

Applied Mathematics and Nonlinear Sciences

Attractors for a nonautonomous reaction-diffusion equation with delay

Hafidha Harraga ${ }^{1}{ }^{\dagger}$ Mustapha Yebdri ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Tlemcen, Tlemcen 13000, Algeria.
${ }^{2}$ Department of Mathematics, University of Tlemcen, Tlemcen 13000, Algeria, E-mail: m_yebdri@ mail.univ-tlemcen.dz.

Abstract

In this paper, we discuss the existence and uniqueness of solutions for a non-autonomous reaction-diffusion equation with delay, after we prove the existence of a pullback \mathscr{D}-asymptotically compact process. By a priori estimates, we show that it has a pullback \mathscr{D}-absorbing set that allow us to prove the existence of a pullback \mathscr{D}-attractor for the associated process to the problem.

Keywords: pullback attractors, nonclassical reaction-diffusion equations, critical exponent, delay term
AMS 2010 codes: 35B41, 35B40; Secondary 37L30,35Q35.

1 Introduction and statement of the problem

We consider the following nonautonomous functional reaction-diffusion equation

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u(t, x)-\Delta u(t, x)=f(u(t, x))+b\left(t, u_{t}\right)(x)+g(t, x) \text { in }(\tau, \infty) \times \Omega, \tag{1.1}\\
u=0 \text { on }(\tau, \infty) \times \partial \Omega, \\
u(\tau, x)=u^{0}(x), \tau \in \mathbb{R} \text { and } x \in \Omega, \\
u(\tau+\theta, x)=\varphi(\theta, x), \theta \in[-r, 0] \text { and } x \in \Omega,
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{\mathbb{N}}$ is a bounded domain with smooth boundary $\partial \Omega, \tau \in \mathbb{R}, u^{0} \in L^{2}(\Omega)$ is the initial condition in τ and $\varphi \in L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)$ is also the initial condition in $[\tau-r, \tau], r>0$ is the length of the delay effect. For the rest we assume following assumptions conditions :

[^0]H_{1}) Concerning the nonlinearity, we assume that $f \in C^{1}(\mathbb{R}, \mathbb{R})$, there exist positive constants c, μ_{0}, μ_{1}, k and $p>2, N \leq \frac{2 p}{p-2}$ such that
\[

$$
\begin{align*}
& -c-\mu_{0}|u|^{p} \leq f(u) u \leq c-\mu_{1}|u|^{p} \forall u \in \mathbb{R} \tag{1.2}\\
& (f(u)-f(v))(u-v) \leq k(u-v)^{2} \forall u, v \in \mathbb{R} \tag{1.3}
\end{align*}
$$
\]

Let us denote by

$$
F(u):=\int_{0}^{u} f(s) d s
$$

From (1.2), there exist positive constants $l, c^{\prime}, \mu_{0}^{\prime}, \mu_{1}^{\prime}$ such that

$$
\begin{align*}
& |f(u)| \leq l\left(|u|^{p-1}+1\right) \forall u \in \mathbb{R} \tag{1.4}\\
& -c^{\prime}-\mu_{0}^{\prime}|u|^{p} \leq F(u) \leq c^{\prime}-\mu_{1}^{\prime}|u|^{p} \forall u \in \mathbb{R} \tag{1.5}
\end{align*}
$$

$\left.H_{2}\right)$ The operator $b: \mathbb{R} \times L^{2}\left([-r, 0] ; L^{2}(\Omega)\right) \rightarrow L^{2}(\Omega)$ is a time-dependent external force with delay, such that
(I) For all $\phi \in L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)$, the function $\mathbb{R} \ni t \mapsto b(t, \phi) \in L^{2}(\Omega)$ is measurable;
(II) $b(t, 0)=0$ for all $t \in \mathbb{R}$;
(III) $\exists L_{b}>0$ s.t $\forall t \in \mathbb{R}$ and $\forall \phi_{1}, \phi_{2} \in L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)$;

$$
\begin{equation*}
\left\|b\left(t, \phi_{1}\right)-b\left(t, \phi_{2}\right)\right\| \leq L_{b}\left\|\phi_{1}-\phi_{2}\right\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)} \tag{1.6}
\end{equation*}
$$

(IV) $\exists C_{b}>0$ s.t $\forall t \geq \tau$, and $\forall u, v \in L^{2}\left([\tau-r, t] ; L^{2}(\Omega)\right)$;

$$
\begin{equation*}
\int_{\tau}^{t}\left\|b\left(s, u_{s}\right)-b\left(s, v_{s}\right)\right\|^{2} d s \leq C_{b} \int_{\tau-r}^{t}\|u(s)-v(s)\|^{2} d s \tag{1.7}
\end{equation*}
$$

Remark 1. From (I)-(III), for $T>\tau$ and $u \in L^{2}\left([\tau-r, T] ; L^{2}(\Omega)\right)$ the function $\mathbb{R} \ni t \mapsto b(t, \phi) \in L^{2}(\Omega)$ is measurable and belongs to $L^{\infty}\left((\tau, T) ; L^{2}(\Omega)\right)$.
$\left.H_{3}\right)$ The function $g \in L_{l o c}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$ is an another nondelayed time-dependent external force.
For more details on differential equations with delay, we refer the reader to J. Wu [9] and J.K. Hale [5]. The purpose of this paper is to discuss the existence of pullback \mathscr{D}-attractor in $L^{2}(\Omega) \times L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)$ by using a priori estimates of solutions to the problem (1.1).

This work is motivated by the work of T. Caraballo and J. Real. [1], where they proved the existence of pullback attractors for the following 2D-Navier算Stokes model with delays :

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-v \Delta u+\sum_{i=1}^{2} u_{i} \frac{\partial u}{\partial x_{i}}=f-\nabla p+g\left(t, u_{t}\right) \text { in }(\tau, \infty) \times \Omega \tag{1.8}\\
\text { div } u=0 \text { in }(\tau, \infty) \times \Omega \\
u=0 \text { on }(\tau, \infty) \times \partial \Omega \\
u(\tau, x)=u_{0}(x), x \in \Omega \\
u(t, x)=\phi(t-\tau, x), t \in(\tau-h, \tau) \text { and } x \in \Omega
\end{array}\right.
$$

where $v>0$ is the kinematic viscosity, u is the velocity field of the fluid, p the pressure, $\tau \in \mathbb{R}$ the initial time, u_{0} the initial velocity field, f a nondelayed external force field, g another external force with delay and ϕ the initial condition in $(-h, 0)$, where h is a fixed positive number.

On the other hand, the problem (1.1) without critical nonlinearity was treated by J. Li and J. Huang in [6], where they proved the existence of uniform attractor for the following non-autonomous parabolic equation with delays:

$$
\left\{\begin{array}{l}
\frac{\partial u(t, x)}{\partial t}+A u(t, x)+b u(t, x)=F\left(u_{t}\right)(x)+g(t, x) x \text { in } \Omega, \tag{1.9}\\
u(\tau, x)=u_{0}(x), u(\tau+\theta, x)=\phi(\theta, x), \theta \in(-r, 0) .
\end{array}\right.
$$

Here Ω is a bounded domain in $\mathbb{R}^{n_{0}}$ with smooth boundary, $b \geq 0, A$ is a densely-defined self-adjoint positive linear operator with domain $D(A) \subset L^{2}(\Omega)$ and with compact resolvent, F is the nonlinear term which is locally Lipschitz continuous for the initial condition, g is an external force.

In [3], J.Garcia-Luengo and P.Marin-Rubio treated the following reaction-diffusion equation with nonautonomous force in H^{-1} and delays under measurability conditions on the driving delay term :

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\Delta u=f(u)+g\left(t, u_{t}\right)+k(t) \text { in }(\tau, \infty) \times \Omega \tag{1.10}\\
u=0 \text { on }(\tau, \infty) \times \partial \Omega \\
u(\tau+s, x)=\phi(s, x), s \in[-r, 0] \text { and } x \in \Omega
\end{array}\right.
$$

where $\tau \in \mathbb{R}, f \in C(\mathbb{R})$ the nonlinear term with critical exponent, g is an external force with delay, $k \in$ $L_{l o c}^{2}\left(\mathbb{R} ; H^{-1}(\Omega)\right)$ a time-dependent force, ϕ the initial condition and h the lenght of the delay effect. In this work, the authors checked the existence of pullback \mathscr{D}-attractor in $C\left([-h, 0] ; L^{2}(\Omega)\right)$.

This paper is organized as follows. In section 2, we will prove the existence of weak solutions to the problem(1.1) by using the Faedo-Galerkin approximations, as well as the uniqueness and the continuous dependence of solution with respect to initial conditions. In section 3, we recall some definitions and abstract results on pullback \mathscr{D}-attractor. Then we can prove the existence of pullback \mathscr{D}-attractor for the nonautonomous problem with delay.

2 Existence and uniqueness of solution

First we give the concept of the solution.
Definition 1. A weak solution of (1.1) is a function $u \in L^{2}\left([\tau-r, T] ; L^{2}(\Omega)\right)$ such that for all $T>\tau$ we have

$$
u \in L^{2}\left((\tau, T) ; H_{0}^{1}(\Omega)\right) \cap L^{p}\left((\tau, T) ; L^{p}(\Omega)\right) \cap C\left([\tau, T] ; L^{2}(\Omega)\right)
$$

and

$$
\frac{\partial u}{\partial t} \in L^{2}\left([\tau, T] ; L^{2}(\Omega)\right)
$$

with $u(t)=\varphi(t-\tau)$, for $t \in[\tau-r, \tau]$, and it satisfies

$$
\begin{aligned}
\int_{\tau}^{T}-\left\langle u, v^{\prime}\right\rangle+\int_{\tau}^{T} \int_{\Omega} \nabla u \nabla v & =\int_{\tau}^{T} \int_{\Omega} f(u) v+\int_{\tau}^{T}\left\langle b\left(t, u_{t}\right), v\right\rangle \\
& +\int_{\tau}^{T} \int_{\Omega} g v+\left\langle u^{0}, v(\tau)\right\rangle
\end{aligned}
$$

for all test functions $v \in L^{2}\left([\tau, T] ; H_{0}^{1}(\Omega)\right)$ and $v^{\prime} \in L^{2}\left([\tau, T] ; H^{-1}(\Omega)\right)$ such that $v(T)=0$.
Theorem 1. Assume that $g \in L_{l o c}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right), b$ and f satisfy $(I)-(I V)$ and (1.2)-(1.5) respectively and if $\lambda_{1}>$ $1+C_{b} / 2$, Then for all $T>\tau$ and all $\left(u^{0}, \varphi\right)$ in $L^{2}(\Omega) \times L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)$, there exists a unique weak solution u to the problem (1.1).

Proof. Let us consider $\left\{e_{k}\right\}_{k \geq 1}$, the complete basis of $H_{0}^{1}(\Omega)$ which is given by the orthonormal eigenfunctions of Δ in $L^{2}(\Omega)$. We consider

$$
u^{m}(t)=\sum_{k=1}^{m} \gamma_{k, m}(t) e_{k}, m=1,2, \ldots
$$

which is the approximate solutions of Faedo-Galerkin of order m, that is

$$
\left\{\begin{array}{l}
\left\langle\frac{d u^{m}}{d t}, e_{k}\right\rangle+\left\langle\Delta u^{m}, e_{k}\right\rangle=\left\langle f\left(u^{m}\right), e_{k}\right\rangle+\left\langle b\left(t, u_{t}^{m}\right), e_{k}\right\rangle+\left\langle g, e_{k}\right\rangle \\
\left\langle u^{m}(\tau), e_{k}\right\rangle=\left\langle P_{m} u^{0}, e_{k}\right\rangle=\left\langle u^{0}, e_{k}\right\rangle \text { i.e. } P_{m} u^{m}(\tau) \rightarrow u^{0} \text { in } L^{2}(\Omega) \\
\left\langle u^{m}(\tau+\theta), e_{k}\right\rangle=\left\langle P_{m} \varphi(\theta), e_{k}\right\rangle=\left\langle\varphi(\theta), e_{k}\right\rangle \forall \theta \in(-r, 0)
\end{array}\right.
$$

for all $k=1 \ldots m$. Where $\gamma_{k, m}(t)=\left\langle u^{m}(t), e_{k}\right\rangle$ denote the Fourier coefficients; such that $\gamma_{m, k} \in C^{1}((\tau, T) ; \mathbb{R}) \cap$ $L^{2}((\tau-r, T), \mathbb{R}), \gamma_{k, m}^{\prime}(t)$ is absolutely continuous, and $P_{m} u(t)=\sum_{k=1}^{m}\left\langle u, e_{k}\right\rangle e_{k}$ is the orthogonal projection of $L^{2}(\Omega)$ and $H_{0}^{1}(\Omega)$ in $V_{m}=\operatorname{span}\left\{e_{1}, \ldots, e_{m}\right\}$.

It is well-known that the above finite-dimensional delayed system is well-posed (e.g. cf. [2]), at least locally. We will provide a priori estimates for the Faedo-Galerkin approximate solutions.

