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Abstract
In this paper, we discuss the existence and uniqueness of solutions for a non-autonomous reaction-diffusion equation with
delay, after we prove the existence of a pullback D-asymptotically compact process. By a priori estimates, we show that it
has a pullback D-absorbing set that allow us to prove the existence of a pullback D-attractor for the associated process to
the problem.
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1 Introduction and statement of the problem

We consider the following nonautonomous functional reaction-diffusion equation
∂

∂ t u(t,x)−∆u(t,x) = f (u(t,x))+b(t,ut)(x)+g(t,x) in (τ,∞)×Ω ,
u = 0 on (τ,∞)×∂Ω ,
u(τ,x) = u0(x), τ ∈ R and x ∈Ω ,
u(τ +θ ,x) = ϕ(θ ,x), θ ∈ [−r,0] and x ∈Ω ,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω , τ ∈ R , u0 ∈ L2(Ω) is the initial condition in
τ and ϕ ∈ L2([−r,0];L2(Ω)) is also the initial condition in [τ− r,τ] , r > 0 is the length of the delay effect. For
the rest we assume following assumptions conditions :
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H1) Concerning the nonlinearity, we assume that f ∈C1(R,R) , there exist positive constants c,µ0,µ1,k and
p > 2 , N ≤ 2p

p−2 such that

− c−µ0|u|p ≤ f (u)u≤ c−µ1|u|p ∀u ∈ R, (1.2)

( f (u)− f (v))(u− v)≤ k(u− v)2 ∀u,v ∈ R. (1.3)

Let us denote by

F(u) :=
ˆ u

0
f (s)ds .

From (1.2), there exist positive constants l,c′,µ ′0,µ
′
1 such that

| f (u)| ≤ l
(
|u|p−1 +1

)
∀u ∈ R, (1.4)

− c′−µ
′
0|u|p ≤ F(u)≤ c′−µ

′
1|u|p ∀u ∈ R. (1.5)

H2) The operator b : R×L2([−r,0];L2(Ω))→ L2(Ω) is a time-dependent external force with delay, such that

(I) For all φ ∈ L2([−r,0];L2(Ω)) , the function R 3 t 7→ b(t,φ) ∈ L2(Ω) is measurable;

(II) b(t,0) = 0 for all t ∈ R ;

(III) ∃Lb > 0 s.t ∀t ∈ R and ∀φ1,φ2 ∈ L2([−r,0];L2(Ω));

‖b(t,φ1)−b(t,φ2)‖ ≤ Lb‖φ1−φ2‖L2([−r,0];L2(Ω)) ; (1.6)

(IV) ∃Cb > 0 s.t ∀t ≥ τ , and ∀u,v ∈ L2([τ− r, t];L2(Ω)) ;
ˆ t

τ

‖b(s,us)−b(s,vs)‖2ds≤Cb

ˆ t

τ−r
‖u(s)− v(s)‖2ds . (1.7)

Remark 1. From (I)-(III), for T > τ and u ∈ L2([τ − r,T ];L2(Ω)) the function R 3 t 7→ b(t,φ) ∈ L2(Ω) is
measurable and belongs to L∞((τ,T );L2(Ω)) .

H3) The function g ∈ L2
loc(R;L2(Ω)) is an another nondelayed time-dependent external force.

For more details on differential equations with delay, we refer the reader to J. Wu [9] and J.K. Hale [5]. The
purpose of this paper is to discuss the existence of pullback D-attractor in L2(Ω)×L2([−r,0];L2(Ω)) by using
a priori estimates of solutions to the problem (1.1).

This work is motivated by the work of T. Caraballo and J. Real. [1], where they proved the existence of
pullback attractors for the following 2D-Navier�Stokes model with delays :

∂u
∂ t −ν∆u+∑

2
i=1 ui

∂u
∂xi

= f −∇p+g(t,ut) in (τ,∞)×Ω ,

div u = 0 in (τ,∞)×Ω ,
u = 0 on (τ,∞)×∂Ω ,
u(τ,x) = u0(x), x ∈Ω ,
u(t,x) = φ(t− τ,x), t ∈ (τ−h,τ) and x ∈Ω ,

(1.8)

where ν > 0 is the kinematic viscosity, u is the velocity field of the fluid, p the pressure, τ ∈ R the initial time,
u0 the initial velocity field, f a nondelayed external force field, g another external force with delay and φ the
initial condition in (−h,0) , where h is a fixed positive number.

On the other hand, the problem (1.1) without critical nonlinearity was treated by J. Li and J. Huang in [6],
where they proved the existence of uniform attractor for the following non-autonomous parabolic equation with
delays : {

∂u(t,x)
∂ t +Au(t,x)+bu(t,x) = F(ut)(x)+g(t,x) x in Ω ,

u(τ,x) = u0(x), u(τ +θ ,x) = φ(θ ,x), θ ∈ (−r,0) .
(1.9)
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Here Ω is a bounded domain in Rn0 with smooth boundary, b ≥ 0 , A is a densely-defined self-adjoint positive
linear operator with domain D(A)⊂ L2(Ω) and with compact resolvent, F is the nonlinear term which is locally
Lipschitz continuous for the initial condition, g is an external force.

In [3], J.Garcia-Luengo and P.Marin-Rubio treated the following reaction-diffusion equation with non-
autonomous force in H−1 and delays under measurability conditions on the driving delay term :

∂u
∂ t −∆u = f (u)+g(t,ut)+ k(t) in (τ,∞)×Ω ,
u = 0 on (τ,∞)×∂Ω ,
u(τ + s,x) = φ(s,x), s ∈ [−r,0] and x ∈Ω ,

(1.10)

where τ ∈ R , f ∈ C(R) the nonlinear term with critical exponent, g is an external force with delay, k ∈
L2

loc(R;H−1(Ω)) a time-dependent force, φ the initial condition and h the lenght of the delay effect. In this
work, the authors checked the existence of pullback D-attractor in C([−h,0];L2(Ω)) .

