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Abstract
In this article, we propose a new computational method for second order initial value problems in ordinary differential
equations. The algorithm developed is based on a local representation of theoretical solution of the second order initial
value problem by a non-linear interpolating function . Numerical examples are solved to ensure the computational
performance of the algorithm for both linear and non-linear initial value problems. From the results we obtained ,the
algorithm can be said computationally efficient and effective.
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1 Introduction

Many phenomena that occur in chemical ,biological ,engineering,physical and social sciences can be
modelled mathematically in the form of either ordinary or partial differential equations .However it is difficult
to obtain exact solution for these differential equations especially if it is nonlinear ,by analytical means.So we
consider an approximate solution to these problems.There are numerous ways by which an approximate solution
can be constructed.In numerical analysis a concept of approximation play very important role .Thus solving these
practical problems which modelled as differential equation approximately,is one of the main preoccupations in
numerical analysis.

Consider second order initial value problems in ordinary differential equations of the form

y(2)(x) = f (x,y,y′), x ∈ [a,b]⊂ R and y(x),y′(x), f (x,y,y′) ∈ R

(1.1)
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subject to initial conditions

y(a) = α and y′(a) = β ,

In the literature,problems of the form(1.1) are conventionally solved by reducing the differential system to first
order equations. Some eminent authors have contributed in this specific area of research [1,2,3,4,11]. Another
approach to investigate the solution of such problems were and referred to as shooting method either simple or
multiple [8].In recent years researchers[5,6] applied a nonstandard method and obtained competitive results to
those obtained with other method.So,much research have reported on the numerical integration of initial value
problems in literature, many of them are excellent work.But a concept to develop a new algorithm to solve
equation (1.1) can not be over emphasized.

In this article ,we develop a new single step algorithm capable of solving equations of the form (1.1).The
similar algorithm was first reported [7] in study of first order initial value problems.Having seen the performance
of the algorithm for solution of first order initial value problems , we are motivated and challenged to investigate
what will happen if a similar idea is used to derive an algorithm for solution of second order initial value
problems.

The existence and uniqueness of the solution to initial value problem(1.1) is assumed.Further we assume
that problems (1.1) is well posed with continuous derivatives and that the solution depends differentially
on the initial conditions.The specific assumption on f(x,y,y’) to ensure existence and uniqueness will not be
considered[8,9,10].

This paper is divided into five sections.Section 2 deals with the derivation and development of the algorithm
while truncation error and convergence of the algorithm are developed in Section 3.The stability of the algorithm
is discussed in section 4 while numerical experiments on four model problems are presented in section 5.

2 Development of Algorithm

We define N, the finite number of the nodal points of the interval [a,b],in which the solution of the problem
(1.1) is desired as

x j = a+ jh, j = 0,1,2 . . . ,N (2.2)

where the terms in right side of expression (2.2) are defined as,

the step length h =
(b−a)

N
, and xN = b

Suppose we have to determine a number y j, which is numerical approximation to the value of the theoretical
solution y(x) of problem(1.1) at the nodal point x j, j = 1,2 . . . ,N and other similarly notations like f j

defined as f (x j,y j,y′j) .Following the ideas in [1,6],assuming the local assumption that the theoretical solution
y(x) to the initial value problem (1.1) can be locally represented in the interval [x j,x j+1] by the interpolating
function

F(x) = a0 +a1.x+a2.x2 +a3.ex3
(2.3)

where a0,a1,a2,and a3 are undetermined coefficients.
To determine these undetermined coefficients ,let impose these following conditions.
1. The interpolating function and its first derivative w.r.t. x must coincide with y(x) and y′(x) the

theoretical solution and derivative of solution w.r.t. xof the problem (1.1) at x = x j and x = x j+1 i.e.

F(x j) = y(x j) and F(x j+1) = y(x j+1)

F ′(x j) = y′(x j) and F ′(x j+1) = y′(x j+1) (2.4)
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2.The second and third derivatives w.r.t x ,of the interpolating function respectively coincide with f (x,y,y′)
and derivative of f (x,y,y′) w.r.t. x at x = x j i.e.