Claim 1. For all $m \in \mathbb{N}^{*}$ and all $T>\tau$, the sequence $\left\{u^{m}\right\}$ is bounded in

$$
L^{\infty}\left((\tau, T) ; L^{2}(\Omega)\right) \cap L^{2}\left((\tau, T) ; H_{0}^{1}(\Omega)\right) \cap L^{p}\left((\tau, T) ; L^{p}(\Omega)\right) .
$$

Multiplying (1.1) by u^{m} and integrating over Ω, we obtain

$$
\frac{1}{2} \frac{d}{d t}\left\|u^{m}(t)\right\|^{2}+\left\|\nabla u^{m}(t)\right\|^{2}=\int_{\Omega} f\left(u^{m}\right) u^{m}+\int_{\Omega} b\left(t, u_{t}^{m}\right) u^{m}+\int_{\Omega} g u^{m} .
$$

Using the hypothesis (1.2) and the Young inequality, we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|u^{m}(t)\right\|^{2}+\left\|\nabla u^{m}(t)\right\|^{2} \\
\leq & c|\Omega|-\mu_{1}\left\|u^{m}(t)\right\|^{p}+\frac{1}{2}\left\|b\left(t, u_{t}^{m}\right)\right\|^{2}+\frac{1}{2}\left\|u^{m}(t)\right\|^{2}+\frac{1}{2}\|g(t)\|^{2}+\frac{1}{2}\left\|u^{m}(t)\right\|^{2} .
\end{aligned}
$$

So, one has

$$
\begin{aligned}
& \frac{d}{d t}\left\|u^{m}(t)\right\|^{2}+2\left\|\nabla u^{m}(t)\right\|^{2}+2 \mu_{1}\left\|u^{m}(t)\right\|^{p} \\
\leq & 2 c|\Omega|+\left\|b\left(t, u_{t}^{m}\right)\right\|^{2}+\|g(t)\|^{2}+\left\|u^{m}(t)\right\|^{2} .
\end{aligned}
$$

After integrating this last estimate over $[\tau, t], \tau \leq t \leq T$, we use (II) and (IV), so we get

$$
\begin{aligned}
& \left\|u^{m}(t)\right\|^{2}+2 \int_{\tau}^{t}\left\|\nabla u^{m}(s)\right\|^{2} d s+2 \mu_{1} \int_{\tau}^{t}\left\|u^{m}(s)\right\|^{p} d s \\
\leq & 2 c|\Omega|(t-\tau)+\left\|u^{m}(\tau)\right\|^{2}+C_{b} \int_{\tau-r}^{t}\left\|u^{m}(s)\right\|^{2} d s \\
+ & \int_{\tau}^{t}\|g(s)\|^{2} d s+\int_{\tau}^{t}\left\|u^{m}(s)\right\|^{2} d s, \\
\leq & 2 c|\Omega|(t-\tau)+\left\|u^{m}(\tau)\right\|^{2}+C_{b} \int_{\tau-r}^{\tau}\left\|u^{m}(s)\right\|^{2} d s+C_{b} \int_{\tau}^{t}\left\|u^{m}(s)\right\|^{2} d s \\
+ & \int_{\tau}^{t}\|g(s)\|^{2} d s+\int_{\tau}^{t}\left\|u^{m}(s)\right\|^{2} d s .
\end{aligned}
$$

By the fact that $\lambda_{1}\|u\|^{2} \leq\|\nabla u\|^{2}$, one has

$$
\begin{aligned}
& \left\|u^{m}(t)\right\|^{2}+2 \int_{\tau}^{t}\left\|\nabla u^{m}(s)\right\|^{2} d s+2 \mu_{1} \int_{\tau}^{t}\left\|u^{m}(s)\right\|^{p} d s \\
\leq & 2 c|\Omega|(t-\tau)+\left\|u^{m}(\tau)\right\|^{2}+C_{b} \int_{\tau-r}^{\tau}\left\|u^{m}(s)\right\|^{2} d s+C_{b} \lambda_{1}^{-1} \int_{\tau}^{t}\left\|\nabla u^{m}(s)\right\|^{2} d s \\
+ & \int_{\tau}^{t}\|g(s)\|^{2} d s+\lambda_{1}^{-1} \int_{\tau}^{t}\left\|\nabla u^{m}(s)\right\|^{2} d s .
\end{aligned}
$$

Then, we find

$$
\begin{align*}
& \left\|u^{m}(t)\right\|^{2}+\left(2-C_{b} \lambda_{1}^{-1}-\lambda_{1}^{-1}\right) \int_{\tau}^{t}\left\|\nabla u^{m}(s)\right\|^{2} d s+2 \mu_{1} \int_{\tau}^{t}\left\|u^{m}(s)\right\|^{p} d s \\
\leq & 2 c|\Omega|(t-\tau)+\left\|u^{m}(\tau)\right\|^{2}+C_{b} \int_{\tau-r}^{\tau}\left\|u^{m}(s)\right\|^{2} d s+\int_{\tau}^{t}\|g(s)\|^{2} d s, \\
\leq & 2 c|\Omega|(T-\tau)+\left\|u^{m}(\tau)\right\|^{2}+C_{b} \int_{\tau-r}^{\tau}\left\|u^{m}(s)\right\|^{2} d s+\int_{\tau}^{t}\|g(s)\|^{2} d s . \tag{2.1}
\end{align*}
$$

Since $g \in L_{l o c}^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)$ and for $\lambda_{1}>1+C_{b} / 2$, we deduce by this last estimate that for all $T>\tau$, the sequence

$$
\begin{equation*}
\left\{u^{m}\right\} \text { is bounded in } L^{\infty}\left((\tau, T) ; L^{2}(\Omega)\right) \cap L^{2}\left((\tau, T) ; H_{0}^{1}(\Omega)\right) \cap L^{p}\left((\tau, T) ; L^{p}(\Omega)\right) \tag{2.2}
\end{equation*}
$$

Also, the estimate (2.1) implies that the local solution can extended to the interval $[\tau, T]$.

Claim 2.

$$
\begin{equation*}
\left\{f\left(u^{m}\right)\right\} \text { is bounded in } L^{q}\left((\tau, T) ; L^{q}(\Omega)\right) \tag{2.3}
\end{equation*}
$$

Using (1.4), we have

$$
\begin{aligned}
\| f\left(u^{m}(t) \|_{L^{q}(\Omega)}^{q}\right. & =\int_{\Omega}\left|f\left(u^{m}(t, x)\right)\right|^{q} d x \\
& \leq l^{q} \int_{\Omega}\left(\left|u^{m}(t, x)\right|^{p-1}+1\right)^{q} d x
\end{aligned}
$$

By the convexity of the power and the fact that $p=q(p-1)$, one has

$$
\begin{aligned}
\left\|f\left(u^{m}(t)\right)\right\|_{L^{q}(\Omega)}^{q} & \leq 2^{q-1} l^{q} \int_{\Omega}\left|u^{m}(t, x)\right|^{q(p-1)} d x+2^{q-1} l^{q}|\Omega| \\
& \leq 2^{q-1} l^{q}\left\|u^{m}(t)\right\|_{L^{p}(\Omega)}^{q(p-1)}+2^{q-1} l^{q}|\Omega| \\
& \leq 2^{q-1} l^{q}\left\|u^{m}(t)\right\|_{L^{p}(\Omega)}^{p}+2^{q-1} l^{q}|\Omega|
\end{aligned}
$$

Integrating this last estimate over $[\tau, t], \tau \leq t \leq T$, one obtains

$$
\int_{\tau}^{t}\left\|f\left(u^{m}(s)\right)\right\|_{L^{q}(\Omega)}^{q} d s \leq 2^{q-1} l^{q} \int_{\tau}^{t}\left\|u^{m}(s)\right\|_{L^{p}(\Omega)}^{p} d s+2^{q-1} l^{q}|\Omega|(t-\tau)
$$

From (2.1), we deduce that the term $\int_{\tau}^{t}\left\|u^{m}(s)\right\|_{L^{p}(\Omega)}^{p} d s$ is bounded, so by this last estimate we conclude that $\left\{f\left(u^{m}\right)\right\}$ is bounded in $L^{q}\left((\tau, T) ; L^{q}(\Omega)\right)$, for all $T>\tau$.
Claim 3. $\left\{\frac{\partial}{\partial t} u^{m}\right\}$ is bounded in $L^{2}\left((\tau, T) ; L^{2}(\Omega)\right)$.
Now, multiplying (1.1) by $\frac{\partial u^{m}}{\partial t}$ and integrating over Ω, one has

$$
\begin{align*}
& \left\|\frac{d}{d t} u^{m}(t)\right\|^{2}+\frac{1}{2} \frac{d}{d t}\left\|\nabla u^{m}(t)\right\|^{2} \\
= & \int_{\Omega} f\left(u^{m}\right) \frac{\partial u^{m}}{\partial t}+\int_{\Omega} b\left(t, u_{t}^{m}\right) \frac{\partial u^{m}}{\partial t}+\int_{\Omega} g \frac{\partial u^{m}}{\partial t} . \tag{2.4}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\frac{d}{d t} F(u) & =\frac{d F}{d u} \frac{\partial u}{\partial t} \\
& =f(u) \frac{\partial u}{\partial t} \tag{2.5}
\end{align*}
$$

So

$$
\frac{d}{d t} \int_{\Omega} F(u)=\int_{\Omega} f(u) \frac{\partial u}{\partial t} .
$$

Using this last equality in (2.4), we find

$$
\left\|\frac{d}{d t} u^{m}(t)\right\|^{2}+\frac{1}{2} \frac{d}{d t}\left\|\nabla u^{m}(t)\right\|^{2}=\frac{d}{d t} \int_{\Omega} F\left(u^{m}\right)+\int_{\Omega} b\left(t, u_{t}^{m}\right) \frac{\partial u^{m}}{\partial t}+\int_{\Omega} g \frac{\partial u^{m}}{\partial t} .
$$

From (1.5) and Cauchy inequality, we have

$$
\begin{aligned}
& \left\|\frac{d}{d t} u^{m}(t)\right\|^{2}+\frac{1}{2} \frac{d}{d t}\left\|\nabla u^{m}(t)\right\|^{2}, \\
\leq & \frac{d}{d t} \int_{\Omega}\left(c^{\prime}-\mu_{1}^{\prime}|u(t, x)|^{p}\right) d x+\frac{\varepsilon_{1}}{2}\left\|b\left(t, u_{t}^{m}\right)\right\|^{2}+\frac{1}{2 \varepsilon_{1}}\left\|\frac{d}{d t} u^{m}(t)\right\|^{2} \\
+ & \frac{\varepsilon_{2}}{2}\|g(t)\|^{2}+\frac{1}{2 \varepsilon_{2}}\left\|\frac{d}{d t} u^{m}(t)\right\|^{2} .
\end{aligned}
$$

After simplification, one obtains

$$
\begin{aligned}
& \left(2-\frac{1}{\varepsilon_{1}}-\frac{1}{\varepsilon_{2}}\right)\left\|\frac{d}{d t} u^{m}(t)\right\|^{2}+\frac{d}{d t}\left(\left\|\nabla u^{m}(t)\right\|^{2}+2 \mu_{1}^{\prime}\left\|u^{m}(t)\right\|_{L^{p}(\Omega)}^{p}\right) \\
\leq & \varepsilon_{1}\left\|b\left(t, u_{t}^{m}\right)\right\|^{2}+\varepsilon_{2}\|g(t)\|^{2} .
\end{aligned}
$$

We can choose $\varepsilon_{1}=\varepsilon_{2}=2$ to get

$$
\left\|\frac{d}{d t} u^{m}(t)\right\|^{2}+\frac{d}{d t}\left(\left\|\nabla u^{m}(t)\right\|^{2}+2 \mu_{1}^{\prime}\left\|u^{m}(t)\right\|_{L^{p}(\Omega)}^{p}\right) \leq 2\left\|b\left(t, u_{t}^{m}\right)\right\|^{2}+2\|g(t)\|^{2} .
$$

Integrating this last estimate over $[\tau, t]$ and using (II) and (IV), one has

$$
\begin{aligned}
& \int_{\tau}^{t}\left\|\frac{d}{d s} u^{m}(s)\right\|^{2} d s+\left\|\nabla u^{m}(t)\right\|^{2}+2 \mu_{1}^{\prime}\left\|u^{m}(t)\right\|_{L^{p}(\Omega)}^{p} \\
\leq & \left\|\nabla u^{m}(\tau)\right\|^{2}+2 \mu_{1}^{\prime}\left\|u^{m}(\tau)\right\|_{L^{p}(\Omega)}^{p}+2 C_{b} \int_{\tau-r}^{t}\left\|u^{m}(s)\right\|^{2} d s+2 \int_{\tau}^{t}\|g(s)\|^{2} d s, \\
\leq & \left\|\nabla u^{m}(\tau)\right\|^{2}+2 \mu_{1}^{\prime}\left\|u^{m}(\tau)\right\|_{L^{p}(\Omega)}^{p}+2 C_{b} \int_{\tau-r}^{\tau}\left\|u^{m}(s)\right\|^{2} d s \\
+ & 2 C_{b} \int_{\tau}^{t}\left\|u^{m}(s)\right\|^{2} d s+2 \int_{\tau}^{t}\|g(s)\|^{2} d s
\end{aligned}
$$

Since $\lambda_{1}\|u\|^{2} \leq\|\nabla u\|^{2}$, one has

$$
\begin{aligned}
& \int_{\tau}^{t}\left\|\frac{d}{d s} u^{m}(s)\right\|^{2} d s+\left\|\nabla u^{m}(t)\right\|^{2}+2 \mu_{1}^{\prime}\left\|u^{m}(t)\right\|_{L^{p}(\Omega)}^{p} \\
\leq & \left\|\nabla u^{m}(\tau)\right\|^{2}+2 \mu_{1}^{\prime}\left\|u^{m}(\tau)\right\|_{L^{p}(\Omega)}^{p}+2 C_{b} \int_{\tau-r}^{\tau}\left\|u^{m}(s)\right\|^{2} d s \\
+ & 2 C_{b} \lambda_{1}^{-1} \int_{\tau}^{t}\left\|\nabla u^{m}(s)\right\|^{2} d s+2 \int_{\tau}^{t}\|g(s)\|^{2} d s
\end{aligned}
$$