This paper is organized as follows. In section 2, we will prove the existence of weak solutions to the prob-
lem(1.1) by using the Faedo-Galerkin approximations, as well as the uniqueness and the continuous dependence
of solution with respect to initial conditions. In section 3, we recall some definitions and abstract results on
pullback D-attractor. Then we can prove the existence of pullback D-attractor for the nonautonomous problem
with delay.

2 Existence and uniqueness of solution

First we give the concept of the solution.

Definition 1. A weak solution of (1.1) is a function u ∈ L2([τ− r,T ];L2(Ω)) such that for all T > τ we have

u ∈ L2((τ,T );H1
0 (Ω))∩Lp((τ,T );Lp(Ω))∩C([τ,T ];L2(Ω))

and
∂u
∂ t
∈ L2([τ,T ];L2(Ω)) ,

with u(t) = ϕ(t− τ) , for t ∈ [τ− r,τ] , and it satisfies
ˆ T

τ

−
〈
u,v′
〉
+

ˆ T

τ

ˆ
Ω

∇u∇v =

ˆ T

τ

ˆ
Ω

f (u)v+
ˆ T

τ

〈b(t,ut),v〉

+

ˆ T

τ

ˆ
Ω

gv+
〈
u0,v(τ)

〉
,

for all test functions v ∈ L2([τ,T ];H1
0 (Ω)) and v′ ∈ L2([τ,T ];H−1(Ω)) such that v(T ) = 0 .

Theorem 1. Assume that g ∈ L2
loc(R;L2(Ω)) , b and f satisfy (I)-(IV) and (1.2)-(1.5) respectively and if λ1 >

1+Cb/2 , Then for all T > τ and all (u0,ϕ) in L2(Ω)×L2([−r,0];L2(Ω)) , there exists a unique weak solution
u to the problem (1.1).

Proof. Let us consider {ek}k≥1 , the complete basis of H1
0 (Ω) which is given by the orthonormal eigenfunc-

tions of ∆ in L2(Ω) . We consider

um(t) =
m

∑
k=1

γk,m(t)ek , m = 1,2, . . .

which is the approximate solutions of Faedo-Galerkin of order m , that is
〈dum

dt ,ek
〉
+ 〈∆um,ek〉= 〈 f (um),ek〉+ 〈b(t,um

t ),ek〉+ 〈g,ek〉
〈um(τ),ek〉=

〈
Pmu0,ek

〉
=
〈
u0,ek

〉
i.e. Pmum(τ)→ u0 in L2(Ω)

〈um(τ +θ),ek〉= 〈Pmϕ(θ),ek〉= 〈ϕ(θ),ek〉 ∀θ ∈ (−r,0)
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for all k = 1 . . .m . Where γk,m(t) = 〈um(t),ek〉 denote the Fourier coefficients ; such that γm,k ∈C1((τ,T );R)∩
L2((τ − r,T ),R) ,γ ′k,m(t) is absolutely continuous, and Pmu(t) = ∑

m
k=1 〈u,ek〉ek is the orthogonal projection of

L2(Ω) and H1
0 (Ω) in Vm = span{e1, . . . ,em} .

It is well-known that the above finite-dimensional delayed system is well-posed (e.g. cf. [2]), at least locally.
We will provide a priori estimates for the Faedo-Galerkin approximate solutions.

Claim 1. For all m ∈ N∗ and all T > τ , the sequence {um} is bounded in

L∞((τ,T );L2(Ω))∩L2((τ,T );H1
0 (Ω))∩Lp((τ,T );Lp(Ω)) .

Multiplying (1.1) by um and integrating over Ω , we obtain

1
2

d
dt
‖um(t)‖2 +‖∇um(t)‖2 =

ˆ
Ω

f (um)um +

ˆ
Ω

b(t,um
t )u

m +

ˆ
Ω

gum .

Using the hypothesis (1.2) and the Young inequality, we get

1
2

d
dt
‖um(t)‖2 +‖∇um(t)‖2

≤ c|Ω|−µ1‖um(t)‖p +
1
2
‖b(t,um

t )‖2 +
1
2
‖um(t)‖2 +

1
2
‖g(t)‖2 +

1
2
‖um(t)‖2 .

So, one has

d
dt
‖um(t)‖2 +2‖∇um(t)‖2 +2µ1‖um(t)‖p

≤ 2c|Ω|+‖b(t,um
t )‖2 +‖g(t)‖2 +‖um(t)‖2 .

After integrating this last estimate over [τ, t] , τ ≤ t ≤ T , we use (II) and (IV), so we get

‖um(t)‖2 +2
ˆ t

τ

‖∇um(s)‖2ds+2µ1

ˆ t

τ

‖um(s)‖pds

≤ 2c|Ω|(t− τ)+‖um(τ)‖2 +Cb

ˆ t

τ−r
‖um(s)‖2ds

+

ˆ t

τ

‖g(s)‖2ds+
ˆ t

τ

‖um(s)‖2ds ,

≤ 2c|Ω|(t− τ)+‖um(τ)‖2 +Cb

ˆ
τ

τ−r
‖um(s)‖2ds+Cb

ˆ t

τ

‖um(s)‖2ds

+

ˆ t

τ

‖g(s)‖2ds+
ˆ t

τ

‖um(s)‖2ds .

