t
, Bt = 0, Bx = 0,

X2 =
∂

∂x
, Bt = 0, Bx = 0,

X f = f (t)
∂

∂V
, Bt = 0, Bx =−1

2
f ′(t)V.

Next, we use the above results to compute conserved vectors of the fourth-order equation (17). Using formulae
for the conserved vector (T t ,T x) [20]

Fk = L τ
k +(ξ α −ψ

α

x j τ
j)

(
∂L

∂ψα

xk

−
k

∑
l=1

Dxl

(
∂L

∂ψα

xlxk

))
+

n

∑
l=k

(ηα
l −ψ

α

xlx j τ
j)

∂L

∂ψα

xkxl

− f k

we obtain three conserved vectors associated with three Noether point symmetries X1, X2 and X f . Then reverting
to the original variable u, we have

T t
1 = −1

4
αu4− 1

2
βuxut −

1
2

βuxx

ˆ
utdx,

T x
1 =

1
2

(ˆ
utdx

)2

+αu3
ˆ

utdx− 1
2

βuxt

ˆ
utdx+

1
2

βu2
t +

1
2

βux

ˆ
uttdx;

T t
2 =

1
2

u2− 1
2

βuuxx,

T x
2 =

3
4

αu4− 1
2

βuuxt +
1
2

βuxut ;

T t
f = −

1
2

f (t)u+
1
2

β f (t)uxx,

T x
f = −1

2
f (t)
ˆ

utdx−α f (t)u3 +
1
2

β f (t)uxt −
1
2

β f ′(t)ux +
1
2

f ′(t)
ˆ

udx.

Remark: It should be noted that due to the presence of arbitrary function f (t) we have infinitely many nonlocal
conservation laws.
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4 Conclusions

In this paper we studied the modified equal-width equation (1). For the first time, Lie point symmetries of (1)
were computed and used to construct an optimal system of one-dimensional subalgebras. Thereafter utilising
this optimal system of one-dimensional subalgebras, symmetry reductions and new group-invariant solutions
of (1) were presented. The solutions obtained were cnoidal and snoidal waves. Again for the first time, we
computed the conservation laws for (1) by employing two different methods; the multiplier method and Noether
approach.
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