From (2.1), we have $\int_{\tau}^{t}\left\|\nabla u^{m}(s)\right\|^{2} d s$ is bounded and since $g \in L_{l o c}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, this last estimate gives that

$$
\left\{\frac{\partial}{\partial t} u^{m}\right\} \text { is bounded in } L^{2}\left((\tau, T) ; L^{2}(\Omega)\right),
$$

for all $T>\tau$.
From the claims (1), (2) and (3), the hypothesis (IV) and the remark (1), we can extract a subsequence (relabelled the same) such that

$$
\begin{align*}
& u^{m} \rightharpoonup u \text { weakly* in } L^{\infty}\left((\tau, T) ; L^{2}(\Omega)\right), \\
& u^{m} \rightharpoonup u \text { weakly in } L^{2}\left((\tau, T) ; H_{0}^{1}(\Omega)\right), \\
& u^{m} \rightharpoonup u \text { weakly in } L^{p}\left((\tau, T) ; L^{p}(\Omega)\right), \\
& \frac{\partial u^{m}}{\partial t} \rightarrow \frac{\partial u}{\partial t} \text { strongly in } L^{2}\left((\tau, T) ; L^{2}(\Omega)\right), \tag{2.6}\\
& f\left(u^{m}\right) \rightharpoonup \sigma^{\prime} \text { weakly in } L^{q}\left((\tau, T) ; L^{q}(\Omega)\right), \\
& b\left(., u_{.}^{m}\right) \rightarrow b(., u .) \text { strongly in } L^{2}\left((\tau, T) ; L^{2}(\Omega)\right) .
\end{align*}
$$

By the Aubin-Lions lemma of compactness, we conclude that $u^{m} \rightarrow u$ strongly in $L^{2}\left((\tau, T) ; L^{2}(\Omega)\right)$. Thus $u^{m} \rightarrow u$ a.e $[\tau, T] \times \Omega$.

Since f is continuous, we deduce that $f\left(u^{m}\right) \rightarrow f(u)$ a.e $[\tau, T] \times \Omega$. So from (2.3) and (lemma 1.3 in [7], p.12) we can identify σ^{\prime} with $f(u)$.

To prove that $u(\tau)=u^{0}$, we put $v \in C^{1}\left((\tau, T) ; H_{0}^{1}(\Omega)\right)$ such that $v(T)=0$ and we note from (1.1) that

$$
\begin{align*}
\int_{\tau}^{T}-\left\langle u, v^{\prime}\right\rangle+\int_{\tau}^{T} \int_{\Omega} \nabla u \nabla v & =\int_{\tau}^{T} \int_{\Omega} f(u) v+\int_{\tau}^{T}\left\langle b\left(t, u_{t}\right), v\right\rangle \\
& +\int_{\tau}^{T} \int_{\Omega} g v+\langle u(\tau), v(\tau)\rangle \tag{2.7}
\end{align*}
$$

In a similar way, from the Faedo-Galerkin approximations, we have

$$
\begin{align*}
\int_{\tau}^{T}-\left\langle u^{m}, v^{\prime}\right\rangle \int_{\tau}^{T} \int_{\Omega} \nabla u^{m} \nabla v & =\int_{\tau}^{T} \int_{\Omega} f\left(u^{m}\right) v+\int_{\tau}^{T}\left\langle b\left(t, u_{t}^{m}\right), v\right\rangle \\
& +\int_{\tau}^{T} \int_{\Omega} g v+\left\langle u^{m}(\tau), v(\tau)\right\rangle \tag{2.8}
\end{align*}
$$

Using the fact that $u^{m}(\tau) \rightarrow u^{0}$ in $L^{2}(\Omega)$ and (2.6) to find

$$
\begin{align*}
\int_{\tau}^{T}-\left\langle u, v^{\prime}\right\rangle+\int_{\tau}^{T} \int_{\Omega} \nabla u \nabla v & =\int_{\tau}^{T} \int_{\Omega} f(u) v+\int_{\tau}^{T}\left\langle b\left(t, u_{t}\right), v\right\rangle \\
& +\int_{\tau}^{T} \int_{\Omega} g v+\left\langle u^{0}, v(\tau)\right\rangle . \tag{2.9}
\end{align*}
$$

Since $v(\tau)$ is given arbitrarily, comparing (2.7) and (2.9) we deduce that $u(\tau)=u^{0}$.
To prove that $u \in C\left([\tau, T] ; L^{2}(\Omega)\right)$, we put $w^{m}=u^{m}-u$ then we have

$$
\frac{\partial}{\partial t} w^{m}-\Delta w^{m}=f\left(u^{m}\right)-f(u)+b\left(t, u_{t}^{m}\right)-b\left(t, u_{t}\right) .
$$

Multiplying this equation by w^{m} and integrating over Ω, we obtain

$$
\begin{aligned}
\frac{d}{d t}\left\|w^{m}(t)\right\|^{2}+2\left\|\nabla w^{m}(t)\right\|^{2} & =2 \int_{\Omega}\left(f\left(u^{m}\right)-f(u)\right) w^{m} \\
& +2 \int_{\Omega}\left(b\left(t, u_{t}^{m}\right)-b\left(t, u_{t}\right)\right)\left(u^{m}-u\right) .
\end{aligned}
$$

By (1.3), (I) and (1.6), we get

$$
\frac{d}{d t}\left\|w^{m}(t)\right\|^{2}+2\left\|\nabla w^{m}(t)\right\|^{2} \leq 2 k\left\|w^{m}(t)\right\|^{2}+2 L_{b}\left\|w_{t}^{m}\right\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}
$$

Integrating over $[\tau, t]$, we get

$$
\begin{aligned}
& \left\|w^{m}(t)\right\|^{2}-\left\|w^{m}(\tau)\right\|^{2}+2 \int_{\tau}^{t}\left\|\nabla w^{m}(s)\right\|^{2} d s \\
\leq & 2 k \int_{\tau}^{t}\left\|w^{m}(s)\right\|^{2}+2 L_{b} \int_{\tau}^{t} \int_{-r}^{0}\left\|w^{m}(s+\theta)\right\|^{2} d \theta d s \\
\leq & 2 k \int_{\tau}^{t}\left\|w^{m}(s)\right\|^{2}+2 L_{b} \int_{-r}^{0} \int_{\tau-r}^{t}\left\|w^{m}(s)\right\|^{2} d s d \theta \\
\leq & 2 k \int_{\tau}^{t}\left\|w^{m}(s)\right\|^{2}+2 L_{b} r \int_{\tau-r}^{\tau}\left\|w^{m}(s)\right\|^{2} d s+2 L_{b} r \int_{\tau}^{t}\left\|w^{m}(s)\right\|^{2} d s
\end{aligned}
$$

Therefore by by this last estimate, we can deduce that

$$
\left\|w^{m}(t)\right\|^{2} \leq\left\|w^{m}(\tau)\right\|^{2}+2 L_{b} r \int_{\tau-r}^{\tau}\left\|w^{m}(s)\right\|^{2} d s+\left(2 k+2 L_{b} r\right) \int_{\tau}^{t}\left\|w^{m}(s)\right\|^{2} d s
$$

Applying the Gronwall lemma to this estimate, we obtain

$$
\begin{equation*}
\left\|w^{m}(t)\right\|^{2} \leq\left(\left\|w^{m}(\tau)\right\|^{2}+2 L_{b} r \int_{\tau-r}^{\tau}\left\|w^{m}(s)\right\|^{2} d s\right) e^{\left(2 k+2 L_{b} r\right)(t-\tau)} \tag{2.10}
\end{equation*}
$$

Since $u^{m}(\tau) \rightarrow u^{0}$ and $u^{m}(\tau+\theta) \rightarrow \varphi(\theta)$, the estimate (2.10) shows that $u^{m} \rightarrow u$ uniformly in $C\left([\tau, T] ; L^{2}(\Omega)\right)$.
Finally, we prove the uniqueness and continuous dependence of the solution. Let $u^{1} ; u^{2}$ be two solutions of problem (1.1) with the initial conditions $u^{0,1}, u^{0,2}$ and φ^{1}, φ^{2}. Denoting that $w=u^{1}-u^{2}$ and repeating the argument as in the proof of (2.10), we find

$$
\begin{equation*}
\|w(t)\|^{2} \leq\left(\|w(\tau)\|^{2}+2 L_{b} r \int_{\tau-r}^{\tau}\|w(s)\|^{2} d s\right) e^{\left(2 k+2 L_{b} r\right)(t-\tau)} \tag{2.11}
\end{equation*}
$$

and this completes the proof of the theorem.

3 existence of pullback \boldsymbol{D}-attractors

3.1 Preliminaries of pullback \boldsymbol{D}-attractors

First, we give some basic definitions and an abstract result on the existence of pullback attractors, which we need to obtain our results (we refer the reader to $[2-4,8])$. Let (X, d) be a complete metric space, $\mathscr{P}(X)$ be the class of nonempty subsets of X, and suppose \mathscr{D} is a nonempty class of parameterized sets $\widehat{D}=\{D(t): t \in \mathbb{R}\} \subset$ $\mathscr{P}(X)$.
Definition 2. A two parameter family of mappings $U(t, \tau): X \rightarrow X t \geq \tau, \tau \in \mathbb{R}$, is called to be a process if

1. $S(\tau, \tau) x=\{x\}, \forall \tau \in \mathbb{R}, x \in Y$;
2. $S(t, s) S(s, \tau) x=S(t, \tau) x, \forall t \geq s \geq \tau, \tau \in \mathbb{R}, x \in X$.

Definition 3. A family of bounded sets $\widehat{B}=\{B(t): t \in \mathbb{R}\} \in \mathscr{D}$ is called pullback \mathscr{D}-absorbing for the process $\{S(t, \tau)\}$ if for any $t \in \mathbb{R}$ and for any $\widehat{D} \in \mathscr{D}$, there exists $\tau_{0}(t, \widehat{D}) \leq t$ such that

$$
S(t, \tau) D(\tau) \subset B(t) \quad \text { for all } \tau \leq \tau_{0}(t, \widehat{D})
$$

Definition 4. The process $S(t, \tau)$ is said to be pullback \mathscr{D}-asymptotically compact if for all $t \in \mathbb{R}$, all $\widehat{D} \in \mathscr{D}$, any sequence $\tau_{n} \rightarrow-\infty$, and any sequence $x_{n} \in D\left(\tau_{n}\right)$, the sequence $\left\{S\left(t, \tau_{n}\right) x_{n}\right\}$ is relatively compact in X.

Definition 5. A family $\widehat{A}=\{A(t): t \in \mathbb{R}\} \subset \mathscr{P}(X)$ is said to be a pullback $7 \mathscr{D}$-attractor for $\{S(t, \tau)\}$ if

1. $A(t)$ is compact for all $t \in \mathbb{R}$;
2. \widehat{A} is invariant; i.e., $S(t, \tau) A(\tau)=A(t)$, for all $t \geq \tau$;
3. \widehat{A} is pullback \mathscr{D}-attracting ; i.e.,

$$
\lim _{\tau \rightarrow-\infty} \operatorname{dist}(S(t, \tau) D(\tau), A(t))=0
$$

for all $\widehat{D} \in \mathscr{D}$ and all $t \in \mathbb{R}$;
4. If $\{C(t): t \in \mathbb{R}\}$ is another family of closed attracting sets then $A(t) \subset C(t)$, for all $t \in \mathbb{R}$.

Theorem 2. Let us suppose that the process $\{S(t, \tau)\}$ is pullback \mathscr{D}-asymptotically compact, and $\widehat{B}=\{B(t)$: $t \in \mathbb{R}\} \in \mathscr{D}$ is a family of pullback \mathscr{D}-absorbing sets for $\{S(t, \tau)\}$. Then there exists a pullback \mathscr{D}-attractor $\{A(t): t \in \mathbb{R}\}$ such that

$$
A(t)=\bigcap_{s \leq t} \overline{\bigcup_{\tau \leq s} S(t, \tau) B(\tau)}
$$

3.2 Construction of the associated process

Now, we will apply the above results in the phase space $H:=L^{2}(\Omega) \times L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)$, which is a Hilbert space with the norm

$$
\left\|\left(u^{0}, \varphi\right)\right\|_{H}^{2}=\left\|\nabla u^{0}\right\|^{2}+\int_{-r}^{0}\|\varphi(\theta)\|^{2} d \theta
$$

with $\left(u^{0}, \varphi\right) \in H$. To this aim, We consider $g \in L_{l o c}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right), b: \mathbb{R} \times L^{2}\left([-r, 0] ; L^{2}(\Omega)\right) \rightarrow L^{2}(\Omega)$ with the hypotheses (I)-(IV) and $f \in C^{1}(\mathbb{R} ; \mathbb{R})$ verifying (1.2)-(1.5). Then the family of mappings

$$
\begin{align*}
& S(t, \tau): H \rightarrow H \\
& \quad\left(u^{0}, \varphi\right) \longmapsto S(t, \tau)\left(u^{0}, \varphi\right)=\left(u(t), u_{t}\right) \tag{3.1}
\end{align*}
$$

with $t \geq \tau, \tau \in \mathbb{R}$ and u is the weak solution to (1.1), defines a process.
On the other hand, we construct the family of mappings

$$
\begin{align*}
& U(t, \tau): H \rightarrow C\left([-r, 0] ; L^{2}(\Omega)\right) \\
& \left(u^{0}, \varphi\right) \longmapsto U(t, \tau)\left(u^{0}, \varphi\right)=u_{t}, \forall t \geq \tau+r, \tag{3.2}
\end{align*}
$$

which we will use in our analysis. Of course, it is sensible to expect that the both operators should be related. Let us consider the linear mapping

$$
\begin{aligned}
& j: C\left([-r, 0] ; L^{2}(\Omega)\right) \rightarrow l^{2}(\Omega) \times C\left([-r, 0] ; L^{2}(\Omega)\right) \\
& \varphi \longmapsto j(\varphi)=(\varphi(0), \varphi) .
\end{aligned}
$$

This map is obviously continuous from $C\left([-r, 0] ; L^{2}(\Omega)\right)$ into H. We note that for all $\left(u^{0}, \varphi\right) \in H$ provided that $t \geq \tau+r$, so we write

$$
S(t, \tau)\left(u^{0}, \varphi\right)=j\left(U(t, \tau)\left(u^{0}, \varphi\right)\right), \forall\left(u^{0}, \varphi\right) \in H, \forall t \geq \tau+r
$$

To check the continuity of the process, we need the following lemma.