By the fact that λ1‖u‖2 ≤ ‖∇u‖2 , one has

‖um(t)‖2 +2
ˆ t

τ

‖∇um(s)‖2ds+2µ1

ˆ t

τ

‖um(s)‖pds

≤ 2c|Ω|(t− τ)+‖um(τ)‖2 +Cb

ˆ
τ

τ−r
‖um(s)‖2ds+Cbλ

−1
1

ˆ t

τ

‖∇um(s)‖2ds

+

ˆ t

τ

‖g(s)‖2ds+λ
−1
1

ˆ t

τ

‖∇um(s)‖2ds .

https://www.sciendo.com


Nonautonomous reaction-diffusion equation with delay 131

Then, we find

‖um(t)‖2 +(2−Cbλ
−1
1 −λ

−1
1 )

ˆ t

τ

‖∇um(s)‖2ds+2µ1

ˆ t

τ

‖um(s)‖pds

≤ 2c|Ω|(t− τ)+‖um(τ)‖2 +Cb

ˆ
τ

τ−r
‖um(s)‖2ds+

ˆ t

τ

‖g(s)‖2ds ,

≤ 2c|Ω|(T − τ)+‖um(τ)‖2 +Cb

ˆ
τ

τ−r
‖um(s)‖2ds+

ˆ t

τ

‖g(s)‖2ds . (2.1)

Since g ∈ L2
loc(R,L2(Ω)) and for λ1 > 1+Cb/2 , we deduce by this last estimate that for all T > τ , the sequence

{um} is bounded in L∞((τ,T );L2(Ω))∩L2((τ,T );H1
0 (Ω))∩Lp((τ,T );Lp(Ω)) . (2.2)

Also, the estimate (2.1) implies that the local solution can extended to the interval [τ,T ] .

Claim 2.
{ f (um)} is bounded in Lq((τ,T );Lq(Ω)) . (2.3)

Using (1.4), we have

‖ f (um(t)‖q
Lq(Ω) =

ˆ
Ω

| f (um(t,x))|qdx ,

≤ lq
ˆ

Ω

(
|um(t,x)|p−1 +1

)q
dx .

By the convexity of the power and the fact that p = q(p−1) , one has

‖ f (um(t))‖q
Lq(Ω) ≤ 2q−1lq

ˆ
Ω

|um(t,x)|q(p−1)dx+2q−1lq|Ω| ,

≤ 2q−1lq‖um(t)‖q(p−1)
Lp(Ω) +2q−1lq|Ω| ,

≤ 2q−1lq‖um(t)‖p
Lp(Ω)+2q−1lq|Ω| .

Integrating this last estimate over [τ, t] , τ ≤ t ≤ T , one obtains
ˆ t

τ

‖ f (um(s))‖q
Lq(Ω)ds ≤ 2q−1lq

ˆ t

τ

‖um(s)‖p
Lp(Ω)ds+2q−1lq|Ω|(t− τ)

From (2.1), we deduce that the term
´ t

τ
‖um(s)‖p

Lp(Ω)ds is bounded, so by this last estimate we conclude that
{ f (um)} is bounded in Lq((τ,T );Lq(Ω)) , for all T > τ .

Claim 3.
{

∂

∂ t um
}

is bounded in L2((τ,T );L2(Ω)) .

Now, multiplying (1.1) by ∂um

∂ t and integrating over Ω , one has∥∥∥∥ d
dt

um(t)
∥∥∥∥2

+
1
2

d
dt
‖∇um(t)‖2

=

ˆ
Ω

f (um)
∂um

∂ t
+

ˆ
Ω

b(t,um
t )

∂um

∂ t
+

ˆ
Ω

g
∂um

∂ t
. (2.4)

On the other hand, we have

d
dt

F(u) =
dF
du

∂u
∂ t

,

= f (u)
∂u
∂ t

. (2.5)
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So
d
dt

ˆ
Ω

F(u) =
ˆ

Ω

f (u)
∂u
∂ t

.

Using this last equality in (2.4), we find∥∥∥∥ d
dt

um(t)
∥∥∥∥2

+
1
2

d
dt
‖∇um(t)‖2 =

d
dt

ˆ
Ω

F(um)+

ˆ
Ω

b(t,um
t )

∂um

∂ t
+

ˆ
Ω

g
∂um

∂ t
.

From (1.5) and Cauchy inequality, we have∥∥∥∥ d
dt

um(t)
∥∥∥∥2

+
1
2

d
dt
‖∇um(t)‖2 ,

≤ d
dt

ˆ
Ω

(c′−µ
′
1|u(t,x)|p)dx+

ε1

2
‖b(t,um

t )‖2 +
1

2ε1

∥∥∥∥ d
dt

um(t)
∥∥∥∥2

+
ε2

2
‖g(t)‖2 +

1
2ε2

∥∥∥∥ d
dt

um(t)
∥∥∥∥2

.

After simplification, one obtains(
2− 1

ε1
− 1

ε2

)∥∥∥∥ d
dt

um(t)
∥∥∥∥2

+
d
dt

(
‖∇um(t)‖2 +2µ

′
1‖um(t)‖p

Lp(Ω)

)
≤ ε1‖b(t,um

t )‖2 + ε2‖g(t)‖2 .

We can choose ε1 = ε2 = 2 to get∥∥∥∥ d
dt

um(t)
∥∥∥∥2

+
d
dt

(
‖∇um(t)‖2 +2µ

′
1‖um(t)‖p

Lp(Ω)

)
≤ 2‖b(t,um

t )‖2 +2‖g(t)‖2 .

Integrating this last estimate over [τ, t] and using (II) and (IV), one has

ˆ t

τ

∥∥∥∥ d
ds

um(s)
∥∥∥∥2

ds+‖∇um(t)‖2 +2µ
′
1‖um(t)‖p

Lp(Ω)

≤ ‖∇um(τ)‖2 +2µ
′
1‖um(τ)‖p

Lp(Ω)+2Cb

ˆ t

τ−r
‖um(s)‖2ds+2

ˆ t

τ

‖g(s)‖2ds ,

≤ ‖∇um(τ)‖2 +2µ
′
1‖um(τ)‖p

Lp(Ω)+2Cb

ˆ
τ

τ−r
‖um(s)‖2ds

+ 2Cb

ˆ t

τ

‖um(s)‖2ds+2
ˆ t

τ

‖g(s)‖2ds

Since λ1‖u‖2 ≤ ‖∇u‖2 , one has

ˆ t

τ

∥∥∥∥ d
ds

um(s)
∥∥∥∥2

ds+‖∇um(t)‖2 +2µ
′
1‖um(t)‖p

Lp(Ω)