F(2)(x j) = f j and F(3)(x j) = f ′j (2.5)

Thus ,from assumptions (2.4,2.5) ,we will get

a0 +a1.x j +a2.x2
j +a3.ex3

j = α

a1 +2.a2.x j +3.a3.x2
j .e

x3
j = β

2.a2 +3.a3.x j.(2+3.x3
j).e

x3
j = f j

3.a3.(2+18.x3
j +9.x6

j).e
x3

j = f ′j (2.6)

Solving the system of equation (2.6) for a0,a1, .... ,we will obtain

a1 = β − x j. f j +
(x2

j +3x5
j) f ′j

2+18.x3
j +9.x6

j

a2 =
1
2
( f j−

(2x j +3x4
j) f ′j

2+18.x3
j +9.x6

j
)

a3 =
f ′j.e
−x3

j

3.(2+18.x3
j +9.x6

j)
(2.7)

From equation (1.4) we have

y j+1− y j = a1(x j+1− x j)+a2(x2
j+1− x2

j)+a3(e
x3

j+1− ex3
j )

y′j+1− y′j = 2a2(x j+1− x j)+3a3(x2
j+1ex3

j+1− x2
je

x3
j ) (2.8)

From equation(2.2) and substituting the values of a1,a2 and a3 from (2.7) ,in equation (2.8) ,we have

y j+1 = y j +h

(
β − x j. f j +

(x2
j +3x5

j) f ′j
2+18.x3

j +9.x6
j

)
+

h(2x j +h)
2

(
f j−

(2x j +3x4
j) f ′j

2+18.x3
j +9.x6

j

)
+

(e3x jh(x j+h)+h3−1) f ′j
2+18.x3

j +9.x6
j

(2.9)

y′j+1 = y′j +h f j−
h(2x j +3x4

j) f ′j
2+18.x3

j +9.x6
j
+

((x j +h)2e3x jh(x j+h)+h3− x2
j) f ′j

2+18.x3
j +9.x6

j
(2.10)

We replace f ′j by its first order difference approximation in (2.9) i.e.

f ′j =
f j+1− f j

h

So we will obtain our single step implicit algorithm .
Thus we have developed single step implicit algorithm of the form

y j+1 = y j +h.φ(h, f j, f ′j)

y′j+1 = y′j +h.ϕ(h, f j, f ′j) (2.11)
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where φ and ϕ are increment functions.These increment functions depend on h, f j and f ′j. If the system
of equations (2.10)are linear generally solved by iterative method otherwise Newton Raphson method.After
application of these algorithm we have taken as an approximation for the exact solution and derivative of solution
of the problem (1.1) at x j+1,the values y j+1 and y′j+1 given by (2.9).Repeating the procedure along the nodes
on the interval of integration,we will obtain a discrete solution and derivative of the solution for the problem.In
the numerical section ,we will see that the performance of proposed algorithm for a variety of second order
initial value problems.

3 The Local truncation error and Convergence

In this section, we consider the error associated to the proposed algorithm (2.9).
Let the local truncation error Tn+1, defined as in[13],

Tn+1 = y(xn +h)− yn+1 (3.12)

Substituting the value of yn+1 from (2.9) in (3.11),and expanding y(xn+h) in Taylor series about point xn ,so we
have

Tn+1 =
h(x2

n +3x5
n)(y

(3)
n −1)

2+18.x3
n +9.x6

n
+O(h2)

=
h
2
(x2

n +3x5
n)(y

(3)
n −1)(1+9.x3

n +
9
2
.x6

n)
−1 +O(h2)

<
h
2
(y(3)n −1)x2

n +O(h2)

|Tn+1|<
hb2

2
|y(3)n | (3.13)

where b = max(xn) in [a,b]. Thus local truncation error Tn+1 is bounded.We know x0 and y(x0) exactly then
using algorithm (2.9),we can compute yn+1,n = 0,1,2,3, .....N with maximum error hb2

2 y(3)n .The error arising
from all the initial conditions tends to zero as h→ 0 i.e. for large N.Similarly we can find maximum error in
second algorithm of(2.9),for computation of derivative of solution. Thus we have concluded that method (2.9)
is convergent for large N.

4 Stability property

To discuss stability property of the algorithm (2.9),we follow the same method as discussed in [12,13].
Consider the Dahlquist test equation for stability,

y′′(x) = λ
2y(x), x ∈ [a,b] and λ ∈ R

subject to initial conditions y(x0) = y0, y′(x0) = λy0. Apply the method (2.9) to this test equation, we obtained
a finite difference equation ,assuming the negligible contribution of the terms with O(h2) and O(x2

n) in the
expression,

yn+1 =(1+hλ )yn

= ehλ yn

' E(hλ )yn , n = 0,1,2, .......N (4.14)
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where the stability function E(hλ ) is an approximation to ehλ .For the alogorithm (2.9) to be converge

|E(hλ )|< 1 (4.15)

Solving inequality (4.14),thus we obtained the corresponding interval of absolute stability of (2.9) is (−2,0).