Lemma 1. Let $\left(u^{0}, \varphi\right),\left(v^{0}, \phi\right) \in H$ be two couples of initial conditions for the problem (1.1) and u, v be the corresponding solutions to (1.1). Then there exists a positive constant $v:=2\left(\frac{1}{2}+k+\frac{C_{b}}{2}-\lambda_{1}\right)>0$, such that

$$
\begin{equation*}
\|u(t)-v(t)\|^{2} \leq\left(\left\|u^{0}-v^{0}\right\|^{2}+C_{b}\|\varphi-\phi\|^{2}\right) e^{v(t-\tau)}, \forall t \geq \tau \tag{3.3}
\end{equation*}
$$

It also holds

$$
\begin{equation*}
\left\|u_{t}-v_{t}\right\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \leq\left(\left\|u^{0}-v^{0}\right\|^{2}+C_{b}\|\varphi-\phi\|^{2}\right) e^{v(t-r-\tau)}, \forall t \geq \tau+r \tag{3.4}
\end{equation*}
$$

Proof. From (1.1), one has

$$
\frac{\partial}{\partial t}(u-v)-\Delta(u-v)=f(u)-f(v)+b\left(t, u_{t}\right)-b\left(t, v_{t}\right)
$$

We put $w=u-v$, we obtain

$$
\frac{\partial w}{\partial t}-\Delta w=f(u)-f(v)+b\left(t, u_{t}\right)-b\left(t, v_{t}\right)
$$

Multiplying this equation by w and integrating it over Ω, one gets

$$
\frac{1}{2} \frac{d}{d t}\|w(t)\|^{2}+\|\nabla w(t)\|^{2}=\int_{\Omega}(f(u)-f(v)) w+\int_{\Omega}\left(b\left(t, u_{t}\right)-b\left(t, v_{t}\right)\right) w
$$

Using (1.3) and Cauchy-Schwarz inequality, one has

$$
\frac{1}{2} \frac{d}{d t}\|w(t)\|^{2}+\|\nabla w(t)\|^{2} \leq k\|w(t)\|^{2}+\left\|b\left(t, u_{t}\right)-b\left(t, v_{t}\right)\right\|\|w(t)\|
$$

Since $\lambda_{1}\|w(t)\|^{2} \leq\|\nabla w(t)\|^{2}$ and by the Young inequality, one finds

$$
\begin{aligned}
\frac{d}{d t}\|w(t)\|^{2}+2 \lambda_{1}\|w(t)\|^{2} & \leq \frac{d}{d t}\|w(t)\|^{2}+2\|\nabla w(t)\|^{2} \\
& \leq 2 k\|w(t)\|^{2}+\left\|b\left(t, u_{t}\right)-b\left(t, v_{t}\right)\right\|^{2}+\|w(t)\|^{2}
\end{aligned}
$$

Therefore, one has

$$
\frac{d}{d t}\|w(t)\|^{2} \leq 2\left(\frac{1}{2}+k-\lambda_{1}\right)\|w(t)\|^{2}+\left\|b\left(t, u_{t}\right)-b\left(t, v_{t}\right)\right\|^{2}
$$

Integrating this last estimate from τ to t and using (1.7), one obtains

$$
\begin{aligned}
\|w(t)\|^{2} & \leq\|w(\tau)\|^{2}+2\left(\frac{1}{2}+k-\lambda_{1}\right) \int_{\tau}^{t}\|w(s)\|^{2} d s \\
& +\int_{\tau}^{t}\left\|b\left(s, u_{s}\right)-b\left(s, v_{s}\right)\right\|^{2} d s \\
& \leq\|w(\tau)\|^{2}+2\left(\frac{1}{2}+k-\lambda_{1}\right) \int_{\tau}^{t}\|w(s)\|^{2} d s+C_{b} \int_{\tau-r}^{t}\|w(s)\|^{2} d s \\
& \leq\|w(\tau)\|^{2}+2\left(\frac{1}{2}+k-\lambda_{1}\right) \int_{\tau}^{t}\|w(s)\|^{2} d s+C_{b} \int_{\tau-r}^{\tau}\|w(s)\|^{2} d s \\
& +C_{b} \int_{\tau}^{t}\|w(s)\|^{2} d s \\
& \leq\|w(\tau)\|^{2}+C_{b} \int_{\tau-r}^{\tau}\|w(s)\|^{2} d s+2\left(\frac{1}{2}+k+\frac{C_{b}}{2}-\lambda_{1}\right) \int_{\tau}^{t}\|w(s)\|^{2} d s
\end{aligned}
$$

By the Gronwall lemma, for all $t \geq \tau$, one deduces

$$
\begin{aligned}
\|w(t)\|^{2} & \leq\left(\|w(\tau)\|^{2}+C_{b} \int_{\tau-r}^{\tau}\|w(s)\|^{2} d s\right) e^{v(t-\tau)} \\
& \leq\left(\left\|u^{0}-v^{0}\right\|^{2}+C_{b}\|\varphi-\phi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}\right) e^{v(t-\tau)}
\end{aligned}
$$

and by this last estimate, we proved (3.3). Now, assume that $t \geq \tau+r$, so $t+\theta \geq \tau$ for all $\theta \in[-r, 0]$ and one has

$$
\begin{aligned}
\|w(t+\theta)\|^{2} & \leq\left(\left\|u^{0}-v^{0}\right\|^{2}+C_{b}\|\varphi-\phi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}\right) e^{v(t+\theta-\tau)} \\
& \leq\left(\left\|u^{0}-v^{0}\right\|^{2}+C_{b}\|\varphi-\phi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}\right) e^{v(t-r-\tau)} .
\end{aligned}
$$

Hence, we conclude

$$
\left\|w_{t}\right\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)} \leq\left(\left\|u^{0}-v^{0}\right\|^{2}+C_{b}\|\varphi-\phi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}\right) e^{v(t-r-\tau)}
$$

By this last estimate we finished the proof of this lemma.
Theorem 3. Under the previous assumptions, the mapping $S(.,$.$) defined in (3.1), is a continuous process for$ all $\tau \leq t$.

Proof. The proof of this theorem is as the proof of Theorem 9 in [1]. The uniqueness of the solutions implies that $S(.,$.$) is a process. For the continuity of S(.,$.$) , we use the previous lemma. We consider \left(u^{0}, \varphi\right),\left(v^{0}, \phi\right) \in H$ and u, v are their corresponding solutions. Firstly, if we take $t \geq \tau+r$, it follows from (3.4)

$$
\begin{aligned}
\left\|u_{t}-v_{t}\right\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} & =\int_{-r}^{0}\|u(t+\theta)-v(t+\theta)\|^{2} d \theta \\
& \leq \int_{-r}^{0} \sup _{s \in[-r, 0]}\|u(t+s)-v(t+s)\|^{2} d \theta \\
& \leq r\left(\left\|u^{0}-v^{0}\right\|^{2}+C_{b}\|\varphi-\phi\|^{2}\right) e^{v(t-r-\tau)}
\end{aligned}
$$

Now, for $t \in[\tau, \tau+r]$, we deduce

$$
\begin{aligned}
\left\|u_{t}-v_{t}\right\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} & =\int_{-r}^{0}\|u(t+\theta)-v(t+\theta)\|^{2} d \theta \\
& \leq\left(r\left\|u^{0}-v^{0}\right\|^{2}+\left(C_{b} r+1\right)\|\varphi-\phi\|^{2}\right) e^{v(t-r-\tau)}
\end{aligned}
$$

So, for all $t \geq \tau$, we have

$$
\left\|u_{t}-v_{t}\right\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \leq\left(r\left\|u^{0}-v^{0}\right\|^{2}+\left(C_{b} r+1\right)\|\varphi-\phi\|^{2}\right) e^{v(t-r-\tau)}
$$

Hence, by this last estimate and (3.3) we deduce the continuity of $S(t, \tau)$.

3.3 Existence of pullback \boldsymbol{D}-absorbing set in $C\left([-r, 0] ; L^{2}(\Omega)\right)$ and H

Firstly, we need to the following lemma, it relates the absorption properties for the mappings with those of process S in the fact that, proving those for U yields to similar properties for S.

Lemma 2. Assume that the family of bounded sets $\{B(t): t \in \mathbb{R}\}$ in the space $C\left([-r, 0] ; L^{2}(\Omega)\right)$ is pullback \mathscr{D}-absorbing for the mapping $U(.,$.$) . Then the family of bounded sets \{j(B(t)): t \in \mathbb{R}\}$ in $L^{2}(\Omega) \times$ $C\left([-r, 0] ; L^{2}(\Omega)\right)$ is pullback \mathscr{D}-absorbing for the process $S(.,$.$) .$

Proof. Let $\{D(t): t \in \mathbb{R}\}$ be a family bounded sets in H, so there exists $T>r$ such that

$$
U(t, \tau) D(\tau) \subset B(t), \forall t-\tau \geq T .
$$

On the other hand, we have

$$
S(t, \tau)\left(u^{0}, \varphi\right)=j\left(U(t, \tau)\left(u^{0}, \varphi\right)\right),
$$

it follows that

$$
S(t, \tau)\left(u^{0}, \varphi\right)=j\left(U(t, \tau)\left(u^{0}, \varphi\right)\right) \subset j(B(t)), \forall t-\tau \geq T .
$$

Remark 2. Noticing that the word absorbing used in this papier should be interpreted in a generalized sense, since U is not a process.

Now, we need the following estimations.
Lemma 3. Assume that $g \in L_{\text {loc }}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, there exists a small enough $\alpha<2 \lambda_{1}-2-C_{b}$ such that

$$
\begin{equation*}
\int_{-\infty}^{t} e^{\alpha t}\|g(s)\|^{2} d s<\infty \tag{3.5}
\end{equation*}
$$

the function f satisfies (1.2)-(1.5) and b fulfills conditions (I)-(IV) and

$$
\begin{equation*}
\int_{\tau}^{t} e^{\sigma s}\left\|b\left(s, u_{s}\right)-b\left(s, v_{s}\right)\right\|^{2} d s \leq C_{b} \int_{\tau-r}^{t} e^{\sigma s}\|u(s)-v(s)\|^{2} d s \tag{3.6}
\end{equation*}
$$

Then we have

$$
\begin{align*}
\|u(t)\|^{2} & \leq e^{-\alpha(t-\tau)}\|u(\tau)\|^{2}+C_{b} e^{-\alpha(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
& +2 c|\Omega| \alpha^{-1}\left(1-e^{-\alpha(t-\tau)}\right)+e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
& \eta e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|^{2} d s+2 \mu_{1} e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|_{L^{p}(\Omega)}^{p} d s \\
\leq & e^{-\alpha(t-\tau)}\|u(\tau)\|^{2}+C_{b} e^{-\alpha(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s+2 c|\Omega| \alpha^{-1}\left(1-e^{-\alpha(t-\tau)}\right) \\
+ & e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s \tag{3.8}
\end{align*}
$$

where $\eta:=2 \lambda_{1}-2-\alpha-C_{b}$.
Proof. Multiplying (1.1) by u and integrating over Ω, one has

$$
\frac{1}{2} \frac{d}{d t}\|u(t)\|^{2}+\|\nabla u(t)\|^{2}=\int_{\Omega} f(u) u+\int_{\Omega} b\left(t, u_{t}\right) u+\int_{\Omega} g u .
$$

By (1.2), Cauchy-Shwarz and Young inequalities, we obtain

$$
\frac{1}{2} \frac{d}{d t}\|u(t)\|^{2}+\|\nabla u(t)\|^{2}+\mu_{1}\|u(t)\|_{L^{p}(\Omega)}^{p} \leq c|\Omega|+\frac{1}{2}\left\|b\left(t, u_{t}\right)\right\|^{2}+\frac{1}{2}\|g(t)\|^{2}+\|u(t)\|^{2} .
$$