≤ ‖∇um(τ)‖2 +2µ
′
1‖um(τ)‖p

Lp(Ω)+2Cb

ˆ
τ

τ−r
‖um(s)‖2ds

+ 2Cbλ
−1
1

ˆ t

τ

‖∇um(s)‖2ds+2
ˆ t

τ

‖g(s)‖2ds
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From (2.1), we have
´ t

τ
‖∇um(s)‖2ds is bounded and since g ∈ L2

loc(R;L2(Ω)) , this last estimate gives that{
∂

∂ t
um
}

is bounded in L2((τ,T );L2(Ω)) ,

for all T > τ .
From the claims (1), (2) and (3), the hypothesis (IV) and the remark (1), we can extract a subsequence

(relabelled the same) such that

um ⇀ u weakly* in L∞((τ,T );L2(Ω)),

um ⇀ u weakly in L2((τ,T );H1
0 (Ω)),

um ⇀ u weakly in Lp((τ,T );Lp(Ω)),

∂um

∂ t
→ ∂u

∂ t
strongly in L2((τ,T );L2(Ω)),

f (um)⇀ σ
′ weakly in Lq((τ,T );Lq(Ω)),

b(.,um
. )→ b(.,u.) strongly in L2((τ,T );L2(Ω)) .

(2.6)

By the Aubin-Lions lemma of compactness, we conclude that um → u strongly in L2((τ,T );L2(Ω)) . Thus
um→ u a.e [τ,T ]×Ω .

Since f is continuous, we deduce that f (um)→ f (u) a.e [τ,T ]×Ω . So from (2.3) and (lemma 1.3 in [7],
p.12) we can identify σ ′ with f (u) .

To prove that u(τ) = u0 , we put v ∈C1((τ,T );H1
0 (Ω)) such that v(T ) = 0 and we note from (1.1) that

ˆ T

τ

−
〈
u,v′
〉
+

ˆ T

τ

ˆ
Ω

∇u∇v =

ˆ T

τ

ˆ
Ω

f (u)v+
ˆ T

τ

〈b(t,ut),v〉

+

ˆ T

τ

ˆ
Ω

gv+ 〈u(τ),v(τ)〉 . (2.7)

In a similar way, from the Faedo-Galerkin approximations, we have
ˆ T

τ

−
〈
um,v′

〉ˆ T

τ

ˆ
Ω

∇um
∇v =

ˆ T

τ

ˆ
Ω

f (um)v+
ˆ T

τ

〈b(t,um
t ),v〉

+

ˆ T

τ

ˆ
Ω

gv+ 〈um(τ),v(τ)〉 . (2.8)

Using the fact that um(τ)→ u0 in L2(Ω) and (2.6) to find
ˆ T

τ

−
〈
u,v′
〉
+

ˆ T

τ

ˆ
Ω

∇u∇v =

ˆ T

τ

ˆ
Ω

f (u)v+
ˆ T

τ

〈b(t,ut),v〉

+

ˆ T

τ

ˆ
Ω

gv+
〈
u0,v(τ)

〉
. (2.9)

Since v(τ) is given arbitrarily, comparing (2.7) and (2.9) we deduce that u(τ) = u0 .
To prove that u ∈C([τ,T ];L2(Ω)) , we put wm = um−u then we have

∂

∂ t
wm−∆wm = f (um)− f (u)+b(t,um

t )−b(t,ut) .

Multiplying this equation by wm and integrating over Ω , we obtain

d
dt
‖wm(t)‖2 +2‖∇wm(t)‖2 = 2

ˆ
Ω

( f (um)− f (u))wm

+ 2
ˆ

Ω

(b(t,um
t )−b(t,ut))(um−u) .
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By (1.3), (I) and (1.6), we get

d
dt
‖wm(t)‖2 +2‖∇wm(t)‖2 ≤ 2k‖wm(t)‖2 +2Lb‖wm

t ‖2
L2([−r,0];L2(Ω)) .

Integrating over [τ, t] , we get

‖wm(t)‖2−‖wm(τ)‖2 +2
ˆ t

τ

‖∇wm(s)‖2ds

≤ 2k
ˆ t

τ

‖wm(s)‖2 +2Lb

ˆ t

τ

ˆ 0

−r
‖wm(s+θ)‖2dθds ,

≤ 2k
ˆ t

τ

‖wm(s)‖2 +2Lb

ˆ 0

−r

ˆ t

τ−r
‖wm(s)‖2dsdθ ,

≤ 2k
ˆ t

τ

‖wm(s)‖2 +2Lbr
ˆ

τ

τ−r
‖wm(s)‖2ds+2Lbr

ˆ t

τ

‖wm(s)‖2ds .

Therefore by by this last estimate, we can deduce that

‖wm(t)‖2 ≤ ‖wm(τ)‖2 +2Lbr
ˆ

τ

τ−r
‖wm(s)‖2ds+(2k+2Lbr)

ˆ t

τ

‖wm(s)‖2ds .

Applying the Gronwall lemma to this estimate, we obtain

‖wm(t)‖2 ≤
(
‖wm(τ)‖2 +2Lbr

ˆ
τ

τ−r
‖wm(s)‖2ds

)
e(2k+2Lbr)(t−τ) . (2.10)

Since um(τ)→ u0 and um(τ +θ)→ ϕ(θ) , the estimate (2.10) shows that um→ u uniformly in C([τ,T ];L2(Ω)) .
Finally, we prove the uniqueness and continuous dependence of the solution. Let u1;u2 be two solutions

of problem (1.1) with the initial conditions u0,1,u0,2 and ϕ1,ϕ2 . Denoting that w = u1− u2 and repeating the
argument as in the proof of (2.10), we find

‖w(t)‖2 ≤
(
‖w(τ)‖2 +2Lbr

ˆ
τ

τ−r
‖w(s)‖2ds

)
e(2k+2Lbr)(t−τ) . (2.11)

and this completes the proof of the theorem.