5 Numerical experiment

In this section ,four numerical examples linear and nonlinear were considered,to illustrate our algorithm (2.9)
and to demonstrate computationally its efficiency and accuracy.In tables ,we have shown maximum absolute
error computed on the nodal points in the interval of integration for these examples in their solution and derivative
of solution . Let yi and y′i are the numbers calculated by (2.9) respectively which are an approximate value of
the theoretical solution y(x)and derivative of solution i.e.y′(x) at the point x = xi . Maximum absolute error is
calculated in both solution and derivative of solution by

MAE(y) = max
i
|y(xi)− yi|

MAE(y′) = max
i
|y′(xi)− y′i|, i = 1,2, . . . ,N.

All computations in the examples consider were performed in the GNU FORTRAN environment version -99
compiler(2.95 of gcc) running on a MS Window 2000 professional operating system.

Example 5.1. Consider the initial value problem ,

y′′(x) =
(
−40
x3 +

400
x4

)
y(x)

The exact solution in [1,2] is y(x) = e(
−20

x ). The maximum absolute error in y(x) and y′(x) are given Table1.

Example 5.2. Consider nonlinear initial value problem

y′′(x) = 6y2(x)

The exact solution in [0,1] is y(x) = (1+ x)−2. The maximum absolute error in y(x) and y′(x) are given Table2.

Example 5.3. Consider nonlinear initial value problem

y′′(x) = y3(x)− y(x)y′(x)

The exact solution in [1,2] is y(x) = (1+ x)−1. The maximum absolute error in y(x) and y′(x) are given in
Table3.

Example 5.4. Consider nonlinear initial value problem

y′′(x) = y2(x)+
1
2

cos(x)− sin4(
x
2
)

The exact solution in [0,1] is y(x) = sin2( x
2). The maximum absolute error in y(x) and y′(x) are given Table 4.
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Table 1 Maximum absolute error in y(x) = e(
−20

x ) and y′(x) for Example 5.1 .

MAE
N

64 128 256 512 1024 2048 4096

y .5621729(-3) .2748708(-3) .1313720(-3) .5965512(-4) .2474944(-4) .1009797(-4) .4115111(-5)

y′ .5267575(-6) .1289518(-6) .3187597(-7) .7879862(-8) .1913576(-8) .5345364(-9) .1852914(-9)

Table 2 Maximum absolute error in y(x) = (1+ x)−2and y′(x) for Example 5.2 .

MAE
N

128 256 512 1024 2048 4096 8192

y .9100055(-2) .5043587(-2) .2747672(-2) .1475068(-2) .7822510(-3) .4106779(-3) .2136840(-3)

y′ .1660321(-1) .8981451(-2) .4802107(-2) .2541303(-2) .1330271(-2) .6887614(-3) .3566145(-3)

Table 3 Maximum absolute error in y(x) = (1+ x)−1 and y′(x) for Example 5.3 .

MAE
N

128 256 512 1024 2048 4096 8192

y .1363998(-1) .7091403(-2) .3645122(-2) .1860261(-2) .9453296(-3) .4789233(-3) .2411603(-3)

y′ .6387859(-2) .3583610(-2) .1952946(-2) .1042857(-2) .5497336(-3) .2868771(-3) .1467168(-3)

Table 4 Maximum absolute error in y(x) = sin2( x
2 ) and y′(x) for Example 5.4 .

MAE
N

128 256 512 1024 2048 4096 8192

y .3083482(-1) .2080867(-1) .1396590(-1) .9322166(-2) .6191766(-2) .4095947(-2) .2701349(-2)

y′ .2283364(-2) .1416236(-2) .8000433(-3) .4311204(-3) .2279877(-3) .1192688(-3) .6163130(-4)

6 Conclusion

In this paper ,we have described a new method that is efficient ,stable and convergent for solving second
order initial value problems in ordinary differential equations.The implementation of the method is simple.The
results we obtained for examples shows that method is computationally efficient and accurate. Our future works
will deal with extension of the present method to solve higher order boundary value problems and improving its
order of accuracy.
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