Since $\lambda_{1}\|u\|^{2} \leq\|\nabla u\|^{2}$ and after calculation, one has

$$
\frac{d}{d t}\|u(t)\|^{2}+2\left(\lambda_{1}-1\right)\|u(t)\|^{2}+2 \mu_{1}\|u(t)\|_{L^{p}(\Omega)}^{p} \leq 2 c|\Omega|+\left\|b\left(t, u_{t}\right)\right\|^{2}+\|g(t)\|^{2}
$$

Now, we multiply this last estimate by $e^{\alpha t}$ such that $0<\alpha<2 \lambda_{1}-2-C_{b}$, so one gets

$$
\begin{align*}
& e^{\alpha t} \frac{d}{d t}\|u(t)\|^{2}+2\left(\lambda_{1}-1\right) e^{\alpha t}\|u(t)\|^{2}+2 \mu_{1} e^{\alpha t}\|u(t)\|_{L^{p}(\Omega)}^{p} \\
\leq & 2 c|\Omega| e^{\alpha t}+e^{\alpha t}\left\|b\left(t, u_{t}\right)\right\|^{2}+e^{\alpha t}\|g(t)\|^{2} \tag{3.9}
\end{align*}
$$

On the other hand, we have

$$
\frac{d}{d t}\left(e^{\alpha t}\|u(t)\|^{2}\right)=\alpha e^{\alpha t}\|u(t)\|^{2}+e^{\alpha t} \frac{d}{d t}\|u(t)\|^{2}
$$

We substitute (3.9) in this equality, we find

$$
\begin{aligned}
\frac{d}{d t}\left(e^{\alpha t}\|u(t)\|^{2}\right) & \leq \alpha e^{\alpha t}\|u(t)\|^{2}-2\left(\lambda_{1}-1\right) e^{\alpha t}\|u(t)\|^{2}-2 \mu_{1} e^{\alpha t}\|u(t)\|_{L^{p}(\Omega)}^{p} \\
& +2 c|\Omega| e^{\alpha t}+e^{\alpha t}\left\|b\left(t, u_{t}\right)\right\|^{2}+e^{\alpha t}\|g(t)\|^{2}
\end{aligned}
$$

Integrating this last estimate over $[\tau, t]$, one obtains

$$
\begin{aligned}
e^{\alpha t}\|u(t)\|^{2} & \leq e^{\alpha \tau}\|u(\tau)\|^{2}+2 c|\Omega| \alpha^{-1}\left(e^{\alpha t}-e^{\alpha \tau}\right) \\
& +\left(\alpha+2-2 \lambda_{1}\right) \int_{\tau}^{t} e^{\alpha s}\|u(s)\|^{2} d s-2 \mu_{1} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|_{L^{p}(\Omega)}^{p} d s \\
& +\int_{\tau}^{t} e^{\alpha s}\left\|b\left(s, u_{s}\right)\right\|^{2} d s+\int_{\tau}^{t} e^{\alpha s}\|g(s)\|^{2} d s
\end{aligned}
$$

Using (3.6) and (II), one has

$$
\begin{align*}
e^{\alpha t}\|u(t)\|^{2} & \leq e^{\alpha \tau}\|u(\tau)\|^{2}+2 c|\Omega| \alpha^{-1}\left(e^{\alpha t}-e^{\alpha \tau}\right) \\
& +\left(\alpha+2-2 \lambda_{1}\right) \int_{\tau}^{t} e^{\alpha s}\|u(s)\|^{2} d s-2 \mu_{1} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|_{L^{p}(\Omega)}^{p} d s \\
& +C_{b} \int_{\tau-r}^{t} e^{\alpha s}\|u(s)\|^{2} d s+\int_{\tau}^{t} e^{\alpha s}\|g(s)\|^{2} d s \tag{3.10}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\int_{\tau-r}^{t} e^{\alpha s}\|u(s)\|^{2} d s & =\int_{\tau-r}^{\tau} e^{\alpha s}\|u(s)\|^{2} d s+\int_{\tau}^{t} e^{\alpha s}\|u(s)\|^{2} d s \\
& \leq e^{\alpha \tau} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s+\int_{\tau}^{t} e^{\alpha s}\|u(s)\|^{2} d s \tag{3.11}
\end{align*}
$$

So by (3.10) and (3.11), one finds

$$
\begin{aligned}
e^{\alpha t}\|u(t)\|^{2} & \leq e^{\alpha \tau}\|u(\tau)\|^{2}+2 c|\Omega| \alpha^{-1}\left(e^{\alpha t}-e^{\alpha \tau}\right) \\
& +\left(\alpha+2-2 \lambda_{1}+C_{b}\right) \int_{\tau}^{t} e^{\alpha s}\|u(s)\|^{2} d s-2 \mu_{1} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|_{L^{p}(\Omega)}^{p} d s \\
& +C_{b} e^{\alpha \tau} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s+\int_{\tau}^{t} e^{\alpha s}\|g(s)\|^{2} d s .
\end{aligned}
$$

Hence, by (3.5) we obtain

$$
\begin{aligned}
& \|u(t)\|^{2}+\left(2 \lambda_{1}-\alpha-2-C_{b}\right) e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|^{2} d s \\
+ & 2 \mu_{1} e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|_{L^{p}(\Omega)}^{p} d s \\
\leq & e^{-\alpha(t-\tau)}\|u(\tau)\|^{2}+2 c|\Omega| \alpha^{-1}\left(1-e^{-\alpha(t-\tau)}\right)+C_{b} e^{-\alpha(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
+ & e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s .
\end{aligned}
$$

Thus, for $\eta:=2 \lambda_{1}-\alpha-2-C_{b}>0$, by this last estimate we get

$$
\begin{aligned}
\|u(t)\|^{2} & \leq e^{-\alpha(t-\tau)}\|u(\tau)\|^{2}+C_{b} e^{-\alpha(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
& +2 c|\Omega| \alpha^{-1}\left(1-e^{-\alpha(t-\tau)}\right)+e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s
\end{aligned}
$$

and

$$
\begin{aligned}
& \eta e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|^{2} d s+2 \mu_{1} e^{-\alpha t} \int_{\tau}^{t} e^{\alpha s}\|u(s)\|_{L^{p}(\Omega)}^{p} d s \\
\leq & e^{-\alpha(t-\tau)}\|u(\tau)\|^{2}+C_{b} e^{-\alpha(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s+2 c|\Omega| \alpha^{-1}\left(1-e^{-\alpha(t-\tau)}\right) \\
+ & e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s
\end{aligned}
$$

for all $t \geq \tau$. So by these two estimations the proof of the lemma is finished.
Proposition 1. Under the assumptions in lemma (3). Then the family $\left\{B_{1}(t): t \in \mathbb{R}\right\}$ given by

$$
B_{1}(t)=\bar{B}_{C\left([-r, 0] ; L^{2}(\Omega)\right)}\left(0, R_{1}(t)\right),
$$

with

$$
R_{1}^{2}(t)=e^{\alpha r}\left(2 c|\Omega| \alpha^{-1}+e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha t}\|g(s)\|^{2} d s\right), \forall t \in \mathbb{R} ;
$$

is pullback \mathscr{D}-absorbing for the mapping $U(t, \tau)$. Moreover, the family $\left\{B_{0}(t): t \in \mathbb{R}\right\}$ given by

$$
B_{0}(t)=\bar{B}_{\left.L^{2}(\Omega)\right)}\left(0, R_{1}(t)\right) \times \bar{B}_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}\left(0, \sqrt{r} R_{1}(t)\right) \subset H, \forall t \in \mathbb{R},
$$

is pullback \mathscr{D}-absorbing for the process S defined by (3.1).
Proof. The first part may be proved as follows.
By definition, we have

$$
\left\|U(t, \tau)\left(u^{0}, \varphi\right)\right\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}=\sup _{s \in[-r, 0]}\|u(t+s)\|^{2} .
$$

From (3.7), if we take $t \geq \tau+r$, so $t+\theta \geq \tau$. Then one has

$$
\begin{aligned}
\|u(t+\theta)\|^{2} & \leq e^{-\alpha(t+\theta-\tau)}\|u(\tau)\|^{2}+C_{b} e^{-\alpha(t+\theta-\tau)}\|\varphi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
& +2 c|\Omega| \alpha^{-1}\left(1-e^{-\alpha(t+\theta-\tau)}\right)+e^{-\alpha(t+\theta)} \int_{-\infty}^{t+\theta} e^{\alpha s}\|g(s)\|^{2} d s,
\end{aligned}
$$

which implies that

$$
\begin{align*}
\sup _{s \in[-r, 0]}\|u(t+s)\|^{2} & \leq e^{-\alpha(t-r-\tau)}\|u(\tau)\|^{2}+C_{b} e^{-\alpha(t-r-\tau)}\|\varphi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
& +2 c|\Omega| \alpha^{-1} e^{\alpha r}\left(e^{-\alpha r}-e^{-\alpha(t-\tau)}\right) \\
& +e^{-\alpha(t-r)} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s \tag{3.12}
\end{align*}
$$

On the one hand, we have

$$
\begin{align*}
\|\varphi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} & =\int_{-r}^{0}\|\varphi(\theta)\|^{2} d \theta \\
& \leq \int_{-r s \in[-r, 0]}^{0} \sup \|\varphi(s)\|^{2} d \theta \\
& \leq r\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \tag{3.13}
\end{align*}
$$

Therefore by (3.12), (3.13) and the fact that $u(\tau)=\varphi(0)$, we obtain

$$
\begin{aligned}
& \sup _{s \in[-r, 0]}\|u(t+s)\|^{2} \leq e^{-\alpha(t-r-\tau)}\|\varphi(0)\|^{2}+C_{b} r e^{-\alpha(t-r-\tau)}\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
+ & 2 c|\Omega| \alpha^{-1} e^{\alpha r}\left(e^{-\alpha r}-e^{-\alpha(t-\tau)}\right)+e^{-\alpha(t-r)} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s \\
\leq & \left(1+C_{b} r\right) e^{-\alpha(t-r-\tau)}\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}+2 c|\Omega| \alpha^{-1} e^{\alpha r} \\
+ & e^{-\alpha(t-r)} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s .
\end{aligned}
$$

Then, we find

$$
\begin{align*}
& \left\|U(t, \tau)\left(u^{0}, \varphi\right)\right\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}=\sup _{s \in[-r, 0]}\|u(t+s)\|^{2} \\
\leq & \left(1+C_{b} r\right) e^{-\alpha(t-r-\tau)}\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
+ & e^{\alpha r}\left(2 c|\Omega| \alpha^{-1}+e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s\right) \tag{3.14}
\end{align*}
$$

for all $\left(u^{0}, \varphi\right) \in H$ and all $t \geq \tau+r$.
Let \mathscr{R} be the set of all functions $\rho: \mathbb{R} \longrightarrow(0,+\infty)$ such that

$$
\lim _{t \rightarrow-\infty} e^{\alpha t} \rho^{2}(t)=0
$$

By \mathscr{D} we denote the class of all families $\widehat{\mathbf{D}}=\{D(t): t \in \mathbb{R}\} \subset \mathscr{P}\left(C\left([-r, 0] ; L^{2}(\Omega)\right)\right)$ such that $D(t) \subset$ $\overline{\mathbf{B}}_{C\left([-r, 0] ; L^{2}(\Omega)\right)}(0, \rho(t))$, for some $\rho \in \mathscr{R}$, where we denote by $\overline{\mathbf{B}}_{C\left([-r, 0] ; L^{2}(\Omega)\right)}(0, \rho(t))$ the closed ball in $C\left([-r, 0] ; L^{2}(\Omega)\right)$ centered at 0 with radius $\rho(t)$. Let

$$
R_{1}^{2}(t)=e^{\alpha r}\left(2 c|\Omega| \alpha^{-1}+e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s\right)
$$

Thus, for all $\widehat{D} \in \mathscr{D}$ and all $t \in \mathbb{R}$, by (3.14) there exists $\tau_{0}(\widehat{D}, t) \leq t$ such that

$$
\begin{equation*}
\left\|U(t, \tau)\left(u^{0}, \varphi\right)\right\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \leq R_{1}^{2}(t) \tag{3.15}
\end{equation*}
$$

for all $\tau \leq \tau_{0}(\widehat{D}, t)$; i.e., $B_{1}(t)=\bar{B}_{C\left([-r, 0] ; L^{2}(\Omega)\right)}\left(0, R_{1}(t)\right)$ is pullback \mathscr{D}-absorbing for the mapping $U(t, \tau)$.
Concerning the second part, we observe that $\{j(B(t)), t \in \mathbb{R}\}$ is a family of pullback \mathscr{D}-absorbing sets for the process S. On the other hand, since

$$
\|\varphi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \leq r\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2},
$$

and

$$
j(B(t))=\left\{(\varphi(0), \varphi): \varphi \in \bar{B}_{C\left([-r, 0] ; L^{2}(\Omega)\right)}\left(0, R_{1}(t)\right)\right\},
$$

we deduce that

$$
j(B(t)) \subset \bar{B}_{\left.L^{2}(\Omega)\right)}\left(0, R_{1}(t)\right) \times \bar{B}_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}\left(0, \sqrt{r} R_{1}(t)\right)=B_{0}(t),
$$

which implies that the family $\left\{B_{0}(t): t \in \mathbb{R}\right\}$ is pullback \mathscr{D}-absorbing sets for the process S.