3 existence of pullback D-attractors

3.1 Preliminaries of pullback D-attractors

First, we give some basic definitions and an abstract result on the existence of pullback attractors, which we
need to obtain our results (we refer the reader to [2–4, 8]). Let (X ,d) be a complete metric space, P(X) be the
class of nonempty subsets of X , and suppose D is a nonempty class of parameterized sets D̂ = {D(t) : t ∈R} ⊂
P(X) .

Definition 2. A two parameter family of mappings U(t,τ) : X → X t ≥ τ , τ ∈ R , is called to be a process if

1. S(τ,τ)x = {x} ,∀τ ∈ R ,x ∈ Y ;

2. S(t,s)S(s,τ)x = S(t,τ)x , ∀t ≥ s≥ τ , τ ∈ R ,x ∈ X .

Definition 3. A family of bounded sets B̂ = {B(t) : t ∈ R} ∈ D is called pullback D-absorbing for the process
{S(t,τ)} if for any t ∈ R and for any D̂ ∈D , there exists τ0(t, D̂)≤ t such that

S(t,τ)D(τ)⊂ B(t) for all τ ≤ τ0(t, D̂) .
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Definition 4. The process S(t,τ) is said to be pullback D-asymptotically compact if for all t ∈ R , all D̂ ∈ D ,
any sequence τn→−∞ , and any sequence xn ∈ D(τn) , the sequence {S(t,τn)xn} is relatively compact in X .

Definition 5. A family Â = {A(t) : t ∈ R} ⊂P(X) is said to be a pullback 7D-attractor for {S(t,τ)} if

1. A(t) is compact for all t ∈ R ;

2. Â is invariant; i.e., S(t,τ)A(τ) = A(t) , for all t ≥ τ ;

3. Â is pullback D-attracting ; i.e.,

lim
τ→−∞

dist(S(t,τ)D(τ),A(t)) = 0 ,

for all D̂ ∈D and all t ∈ R ;

4. If {C(t) : t ∈ R} is another family of closed attracting sets then A(t)⊂C(t) , for all t ∈ R .

Theorem 2. Let us suppose that the process {S(t,τ)} is pullback D-asymptotically compact, and B̂ = {B(t) :
t ∈ R} ∈ D is a family of pullback D-absorbing sets for {S(t,τ)} . Then there exists a pullback D-attractor
{A(t) : t ∈ R} such that

A(t) =
⋂
s≤t

⋃
τ≤s

S(t,τ)B(τ) .

3.2 Construction of the associated process

Now, we will apply the above results in the phase space H := L2(Ω)×L2([−r,0];L2(Ω)) , which is a Hilbert
space with the norm

‖(u0,ϕ)‖2
H = ‖∇u0‖2 +

ˆ 0

−r
‖ϕ(θ)‖2dθ ,

with (u0,ϕ) ∈ H . To this aim, We consider g ∈ L2
loc(R;L2(Ω)) , b : R×L2([−r,0];L2(Ω))→ L2(Ω) with the

hypotheses (I)-(IV) and f ∈C1(R;R) verifying (1.2)-(1.5). Then the family of mappings

S(t,τ) : H→ H

(u0,ϕ) 7−→ S(t,τ)(u0,ϕ) = (u(t),ut) , (3.1)

with t ≥ τ , τ ∈ R and u is the weak solution to (1.1), defines a process.
On the other hand, we construct the family of mappings

U(t,τ) : H→C([−r,0];L2(Ω))

(u0,ϕ) 7−→U(t,τ)(u0,ϕ) = ut , ∀t ≥ τ + r , (3.2)

which we will use in our analysis. Of course, it is sensible to expect that the both operators should be related.
Let us consider the linear mapping

j : C([−r,0];L2(Ω))→ l2(Ω)×C([−r,0];L2(Ω))

ϕ 7−→ j(ϕ) = (ϕ(0),ϕ) .

This map is obviously continuous from C([−r,0];L2(Ω)) into H . We note that for all (u0,ϕ) ∈ H provided that
t ≥ τ + r , so we write

S(t,τ)(u0,ϕ) = j(U(t,τ)(u0,ϕ)) , ∀(u0,ϕ) ∈ H , ∀t ≥ τ + r .

To check the continuity of the process, we need the following lemma.
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Lemma 1. Let (u0,ϕ) , (v0,φ) ∈ H be two couples of initial conditions for the problem (1.1) and u , v be the
corresponding solutions to (1.1). Then there exists a positive constant ν := 2(1

2 + k+ Cb
2 −λ1)> 0 , such that

‖u(t)− v(t)‖2 ≤
(
‖u0− v0‖2 +Cb‖ϕ−φ‖2)eν(t−τ) , ∀t ≥ τ . (3.3)

It also holds
‖ut − vt‖2

C([−r,0];L2(Ω)) ≤
(
‖u0− v0‖2 +Cb‖ϕ−φ‖2)eν(t−r−τ) , ∀t ≥ τ + r . (3.4)

Proof. From (1.1), one has

∂

∂ t
(u− v)−∆(u− v) = f (u)− f (v)+b(t,ut)−b(t,vt) .

We put w = u− v , we obtain

∂w
∂ t
−∆w = f (u)− f (v)+b(t,ut)−b(t,vt) .

Multiplying this equation by w and integrating it over Ω , one gets

1
2

d
dt
‖w(t)‖2 +‖∇w(t)‖2 =

ˆ
Ω

( f (u)− f (v))w+

ˆ
Ω

(b(t,ut)−b(t,vt))w .

Using (1.3) and Cauchy-Schwarz inequality, one has

1
2

d
dt
‖w(t)‖2 +‖∇w(t)‖2 ≤ k‖w(t)‖2 +‖b(t,ut)−b(t,vt)‖‖w(t)‖ .

Since λ1‖w(t)‖2 ≤ ‖∇w(t)‖2 and by the Young inequality, one finds

d
dt
‖w(t)‖2 +2λ1‖w(t)‖2 ≤ d

dt
‖w(t)‖2 +2‖∇w(t)‖2 ,

≤ 2k‖w(t)‖2 +‖b(t,ut)−b(t,vt)‖2 +‖w(t)‖2 .