3.4 Existence of pullback \boldsymbol{D}-absorbing set in $C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)$

Proposition 2. Suppose that conditions of lemma (3) are satisfied, if there exists a sufficiently small α^{*} such that

$$
\alpha<\alpha^{*}<\min \left\{2 \frac{\lambda_{1}-1}{\lambda_{1}}, 2 \mu_{1}\right\} .
$$

Then the family $\left\{B_{2}(t): t \in \mathbb{R}\right\}$ given by

$$
B_{2}(t)=\bar{B}_{C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)}\left(0, R_{2}(t)\right),
$$

where

$$
\begin{aligned}
R_{2}^{2}(t) & =2 c|\Omega|\left(\alpha^{*-1} e^{\alpha^{*} r}+2 C_{b} \alpha^{-1} \eta^{-1} e^{\alpha r}\right) \\
& +2 C_{b} \eta^{-1} e^{-\alpha(t-r)} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s+2 e^{-\alpha^{*}(t-r)} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s, \forall t \in \mathbb{R},
\end{aligned}
$$

is pullback \mathscr{D}-absorbing for the mapping $U(t, \tau)$.
Proof.
Multipying (1.1) by $u+\frac{\partial u}{\partial t}$ and integrating over Ω, we obtain

$$
\begin{aligned}
& \left\|\frac{d}{d t} u(t)\right\|^{2}+\frac{1}{2} \frac{d}{d t}\left(\|u(t)\|^{2}+\|\nabla u(t)\|^{2}\right) \\
= & \int_{\Omega} f(u)\left(u+\frac{\partial u}{\partial t}\right)+\int_{\Omega} b\left(t, u_{t}\right)\left(u+\frac{\partial u}{\partial t}\right)+\int_{\Omega} g\left(u+\frac{\partial u}{\partial t}\right) .
\end{aligned}
$$

Using (1.2), (1.5), (2.5) and Young inequality, one finds

$$
\begin{aligned}
& 2\left\|\frac{d}{d t} u(t)\right\|^{2}+\frac{d}{d t}\left(\|u(t)\|^{2}+\|\nabla u(t)\|^{2}+2 \mu_{1}^{\prime}\|u(t)\|_{L^{p}(\Omega)}^{p}\right) \\
+ & 2\|\nabla u(t)\|^{2}+2 \mu_{1}\|u(t)\|_{L^{p}(\Omega)}^{p} \\
\leq & 2 c|\Omega|+2\left\|b\left(t, u_{t}\right)\right\|^{2}+2\|g(t)\|^{2}+2\left\|\frac{d}{d t} u(t)\right\|^{2}+2\|u(t)\|^{2} .
\end{aligned}
$$

By the fact that $\lambda_{1}\|u\|^{2} \leq\|\nabla u\|^{2}$, after simplification one has

$$
\begin{aligned}
& \frac{d}{d t}\left(\|u(t)\|^{2}+\|\nabla u(t)\|^{2}+2 \mu_{1}^{\prime}\|u(t)\|_{L^{p}(\Omega)}^{p}\right) \\
+ & 2\left(1-\lambda_{1}^{-1}\right)\|\nabla u(t)\|^{2}+2 \mu_{1}\|u(t)\|_{L^{p}(\Omega)}^{p} \\
\leq & 2 c|\Omega|+2\left\|b\left(t, u_{t}\right)\right\|^{2}+2\|g(t)\|^{2} .
\end{aligned}
$$

Since α in lemma (3) is small enough, we can choose a positive constant α^{*} sufficiently small with $\alpha<\alpha^{*}<$ $\min \left\{2 \frac{\lambda_{1}-1}{\lambda_{1}}, 2 \mu_{1}\right\}$, such that

$$
2\left(1-\lambda_{1}^{-1}\right)\|\nabla u(t)\|^{2} \geq \alpha^{*}\left(\|u(t)\|^{2}+\|\nabla u(t)\|^{2}\right)
$$

So, we can write

$$
\begin{equation*}
\frac{d}{d t} \gamma_{1}(t)+\alpha^{*} \gamma_{1}(t) \leq 2 c|\Omega|+2\left\|b\left(t, u_{t}\right)\right\|^{2}+2\|g(t)\|^{2} \tag{3.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{1}(t)=\|u(t)\|^{2}+\|\nabla u(t)\|^{2}+2 \mu_{1}^{\prime}\|u(t)\|_{L^{p}(\Omega)}^{p} \tag{3.17}
\end{equation*}
$$

Multiplying (3.16) by $e^{\alpha^{*} t}$, one has

$$
\begin{equation*}
e^{\alpha^{*} t} \frac{d}{d t} \gamma_{1}(t)+\alpha^{*} e^{\alpha^{*} t} \gamma_{1}(t) \leq 2 c|\Omega| e^{\alpha^{*} t}+2 e^{\alpha^{*} t}\left\|b\left(t, u_{t}\right)\right\|^{2}+2 e^{\alpha^{*} t}\|g(t)\|^{2} \tag{3.18}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\frac{d}{d t}\left(e^{\alpha^{*} t} \gamma_{1}(t)\right)=\alpha^{*} e^{\alpha^{*} t} \gamma_{1}(t)+e^{\alpha^{*} t} \frac{d}{d t} \gamma_{1}(t) \tag{3.19}
\end{equation*}
$$

Then, by (3.18) and (3.19), we obtain

$$
\begin{aligned}
\frac{d}{d t}\left(e^{\alpha^{*} t} \gamma_{1}(t)\right) & \leq \alpha^{*} e^{\alpha^{*} t} \gamma_{1}(t)-\alpha^{*} e^{\alpha^{*} t} \gamma_{1}(t)+2 c|\Omega| e^{\alpha^{*} t} \\
& +2 e^{\alpha^{*} t}\left\|b\left(t, u_{t}\right)\right\|^{2}+2 e^{\alpha^{*} t}\|g(t)\|^{2} \\
& \leq 2 c|\Omega| e^{\alpha^{*} t}+2 e^{\alpha^{*} t}\left\|b\left(t, u_{t}\right)\right\|^{2}+2 e^{\alpha^{*} t}\|g(t)\|^{2}
\end{aligned}
$$

Integrating this last one from τ to t, one gets

$$
\begin{aligned}
e^{\alpha^{*} t} \gamma_{1}(t) & \leq e^{\alpha^{*} \tau} \gamma_{1}(\tau)+2 c|\Omega| \int_{\tau}^{t} e^{\alpha^{*} s} d s+2 \int_{\tau}^{t} e^{\alpha^{*} s}\left\|b\left(s, u_{s}\right)\right\|^{2} d s \\
& +2 \int_{\tau}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s \\
& \leq e^{\alpha^{*} \tau} \gamma_{1}(\tau)+2 c|\Omega| \alpha^{*-1}\left(e^{\alpha^{*} t}-e^{\alpha^{*} \tau}\right)+2 \int_{\tau}^{t} e^{\alpha^{*} s}\left\|b\left(s, u_{s}\right)\right\|^{2} d s \\
& +2 \int_{\tau}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s
\end{aligned}
$$

From (3.5) and (3.6), one finds

$$
\begin{aligned}
e^{\alpha^{*} t} \gamma_{1}(t) & \leq e^{\alpha^{*} \tau} \gamma_{1}(\tau)+2 c|\Omega| \alpha^{*-1}\left(e^{\alpha^{*} t}-e^{\alpha^{*} \tau}\right)+2 C_{b} \int_{\tau-r}^{t} e^{\alpha^{*} s}\|u(s)\|^{2} d s \\
& +2 \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s \\
& \leq e^{\alpha^{*} \tau} \gamma_{1}(\tau)+2 c|\Omega| \alpha^{*-1}\left(e^{\alpha^{*} t}-e^{\alpha^{*} \tau}\right)+2 C_{b} e^{\alpha^{*} \tau} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
& +2 C_{b} \int_{\tau}^{t} e^{\alpha^{*} s}\|u(s)\|^{2} d s+2 \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s
\end{aligned}
$$

We multiply this estimate by $e^{-\alpha^{*} t}$, we obtain

$$
\begin{align*}
\gamma_{1}(t) & \leq e^{-\alpha^{*}(t-\tau)} \gamma_{1}(\tau)+2 C_{b} e^{-\alpha^{*}(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
& +2 c|\Omega| \alpha^{*-1}\left(1-e^{-\alpha^{*}(t-\tau)}\right)+2 C_{b} e^{-\alpha^{*} t} \int_{\tau}^{t} e^{\alpha^{*} s}\|u(s)\|^{2} d s \\
& +2 e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s \tag{3.20}
\end{align*}
$$

On the one hand, since $H_{0}^{1}(\Omega) \subset L^{2}(\Omega)$ and $H_{0}^{1}(\Omega) \subset L^{p}(\Omega)$, we have

$$
\begin{align*}
\gamma_{1}(\tau) & =\|u(\tau)\|^{2}+\|\nabla u(\tau)\|^{2}+2 \mu_{1}^{\prime}\|u(\tau)\|_{L^{p}(\Omega)}^{p} \\
& \leq\left(1+\lambda_{1}^{-1}\right)\|\nabla u(\tau)\|^{2}+2 \mu_{1}^{\prime}\|u(\tau)\|_{L^{p}(\Omega)}^{p} \\
& \leq\left(1+\lambda_{1}^{-1}\right)\|\nabla u(\tau)\|^{2}+k_{1}\|\nabla u(\tau)\|^{p} \\
& \leq k_{2}\left(1+\lambda_{1}^{-1}\right)\|\nabla u(\tau)\|^{p}+k_{1}\|\nabla u(\tau)\|^{p} \\
& \leq k_{3}\|\nabla u(\tau)\|^{p} \tag{3.21}
\end{align*}
$$

So, by (3.17), (3.20) and (3.21), one finds

$$
\begin{aligned}
& \|u(t)\|^{2}+\|\nabla u(t)\|^{2}+2 \mu_{1}^{\prime}\|u(t)\|_{L^{p}(\Omega)}^{p} \leq k_{3} e^{-\alpha^{*}(t-\tau)}\|\nabla u(\tau)\|^{p} \\
+ & 2 C_{b} e^{-\alpha^{*}(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s+2 c|\Omega| \alpha^{*-1}\left(1-e^{-\alpha^{*}(t-\tau)}\right) \\
+ & 2 C_{b} e^{-\alpha^{*} t} \int_{\tau}^{t} e^{\alpha^{*} s}\|u(s)\|^{2} d s+2 e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s
\end{aligned}
$$

From this last estimate and (3.8), we have

$$
\begin{aligned}
\|\nabla u(t)\|^{2} & \leq k_{3} e^{-\alpha^{*}(t-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} e^{-\alpha^{*}(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
& +2 c|\Omega| \alpha^{*-1}\left(1-e^{-\alpha^{*}(t-\tau)}\right)+2 e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s \\
& +2 C_{b} e^{-\alpha^{*} t} \int_{\tau}^{t} e^{\alpha^{*} s}\|u(s)\|^{2} d s, \\
& \leq k_{3} e^{-\alpha^{*}(t-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} e^{-\alpha^{*}(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
& +2 c|\Omega| \alpha^{*-1}\left(1-e^{-\alpha^{*}(t-\tau)}\right)+2 e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s \\
& +2 C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\|u(\tau)\|^{2}+2 C_{b}^{2} \eta^{-1} e^{-\alpha(t-\tau)} \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
& +4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1}\left(1-e^{-\alpha(t-\tau)}\right)+2 C_{b} \eta^{-1} e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s, \\
& \leq k_{3} e^{-\alpha^{*}(t-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\|u(\tau)\|^{2} \\
& +2 C_{b}\left(e^{-\alpha^{*}(t-\tau)}+C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\right) \int_{\tau-r}^{\tau}\|u(s)\|^{2} d s \\
& +2 c|\Omega| \alpha^{*-1}\left(1-e^{-\alpha^{*}(t-\tau)}\right)+4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1}\left(1-e^{-\alpha(t-\tau)}\right) \\
& +2 e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s+2 C_{b} \eta^{-1} e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s .
\end{aligned}
$$

In the fact that

$$
\|\varphi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \leq r\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}
$$

one has

$$
\begin{align*}
& \|\nabla u(t)\|^{2} \leq k_{3} e^{-\alpha^{*}(t-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\|u(\tau)\|^{2} \\
+ & 2 C_{b} r\left(e^{-\alpha^{*}(t-\tau)}+C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\right)\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
+ & 2 c|\Omega| \alpha^{*-1}\left(1-e^{-\alpha^{*}(t-\tau)}\right)+4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1}\left(1-e^{-\alpha(t-\tau)}\right) \\
+ & 2 e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s+2 C_{b} \eta^{-1} e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s \\
\leq & k_{3} e^{-\alpha^{*}(t-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\|u(\tau)\|^{2} \\
+ & 2 C_{b} r\left(e^{-\alpha^{*}(t-\tau)}+C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\right)\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
+ & 2 c|\Omega| \alpha^{*-1}+4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1} \\
+ & 2 e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s+2 C_{b} \eta^{-1} e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s \tag{3.22}
\end{align*}
$$