Therefore, one has
d
dt
‖w(t)‖2 ≤ 2

(
1
2
+ k−λ1

)
‖w(t)‖2 +‖b(t,ut)−b(t,vt)‖2 .

Integrating this last estimate from τ to t and using (1.7), one obtains

‖w(t)‖2 ≤ ‖w(τ)‖2 +2
(

1
2
+ k−λ1

)ˆ t

τ

‖w(s)‖2ds

+

ˆ t

τ

‖b(s,us)−b(s,vs)‖2ds ,

≤ ‖w(τ)‖2 +2
(

1
2
+ k−λ1

)ˆ t

τ

‖w(s)‖2ds+Cb

ˆ t

τ−r
‖w(s)‖2ds ,

≤ ‖w(τ)‖2 +2
(

1
2
+ k−λ1

)ˆ t

τ

‖w(s)‖2ds+Cb

ˆ
τ

τ−r
‖w(s)‖2ds

+ Cb

ˆ t

τ

‖w(s)‖2ds ,

≤ ‖w(τ)‖2 +Cb

ˆ
τ

τ−r
‖w(s)‖2ds+2

(
1
2
+ k+

Cb

2
−λ1

)ˆ t

τ

‖w(s)‖2ds .
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By the Gronwall lemma, for all t ≥ τ , one deduces

‖w(t)‖2 ≤
(
‖w(τ)‖2 +Cb

ˆ
τ

τ−r
‖w(s)‖2ds

)
eν(t−τ) ,

≤
(
‖u0− v0‖2 +Cb‖ϕ−φ‖2

L2([−r,0];L2(Ω))

)
eν(t−τ) ,

and by this last estimate, we proved (3.3). Now, assume that t ≥ τ + r , so t +θ ≥ τ for all θ ∈ [−r,0] and one
has

‖w(t +θ)‖2 ≤
(
‖u0− v0‖2 +Cb‖ϕ−φ‖2

L2([−r,0];L2(Ω))

)
eν(t+θ−τ) ,

≤
(
‖u0− v0‖2 +Cb‖ϕ−φ‖2

L2([−r,0];L2(Ω))

)
eν(t−r−τ) .

Hence, we conclude

‖wt‖C([−r,0];L2(Ω)) ≤
(
‖u0− v0‖2 +Cb‖ϕ−φ‖2

L2([−r,0];L2(Ω))

)
eν(t−r−τ) .

By this last estimate we finished the proof of this lemma.

Theorem 3. Under the previous assumptions, the mapping S(., .) defined in (3.1), is a continuous process for
all τ ≤ t .

Proof. The proof of this theorem is as the proof of Theorem 9 in [1]. The uniqueness of the solutions implies
that S(., .) is a process. For the continuity of S(., .), we use the previous lemma. We consider (u0,ϕ) , (v0,φ)∈H
and u , v are their corresponding solutions. Firstly, if we take t ≥ τ + r , it follows from (3.4)

‖ut − vt‖2
L2([−r,0];L2(Ω)) =

ˆ 0

−r
‖u(t +θ)− v(t +θ)‖2dθ ,

≤
ˆ 0

−r
sup

s∈[−r,0]
‖u(t + s)− v(t + s)‖2dθ ,

≤ r
(
‖u0− v0‖2 +Cb‖ϕ−φ‖2)eν(t−r−τ) .

Now, for t ∈ [τ,τ + r] , we deduce

‖ut − vt‖2
L2([−r,0];L2(Ω)) =

ˆ 0

−r
‖u(t +θ)− v(t +θ)‖2dθ ,

≤
(
r‖u0− v0‖2 +(Cbr+1)‖ϕ−φ‖2)eν(t−r−τ) .

So, for all t ≥ τ , we have

‖ut − vt‖2
L2([−r,0];L2(Ω)) ≤

(
r‖u0− v0‖2 +(Cbr+1)‖ϕ−φ‖2)eν(t−r−τ) .

Hence, by this last estimate and (3.3) we deduce the continuity of S(t,τ) .

3.3 Existence of pullback D-absorbing set in C([−r,0];L2(Ω)) and H

Firstly, we need to the following lemma, it relates the absorption properties for the mappings with those of
process S in the fact that, proving those for U yields to similar properties for S .

Lemma 2. Assume that the family of bounded sets {B(t) : t ∈ R} in the space C([−r,0];L2(Ω)) is pull-
back D-absorbing for the mapping U(., .) . Then the family of bounded sets { j(B(t)) : t ∈ R} in L2(Ω)×
C([−r,0];L2(Ω)) is pullback D-absorbing for the process S(., .) .
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Proof. Let {D(t) : t ∈ R} be a family bounded sets in H , so there exists T > r such that

U(t,τ)D(τ)⊂ B(t) , ∀t− τ ≥ T .

On the other hand, we have
S(t,τ)(u0,ϕ) = j(U(t,τ)(u0,ϕ)) ,

it follows that
S(t,τ)(u0,ϕ) = j(U(t,τ)(u0,ϕ))⊂ j(B(t)) , ∀t− τ ≥ T .

Remark 2. Noticing that the word absorbing used in this papier should be interpreted in a generalized sense,
since U is not a process.

Now, we need the following estimations.

Lemma 3. Assume that g ∈ L2
loc(R;L2(Ω)) , there exists a small enough α < 2λ1−2−Cb such that

ˆ t

−∞

eαt‖g(s)‖2ds < ∞ , (3.5)

the function f satisfies (1.2)-(1.5) and b fulfills conditions (I)-(IV) and
ˆ t

τ

eσs‖b(s,us)−b(s,vs)‖2ds≤Cb

ˆ t

τ−r
eσs‖u(s)− v(s)‖2ds . (3.6)

Then we have

‖u(t)‖2 ≤ e−α(t−τ)‖u(τ)‖2 +Cbe−α(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds

+ 2c|Ω|α−1
(

1− e−α(t−τ)
)
+ e−αt

ˆ t

−∞

eαs‖g(s)‖2ds , (3.7)

and

ηe−αt
ˆ t

τ

eαs‖u(s)‖2ds+2µ1e−αt
ˆ t

τ

eαs‖u(s)‖p
Lp(Ω)ds

≤ e−α(t−τ)‖u(τ)‖2 +Cbe−α(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds+2c|Ω|α−1

(
1− e−α(t−τ)

)
+ e−αt

ˆ t

−∞

eαs‖g(s)‖2ds , (3.8)

where η := 2λ1−2−α−Cb .

Proof. Multiplying (1.1) by u and integrating over Ω , one has

1
2

d
dt
‖u(t)‖2 +‖∇u(t)‖2 =

ˆ
Ω

f (u)u+
ˆ

Ω

b(t,ut)u+
ˆ

Ω

gu .

By (1.2), Cauchy-Shwarz and Young inequalities, we obtain

1
2

d
dt
‖u(t)‖2 +‖∇u(t)‖2 +µ1‖u(t)‖p

Lp(Ω) ≤ c|Ω|+ 1
2
‖b(t,ut)‖2 +

1
2
‖g(t)‖2 +‖u(t)‖2 .
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Since λ1‖u‖2 ≤ ‖∇u‖2 and after calculation, one has

d
dt
‖u(t)‖2 +2(λ1−1)‖u(t)‖2 +2µ1‖u(t)‖p

Lp(Ω) ≤ 2c|Ω|+‖b(t,ut)‖2 +‖g(t)‖2 .

Now, we multiply this last estimate by eαt such that 0 < α < 2λ1−2−Cb , so one gets

eαt d
dt
‖u(t)‖2 +2(λ1−1)eαt‖u(t)‖2 +2µ1eαt‖u(t)‖p

Lp(Ω)

≤ 2c|Ω|eαt + eαt‖b(t,ut)‖2 + eαt‖g(t)‖2 . (3.9)

On the other hand, we have

d
dt

(
eαt‖u(t)‖2)= αeαt‖u(t)‖2 + eαt d

dt
‖u(t)‖2

We substitute (3.9) in this equality, we find

d
dt

(
eαt‖u(t)‖2) ≤ αeαt‖u(t)‖2−2(λ1−1)eαt‖u(t)‖2−2µ1eαt‖u(t)‖p

Lp(Ω)

+ 2c|Ω|eαt + eαt‖b(t,ut)‖2 + eαt‖g(t)‖2 .

Integrating this last estimate over [τ, t] , one obtains

eαt‖u(t)‖2 ≤ eατ‖u(τ)‖2 +2c|Ω|α−1(eαt − eατ)

+ (α +2−2λ1)

ˆ t

τ

eαs‖u(s)‖2ds−2µ1

ˆ t

τ

eαs‖u(s)‖p
Lp(Ω)ds

+

ˆ t

τ

eαs‖b(s,us)‖2ds+
ˆ t

τ

eαs‖g(s)‖2ds .

Using (3.6) and (II), one has

eαt‖u(t)‖2 ≤ eατ‖u(τ)‖2 +2c|Ω|α−1(eαt − eατ)

+ (α +2−2λ1)

ˆ t

τ

eαs‖u(s)‖2ds−2µ1

ˆ t

τ

eαs‖u(s)‖p
Lp(Ω)ds

+ Cb

ˆ t

τ−r
eαs‖u(s)‖2ds+

ˆ t

τ

eαs‖g(s)‖2ds . (3.10)

On the other hand, we have
ˆ t

τ−r
eαs‖u(s)‖2ds =

ˆ
τ

τ−r
eαs‖u(s)‖2ds+

ˆ t

τ

eαs‖u(s)‖2ds ,

≤ eατ

ˆ
τ

τ−r
‖u(s)‖2ds+

ˆ t

τ

eαs‖u(s)‖2ds . (3.11)

So by (3.10) and (3.11), one finds

eαt‖u(t)‖2 ≤ eατ‖u(τ)‖2 +2c|Ω|α−1(eαt − eατ)

+ (α +2−2λ1 +Cb)

ˆ t

τ

eαs‖u(s)‖2ds−2µ1

ˆ t

τ

eαs‖u(s)‖p
Lp(Ω)ds

+ Cbeατ

ˆ
τ

τ−r
‖u(s)‖2ds+

ˆ t

τ

eαs‖g(s)‖2ds .
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Hence, by (3.5) we obtain

‖u(t)‖2 +(2λ1−α−2−Cb)e−αt
ˆ t

τ

eαs‖u(s)‖2ds

+ 2µ1e−αt
ˆ t

τ

eαs‖u(s)‖p
Lp(Ω)ds

≤ e−α(t−τ)‖u(τ)‖2 +2c|Ω|α−1
(

1− e−α(t−τ)
)
+Cbe−α(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds

+ e−αt
ˆ t

−∞

eαs‖g(s)‖2ds .

Thus, for η := 2λ1−α−2−Cb > 0 , by this last estimate we get

‖u(t)‖2 ≤ e−α(t−τ)‖u(τ)‖2 +Cbe−α(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds

+ 2c|Ω|α−1
(

1− e−α(t−τ)
)
+ e−αt

ˆ t

−∞

eαs‖g(s)‖2ds ,

and

ηe−αt
ˆ t

τ

eαs‖u(s)‖2ds+2µ1e−αt
ˆ t

τ

eαs‖u(s)‖p
Lp(Ω)ds

≤ e−α(t−τ)‖u(τ)‖2 +Cbe−α(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds+2c|Ω|α−1

(
1− e−α(t−τ)

)
+ e−αt

ˆ t

−∞

eαs‖g(s)‖2ds ,

for all t ≥ τ . So by these two estimations the proof of the lemma is finished.