If we take $t \geq \tau+r$ i.e. $t+\theta \geq \tau$, it follows

$$
\begin{aligned}
& \|\nabla u(t+\theta)\|^{2} \leq k_{3} e^{-\alpha^{*}(t+\theta-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} \eta^{-1} e^{-\alpha(t+\theta-\tau)}\|u(\tau)\|^{2} \\
+ & 2 C_{b} r\left(e^{-\alpha^{*}(t+\theta-\tau)}+C_{b} \eta^{-1} e^{-\alpha(t+\theta-\tau)}\right)\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
+ & 2 c|\Omega| \alpha^{*-1}\left(1-e^{-\alpha^{*}(t+\theta-\tau)}\right)+4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1}\left(1-e^{-\alpha(t+\theta-\tau)}\right) \\
+ & 2 e^{-\alpha^{*}(t+\theta)} \int_{-\infty}^{t+\theta} e^{\alpha^{*} s}\|g(s)\|^{2} d s+2 C_{b} \eta^{-1} e^{-\alpha(t+\theta)} \int_{-\infty}^{t+\theta} e^{\alpha s}\|g(s)\|^{2} d s .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\|U(t, \tau)\left(u^{0}, \varphi\right)\right\|_{C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)}^{2}=\sup _{\theta \in[-r, 0]}\|\nabla u(t+\theta)\|^{2} \\
\leq & k_{3} e^{-\alpha^{*}(t-r-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} \eta^{-1} e^{-\alpha(t-r-\tau)}\|u(\tau)\|^{2} \\
+ & 2 C_{b} r\left(e^{-\alpha^{*}(t-r-\tau)}+C_{b} \eta^{-1} e^{-\alpha(t-r-\tau)}\right)\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
+ & 2 c|\Omega| \alpha^{*-1}\left(1-e^{-\alpha^{*}(t-r-\tau)}\right)+4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1}\left(1-e^{-\alpha(t-r-\tau)}\right) \\
+ & 2 e^{-\alpha^{*}(t-r)} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s+2 C_{b} \eta^{-1} e^{-\alpha(t-r)} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s .
\end{aligned}
$$

So, we obtain

$$
\begin{align*}
& \left\|U(t, \tau)\left(u^{0}, \varphi\right)\right\|_{C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)}^{2} \\
\leq & k_{3} e^{-\alpha^{*}(t-r-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} \eta^{-1} e^{-\alpha(t-r-\tau)}\|u(\tau)\|^{2} \\
+ & 2 C_{b} r\left(e^{-\alpha^{*}(t-r-\tau)}+C_{b} \eta^{-1} e^{-\alpha(t-r-\tau)}\right)\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
+ & 2 c|\Omega|\left(\alpha^{*-1} e^{\alpha^{*} r}+2 C_{b} \alpha^{-1} \eta^{-1} e^{\alpha r}\right) \\
+ & 2 C_{b} \eta^{-1} e^{-\alpha(t-r)} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s \\
+ & 2 e^{-\alpha^{*}(t-r)} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s \tag{3.23}
\end{align*}
$$

Similarly to the Lemma 3, let \mathscr{R} be the set of all functions $\rho: \mathbb{R} \longrightarrow(0,+\infty)$ such that

$$
\lim _{t \rightarrow-\infty} e^{\alpha^{*} t} \rho^{2}(t)=0
$$

by \mathscr{D} we denote the class of all families $\widehat{\mathbf{D}}=\{D(t): t \in \mathbb{R}\} \subset \mathscr{P}\left(C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)\right)$ such that $D(t) \subset$ $\overline{\mathbf{B}}_{C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)}(0, \rho(t))$, for some $\rho \in \mathscr{R}$, where we denote by $\overline{\mathbf{B}}_{C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)}(0, \rho(t))$ the closed ball in $C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)$ centered at 0 with radius $\rho(t)$. Let

$$
\begin{aligned}
R_{2}^{2}(t) & =2 c|\Omega|\left(\alpha^{*-1} e^{\alpha^{*} r}+2 C_{b} \alpha^{-1} \eta^{-1} e^{\alpha r}\right) \\
& +2 C_{b} \eta^{-1} e^{-\alpha(t-r)} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s+2 e^{-\alpha^{*}(t-r)} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s
\end{aligned}
$$

Thus, for all $\widehat{D} \in \mathscr{D}$ and all $t \in \mathbb{R}$, by (3.23) there exists $\tau_{0}(\widehat{D}, t) \leq t$ such that

$$
\begin{equation*}
\left\|U(t, \tau)\left(u^{0}, \varphi\right)\right\|_{C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)}^{2} \leq R_{2}^{2}(t) \tag{3.24}
\end{equation*}
$$

for all $\tau \leq \tau_{0}(\widehat{D}, t)$, this means that $B_{2}(t)=\bar{B}_{C\left([-r, 0] ; H_{0}^{1}(\Omega)\right)}\left(0, R_{2}(t)\right)$ is pullback \mathscr{D}-absorbing for the mapping $U(t, \tau)$.

The proof of the proposition is completed.

3.5 Existence of pullback \boldsymbol{D}-attractor

To prove the existence of pullback \mathscr{D}-attractor, we need to prove the following lemma.
Lemma 4. Assume that conditions of lemma (3) are satisfied. Then the process $\{S(t, \tau)\}$ corresponding to (1.1) is pullback \mathscr{D}-asymptotically compact.

Proof. Let $t \in \mathbb{R}, \widehat{D} \in \mathscr{D}$, a sequences $\tau_{n} \rightarrow_{n \rightarrow+\infty}-\infty$ and $\left(u^{0, n}, \varphi^{n}\right) \in D\left(\tau_{n}\right)$, be fixed. We have to check that the sequence

$$
\left\{S\left(t, \tau_{n}\right)\left(u^{0, n}, \varphi^{n}\right)\right\}=\left\{\left(u\left(t, \tau_{n},\left(u^{0, n}, \varphi^{n}\right)\right), u_{t}\left(., \tau_{n},\left(u^{0, n}, \varphi^{n}\right)\right)\right)\right\}
$$

is relatively compact in H. In order to show this, we need to prove that the sequence

$$
\left\{U\left(t, \tau_{n}\right)\left(u^{0, n}, \varphi^{n}\right)\right\}=\left\{u_{t}\left(., \tau_{n},\left(u^{0, n}, \varphi^{n}\right)\right)\right\}
$$

is relatively compact in $C\left([-r, 0] ; L^{2}(\Omega)\right)$. To this end, we use the Ascoli-Arzela theorem. In other words, we check
(a) the equicontinuity property for the sequence $\left\{u_{t}\left(., \tau_{n},\left(u^{0, n}, \varphi^{n}\right)\right)\right\}:=\left\{u_{t}^{n}().\right\}$, i.e. $\forall \varepsilon>0, \exists \delta>0$ such that if $\left|\theta_{1}-\theta_{2}\right| \leq \delta$, then $\left\|u_{t}^{n}\left(\theta_{1}\right)-u_{t}^{n}\left(\theta_{2}\right)\right\| \leq \varepsilon$, for all $\theta_{1}>\theta_{2} \in[-r, 0]$;
(b) the uniform boundedness of $\left\{u_{t}^{n}(\theta)\right\}$, for all $\theta \in[-r, 0]$.

In order to prove (b), we consider u^{n}, u the corresponding solutions to (1.1), so by Lemma 1 we can deduce that $\left\{u_{t}^{n}\right\}$ and $\left\{u_{t}\right\}$ are uniformly bounded in $C\left([-r, 0] ; L^{2}(\Omega)\right)$.

To prove (a), we proceed as follows :

$$
\begin{align*}
\left\|u_{t}^{n}\left(\theta_{1}\right)-u_{t}^{n}\left(\theta_{2}\right)\right\| & =\left\|u\left(t+\theta_{1}\right)-u\left(t+\theta_{2}\right)\right\| \\
& =\left\|\int_{t+\theta_{2}}^{t+\theta_{1}} u^{\prime}(s) d s\right\| \\
& \leq \int_{t+\theta_{2}}^{t+\theta_{1}}\left\|u^{\prime}(s)\right\| d s \\
& \leq \int_{t+\theta_{2}}^{t+\theta_{1}}\left(\|\Delta u(s)\|+\|f(u(s))\|+\left\|b\left(s, u_{s}\right)\right\|\right. \\
& +\|g(s)\|) d s \tag{3.25}
\end{align*}
$$

Now, we estimate the terms on the right hand side of this inequality
1). From the Holder inequality, we have

$$
\begin{aligned}
\int_{t+\theta_{2}}^{t+\theta_{1}}\|\Delta u(s)\| d s & \leq\left(\int_{t+\theta_{2}}^{t+\theta_{1}} d s\right)^{1 / 2}\left(\int_{t+\theta_{2}}^{t+\theta_{1}}\|\Delta u(s)\|^{2} d s\right)^{1 / 2} \\
& \leq\left|\theta_{1}-\theta_{2}\right|^{1 / 2}\left(\int_{t+\theta_{2}}^{t+\theta_{1}}\|\Delta u(s)\|^{2} d s\right)^{1 / 2}
\end{aligned}
$$

On the one hand, we have

$$
\|\Delta u\|^{2} \leq \lambda_{m}\|\nabla u\|^{2}
$$

So, using this inequality in (3.22) and integrating it over $\left[t+\theta_{2}, t+\theta_{1}\right]$, one obtain

$$
\begin{aligned}
& \int_{t+\theta_{2}}^{t+\theta_{1}}\|\Delta u(s)\|^{2} d s \leq \lambda_{m} \int_{t+\theta_{2}}^{t+\theta_{1}}\|\nabla u(s)\|^{2} d s \\
\leq & k_{3} \lambda_{m} \int_{t+\theta_{2}}^{t+\theta_{1}} e^{-\alpha^{*}(s-\tau)}\|\nabla u(\tau)\|^{p} d s+2 C_{b} \eta^{-1} \lambda_{m} \int_{t+\theta_{2}}^{t+\theta_{1}} e^{-\alpha(s-\tau)}\|u(\tau)\|^{2} d s \\
+ & 2 C_{b} r \lambda_{m} \int_{t+\theta_{2}}^{t+\theta_{1}}\left(e^{-\alpha^{*}(s-\tau)}+C_{b} \eta^{-1} e^{-\alpha(s-\tau)}\right)\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} d s \\
+ & 2 c|\Omega| \lambda_{m} \int_{t+\theta_{2}}^{t+\theta_{1}}\left(\alpha^{*-1}\left(1-e^{-\alpha^{*}(s-\tau)}\right)+C_{b} \alpha^{-1} \eta^{-1}\left(1-e^{-\alpha(s-\tau)}\right)\right) d s \\
+ & 2 \lambda_{m} \int_{t+\theta_{2}}^{t+\theta_{1}} e^{-\alpha^{*} s} \int_{-\infty}^{s} e^{\alpha^{*} s^{\prime}}\left\|g\left(s^{\prime}\right)\right\|^{2} d s^{\prime} d s \\
+ & 2 C_{b} \eta^{-1} \lambda_{m} \int_{t+\theta_{2}}^{t+\theta_{1}} e^{-\alpha s} \int_{-\infty}^{s} e^{\alpha s^{\prime}}\left\|g\left(s^{\prime}\right)\right\|^{2} d s^{\prime} d s
\end{aligned}
$$

Therefore, one obtains

$$
\begin{align*}
& \int_{t+\theta_{2}}^{t+\theta_{1}}\|\Delta u(s)\|^{2} d s \\
\leq & k_{3} \lambda_{m}\|\nabla u(\tau)\|^{p} \alpha^{*-1} e^{-\alpha^{*}(t-\tau)}\left(e^{-\alpha^{*} \theta_{2}}-e^{-\alpha^{*} \theta_{1}}\right) \\
+ & 2 C_{b} \eta^{-1} \lambda_{m}\|u(\tau)\|^{2} \alpha^{-1} e^{-\alpha(t-\tau)}\left(e^{-\alpha \theta_{2}}-e^{-\alpha \theta_{1}}\right) \\
+ & 2 C_{b} r \lambda_{m}\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \alpha^{*-1} e^{-\alpha^{*}(t-\tau)}\left(e^{-\alpha^{*} \theta_{2}}-e^{-\alpha^{*} \theta_{1}}\right) \\
+ & 2 C_{b}^{2} r \lambda_{m}\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \eta^{-1} \alpha^{-1} e^{-\alpha(t-\tau)}\left(e^{-\alpha \theta_{2}}-e^{-\alpha \theta_{1}}\right) \\
+ & 2 c|\Omega| \lambda_{m} \alpha^{*-1}\left(1-\alpha^{*-1} e^{-\alpha^{*}(t-\tau)}\left(e^{-\alpha^{*} \theta_{2}}-e^{-\alpha^{*} \theta_{1}}\right)\right) \\
+ & 2 c|\Omega| C_{b} \eta^{-1} \lambda_{m} \alpha^{-1}\left(1-\alpha^{-1} e^{-\alpha(t-\tau)}\left(e^{-\alpha \theta_{2}}-e^{-\alpha \theta_{1}}\right)\right) \\
+ & 2 \lambda_{m} \alpha^{*-1}\left(e^{-\alpha^{*} \theta_{2}}-e^{-\alpha^{*} \theta_{1}}\right) e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s^{\prime}}\left\|g\left(s^{\prime}\right)\right\|^{2} d s^{\prime} \\
+ & 2 C_{b} \eta^{-1} \lambda_{m} \alpha^{-1}\left(e^{-\alpha \theta_{2}}-e^{-\alpha \theta_{1}}\right) e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s^{\prime}}\left\|g\left(s^{\prime}\right)\right\|^{2} d s^{\prime} \tag{3.26}\\
& \rightarrow 0 \text { when } \theta_{1} \rightarrow \theta_{2} .
\end{align*}
$$

Hence, it follows that

$$
\begin{aligned}
\int_{t+\theta_{2}}^{t+\theta_{1}}\|\Delta u(s)\| d s \leq & \left|\theta_{1}-\theta_{2}\right|^{1 / 2}\left(\int_{t+\theta_{2}}^{t+\theta_{1}}\|\Delta u(s)\|^{2} d s\right)^{1 / 2} \\
& \rightarrow 0 \text { when } \theta_{1} \rightarrow \theta_{2}
\end{aligned}
$$

2). From the Holder inequality, we have

$$
\begin{equation*}
\int_{t+\theta_{2}}^{t+\theta_{1}}\|f(u(s))\| d s \leq\left|\theta_{1}-\theta_{2}\right|^{1 / 2} \cdot\left(\int_{t+\theta_{2}}^{t+\theta_{1}}\|f(u(s))\|^{2} d s\right)^{1 / 2} \tag{3.27}
\end{equation*}
$$

Using (1.4) and the convexity of the power, one gets

$$
\begin{aligned}
\|f(u(t))\|^{2} & =\int_{\Omega}|f(u(t, x))|^{2} d x \\
& \leq 2 l^{2}\|u(t)\|^{2(p-1)}+2 l^{2}|\Omega|
\end{aligned}
$$

Integrating this estimate over $\left[t+\theta_{2}, t+\theta_{1}\right]$, one finds

$$
\int_{t+\theta_{2}}^{t+\theta_{1}}\|f(u(s))\|^{2} d s \leq 2 l^{2} \int_{t+\theta_{2}}^{t+\theta_{1}}\|u(s)\|^{2(p-1)} d s+2 l^{2}|\Omega| \cdot\left|\theta_{1}-\theta_{2}\right|
$$

Since $\lambda_{1}\|u\|^{2} \leq\|\nabla u\|^{2}$, we have

$$
\begin{equation*}
\int_{t+\theta_{2}}^{t+\theta_{1}}\|f(u(s))\|^{2} d s \leq 2 l^{2} \lambda_{1}^{(p-1)} \int_{t+\theta_{2}}^{t+\theta_{1}}\|\nabla u(s)\|^{2(p-1)} d s+2 l^{2}|\Omega| \cdot\left|\theta_{1}-\theta_{2}\right| \tag{3.28}
\end{equation*}
$$

From (3.22), one has

$$
\begin{aligned}
& \|\nabla u(t)\|^{2(p-1)} \leq\left\{k_{3} e^{-\alpha^{*}(t-\tau)}\|\nabla u(\tau)\|^{p}+2 C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\|u(\tau)\|^{2}\right. \\
+ & 2 C_{b} r\left(e^{-\alpha^{*}(t-\tau)}+C_{b} \eta^{-1} e^{-\alpha(t-\tau)}\right)\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2} \\
+ & 2 c|\Omega| \alpha^{*-1}+4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1} \\
+ & \left.2 e^{-\alpha^{*} t} \int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s+2 C_{b} \eta^{-1} e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s\right\}^{(p-1)}
\end{aligned}
$$

By applying the convexity of power three times, one gets

$$
\begin{aligned}
& \|\nabla u(t)\|^{2(p-1)} \\
\leq & 2^{2(p-2)}\left(k_{3}\|\nabla u(\tau)\|^{p}+2 C_{b} r\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}\right)^{(p-1)} e^{-(p-1) \alpha^{*}(t-\tau)} \\
+ & 2^{2(p-2)}\left(2 C_{b} \eta^{-1}\|u(\tau)\|^{2}+2 C_{b}^{2} r \eta^{-1}\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}\right)^{(p-1)} e^{-(p-1) \alpha(t-\tau)} \\
+ & 2^{2(p-2)}\left(2 c|\Omega| \alpha^{*-1}+4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1}\right)^{(p-1)} \\
+ & 2^{3(p-2)} 2^{(p-1)}\left(\int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s\right)^{(p-1)} e^{-(p-1) \alpha^{*} t} \\
+ & 2^{3(p-2)}\left(2 C_{b} \eta^{-1}\right)^{(p-1)}\left(\int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s\right)^{(p-1)} e^{-(p-1) \alpha t}
\end{aligned}
$$

Integrating it over $\left[t+\theta_{2}, t+\theta_{1}\right]$, one obtains

$$
\begin{aligned}
& \int_{t+\theta_{2}}^{t+\theta_{1}}\|\nabla u(s)\|^{2(p-1)} d s \\
\leq & 2^{2(p-2)}\left(k_{3}\|\nabla u(\tau)\|^{p}+2 C_{b} r\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}\right)^{(p-1)} \int_{t+\theta_{2}}^{t+\theta_{1}} e^{-(p-1) \alpha^{*}(s-\tau)} d s \\
+ & 2^{2(p-2)}\left(2 C_{b} \eta^{-1}\|u(\tau)\|^{2}+2 C_{b}^{2} r \eta^{-1}\|\varphi\|_{C\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}\right)^{(p-1)} \int_{t+\theta_{2}}^{t+\theta_{1}} e^{-(p-1) \alpha(s-\tau)} d s \\
+ & 2^{2(p-2)}\left(2 c|\Omega| \alpha^{*-1}+4 C_{b} c|\Omega| \alpha^{-1} \eta^{-1}\right)^{(p-1)}\left|\theta_{1}-\theta_{2}\right| \\
+ & 2^{3(p-2)} 2^{(p-1)}\left(\int_{-\infty}^{t} e^{\alpha^{*} s}\|g(s)\|^{2} d s\right)^{(p-1)} \int_{t+\theta_{2}}^{t+\theta_{1}} e^{-(p-1) \alpha^{*} s} d s \\
+ & 2^{3(p-2)}\left(2 C_{b} \eta^{-1}\right)^{(p-1)}\left(\int_{-\infty}^{t} e^{\alpha s}\|g(s)\|^{2} d s\right)^{(p-1)} \int_{t+\theta_{2}}^{t+\theta_{1}} e^{-(p-1) \alpha s} d s .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
\int_{t+\theta_{2}}^{t+\theta_{1}}\|\nabla u(s)\|^{2(p-1)} d s \leq & C_{1}^{\prime} e^{-(p-1) \alpha^{*}(t-\tau)}\left(e^{-(p-1) \alpha^{*} \theta_{2}}-e^{-(p-1) \alpha^{*} \theta_{1}}\right) \\
& +C_{2}^{\prime} e^{-(p-1) \alpha(t-\tau)}\left(e^{-(p-1) \alpha \theta_{2}}-e^{-(p-1) \alpha \theta_{1}}\right) \\
& +C_{3}^{\prime}\left|\theta_{1}-\theta_{2}\right|+C_{4}^{\prime} e^{-(p-1) \alpha t}\left(e^{-(p-1) \alpha \theta_{2}}-e^{-(p-1) \alpha \theta_{1}}\right) \\
+ & C_{5}^{\prime} e^{-(p-1) \alpha^{*} t}\left(e^{-(p-1) \alpha^{*} \theta_{2}}-e^{-(p-1) \alpha^{*} \theta_{1}}\right) \\
& \rightarrow 0 \text { as } \theta_{1} \rightarrow \theta_{2}
\end{aligned}
$$

Hence by (3.27), (3.28) and this last estimate we deduce that

$$
\int_{t+\theta_{2}}^{t+\theta_{1}}\|f(u(s))\| d s \rightarrow 0 \text { as } \theta_{1} \rightarrow \theta_{2}
$$

3). Similarly, by the Holder inequality, we have

$$
\begin{equation*}
\int_{t+\theta_{2}}^{t+\theta_{1}}\left\|b\left(s, u_{s}\right)\right\| d s \leq\left|\theta_{1}-\theta_{2}\right|^{1 / 2} \cdot\left(\int_{t+\theta_{2}}^{t+\theta_{1}}\left\|b\left(s, u_{s}\right)\right\|^{2} d s\right)^{1 / 2} \tag{3.29}
\end{equation*}
$$

On the other hand, by (II), (1.7) and since $\lambda_{1}\|u\|^{2} \leq\|\nabla u\|^{2}$, one has

$$
\begin{align*}
\int_{t+\theta_{2}}^{t+\theta_{1}}\left\|b\left(s, u_{s}\right)\right\|^{2} d s & \leq C_{b} \int_{t+\theta_{2}-r}^{t+\theta_{1}}\|u(s)\|^{2} d s \\
& \leq \int_{t+\theta_{2}-r}^{t+\theta_{2}}\|u(s)\|^{2} d s+\int_{t+\theta_{2}}^{t+\theta_{1}}\|u(s)\|^{2} d s \\
& \leq\|\varphi\|_{L^{2}\left([-r, 0] ; L^{2}(\Omega)\right)}^{2}+\lambda_{1}^{-1} \int_{t+\theta_{2}}^{t+\theta_{1}}\|\nabla u(s)\|^{2} d s \tag{3.30}
\end{align*}
$$

By (3.26), it follows that

$$
\int_{t+\theta_{2}}^{t+\theta_{1}}\|\nabla u(s)\|^{2} d s \rightarrow 0 \text { as } \theta_{1} \rightarrow \theta_{2}
$$

Then, from (3.29), (3.30) and this last estimate, we deduce that

$$
\int_{t+\theta_{2}}^{t+\theta_{1}}\left\|b\left(s, u_{s}\right)\right\| d s \rightarrow 0 \text { when } \theta_{1} \rightarrow \theta_{2}
$$

4). Finally, we use the Holder inequality to obtain

$$
\int_{t+\theta_{2}}^{t+\theta_{1}}\|g(s)\| d s \leq\left|\theta_{1}-\theta_{2}\right|^{1 / 2} \cdot\left(\int_{t+\theta_{2}}^{t+\theta_{1}}\|g(s)\|^{2} d s\right)^{1 / 2} .
$$

Since $g \in L_{\text {loc }}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$, one gets

$$
\begin{aligned}
\int_{t+\theta_{2}}^{t+\theta_{1}}\|g(s)\| d s \leq & \left|\theta_{1}-\theta_{2}\right|^{1 / 2} \cdot\|g\|_{\left.L^{2}\left(t+\theta_{2}, t+\theta_{1}\right] ; L^{2}(\Omega)\right)} \\
& \rightarrow 0 \text { when } \theta_{1} \rightarrow \theta_{2} .
\end{aligned}
$$

Consequently, by 1), 2), 3), 4) and (3.25), we deduce that

$$
\left\|u\left(t+\theta_{1}\right)-u\left(t+\theta_{2}\right)\right\| \rightarrow 0 \text { when } \theta_{1} \rightarrow \theta_{2}
$$

and this ensures the equicontinuity property in $C\left([-r, 0] ; L^{2}(\Omega)\right)$; i.e. the sequence $\left\{U\left(t, \tau_{n}\right)\left(u^{0, n}, \varphi^{n}\right)\right\}$ is relatively compact in $C\left([-r, 0] ; L^{2}(\Omega)\right)$.

Since we have $S\left(t, \tau_{n}\right)\left(u^{0, n}, \varphi^{n}\right)=j\left(U\left(t, \tau_{n}\right)\left(u^{0, n}, \varphi^{n}\right)\right)$, so $\left\{S\left(t, \tau_{n}\right)\left(u^{0, n}, \varphi^{n}\right)\right\}$ is relatively compact in the space $L^{2}(\Omega) \times C\left([-r, 0] ; L^{2}(\Omega)\right)$ and by the continuous injection of $L^{2}(\Omega) \times C\left([-r, 0] ; L^{2}(\Omega)\right)$ in H, we deduce that $\left\{S\left(t, \tau_{n}\right)\left(u^{0, n}, \varphi^{n}\right)\right\}$ is relatively compact in H. The proof of this lemma is completed.

By Proposition 1 and Lemma 4, we proved that the process $S(t, \tau)$ has a pullback \mathscr{D}-absorbing set and it is pullback \mathscr{D}-asymptotically compact, then by Theorem 2 we can deduce the following result.

Theorem 4. The process $\{S(t, \tau)\}$ corresponding to (1.1) has a pullback \mathscr{D}-attractor $\widehat{A}=\{A(t): t \in \mathbb{R}\}$ in H. Furetheremore, $\widehat{A} \subset L^{2}(\Omega) \times C\left([-r, 0] ; L^{2}(\Omega)\right)$.

References

[1] T. Caraballo, J. Real. Attractors for 2D-Navier-Stokes models with delays. J. Differential Equations 205, 271-297 (2004). doi: 10.1016/j.jde.2004.04.012
[2] T. Caraballo, J. Real, G. Lukaszewicz. Pullback attractors for asymptotically compact nonautonomous dynamical systems. Nonlinear Anal. 64, 484-498 (2006). doi: 10.1016/j.na.2005.03.111
[3] J.Garcia-Luengo,P.Marin-Rubio. Reaction-diffusion equations with non-autonomous force in H^{-1} and delays under measurability conditions on the driving delay term. J. Math.Anal.Appl. 417, 80-95 (2014). doi: 10.1016/j.jmaa.2014.03.026
[4] J. K. Hale, Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, AMS, Providence, RI, 25 (1988).
[5] J. K. Hale, S. M. Verduyn-Lunel, Introduction to Functional Differential Equations. Springer-Verlag (1993).
[6] J. Li, J. Huang. Uniform attractors for non-autonomous parabolic equations with delays. Nonlinear Analysis 71, 21942209 (2009). doi: 10.1016/j.na.2009.01.053
[7] J. L. Lions. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris, (1969)
[8] P. Marin-Rubio, J. Real. Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains. J. Nonlinear Anal. 67, 2784-2799 (2007). doi: 10.1016/j.na.2006.09.035
[9] J. Wu, Theory and Applications of Partial Functional Differential Equations. Springer-Verlag, New York (1996).

[^0]: ${ }^{\dagger}$ Corresponding author.
 Email address: h.harraga@yahoo.fr