Proposition 1. Under the assumptions in lemma (3). Then the family {B1(t) : t ∈ R} given by

B1(t) = BC([−r,0];L2(Ω))(0,R1(t)) ,

with

R2
1(t) = eαr

(
2c|Ω|α−1 + e−αt

ˆ t

−∞

eαt‖g(s)‖2ds
)
, ∀t ∈ R ;

is pullback D-absorbing for the mapping U(t,τ) . Moreover, the family {B0(t) : t ∈ R} given by

B0(t) = BL2(Ω))(0,R1(t))×BL2([−r,0];L2(Ω))

(
0,
√

rR1(t)
)
⊂ H , ∀t ∈ R ,

is pullback D-absorbing for the process S defined by (3.1).

Proof. The first part may be proved as follows.
By definition, we have

‖U(t,τ)(u0,ϕ)‖2
C([−r,0];L2(Ω)) = sup

s∈[−r,0]
‖u(t + s)‖2 .

From (3.7), if we take t ≥ τ + r , so t +θ ≥ τ . Then one has

‖u(t +θ)‖2 ≤ e−α(t+θ−τ)‖u(τ)‖2 +Cbe−α(t+θ−τ)‖ϕ‖2
L2([−r,0];L2(Ω))

+ 2c|Ω|α−1
(

1− e−α(t+θ−τ)
)
+ e−α(t+θ)

ˆ t+θ

−∞

eαs‖g(s)‖2ds ,
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which implies that

sup
s∈[−r,0]

‖u(t + s)‖2 ≤ e−α(t−r−τ)‖u(τ)‖2 +Cbe−α(t−r−τ)‖ϕ‖2
L2([−r,0];L2(Ω))

+ 2c|Ω|α−1eαr
(

e−αr− e−α(t−τ)
)

+ e−α(t−r)
ˆ t

−∞

eαs‖g(s)‖2ds , (3.12)

On the one hand, we have

‖ϕ‖2
L2([−r,0];L2(Ω)) =

ˆ 0

−r
‖ϕ(θ)‖2dθ ,

≤
ˆ 0

−r
sup

s∈[−r,0]
‖ϕ(s)‖2dθ ,

≤ r‖ϕ‖2
C([−r,0];L2(Ω)) . (3.13)

Therefore by (3.12), (3.13) and the fact that u(τ) = ϕ(0), we obtain

sup
s∈[−r,0]

‖u(t + s)‖2 ≤ e−α(t−r−τ)‖ϕ(0)‖2 +Cbre−α(t−r−τ)‖ϕ‖2
C([−r,0];L2(Ω))

+ 2c|Ω|α−1eαr
(

e−αr− e−α(t−τ)
)
+ e−α(t−r)

ˆ t

−∞

eαs‖g(s)‖2ds ,

≤ (1+Cbr)e−α(t−r−τ)‖ϕ‖2
C([−r,0];L2(Ω))+2c|Ω|α−1eαr

+ e−α(t−r)
ˆ t

−∞

eαs‖g(s)‖2ds .

Then, we find

‖U(t,τ)(u0,ϕ)‖2
C([−r,0];L2(Ω)) = sup

s∈[−r,0]
‖u(t + s)‖2 ,

≤ (1+Cbr)e−α(t−r−τ)‖ϕ‖2
C([−r,0];L2(Ω))

+ eαr
(

2c|Ω|α−1 + e−αt
ˆ t

−∞

eαs‖g(s)‖2ds
)
, (3.14)

for all (u0,ϕ) ∈ H and all t ≥ τ + r .
Let R be the set of all functions ρ : R−→ (0,+∞) such that

lim
t→−∞

eαt
ρ

2(t) = 0 .

By D we denote the class of all families D̂ = {D(t) : t ∈ R} ⊂ P(C([−r,0];L2(Ω))) such that D(t) ⊂
BC([−r,0];L2(Ω))(0,ρ(t)) , for some ρ ∈ R , where we denote by BC([−r,0];L2(Ω))(0,ρ(t)) the closed ball in
C([−r,0];L2(Ω)) centered at 0 with radius ρ(t) . Let

R2
1(t) = eαr

(
2c|Ω|α−1 + e−αt

ˆ t

−∞

eαs‖g(s)‖2ds
)
.

Thus, for all D̂ ∈D and all t ∈ R , by (3.14) there exists τ0(D̂, t)≤ t such that

‖U(t,τ)(u0,ϕ)‖2
C([−r,0];L2(Ω)) ≤ R2

1(t) , (3.15)
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for all τ ≤ τ0(D̂, t) ; i.e., B1(t) = BC([−r,0];L2(Ω))(0,R1(t)) is pullback D-absorbing for the mapping U(t,τ) .
Concerning the second part, we observe that { j(B(t)), t ∈ R} is a family of pullback D-absorbing sets for

the process S . On the other hand, since

‖ϕ‖2
L2([−r,0];L2(Ω)) ≤ r‖ϕ‖2

C([−r,0];L2(Ω)) ,

and
j(B(t)) =

{
(ϕ(0),ϕ) : ϕ ∈ BC([−r,0];L2(Ω))(0,R1(t))

}
,

we deduce that
j(B(t))⊂ BL2(Ω))(0,R1(t))×BL2([−r,0];L2(Ω))

(
0,
√

rR1(t)
)
= B0(t) ,

which implies that the family {B0(t) : t ∈ R} is pullback D-absorbing sets for the process S .

3.4 Existence of pullback D-absorbing set in C([−r,0];H1
0 (Ω))

Proposition 2. Suppose that conditions of lemma (3) are satisfied, if there exists a sufficiently small α∗ such that

α < α
∗ < min

{
2

λ1−1
λ1

, 2µ1

}
.

Then the family {B2(t) : t ∈ R} given by

B2(t) = BC([−r,0];H1
0 (Ω))(0,R2(t)) ,

where

R2
2(t) = 2c|Ω|

(
α
∗−1eα∗r +2Cbα

−1
η
−1eαr

)
+ 2Cbη

−1e−α(t−r)
ˆ t

−∞

eαs‖g(s)‖2ds+2e−α∗(t−r)
ˆ t

−∞

eα∗s‖g(s)‖2ds , ∀t ∈ R ,

is pullback D-absorbing for the mapping U(t,τ) .

Proof.
Multipying (1.1) by u+ ∂u

∂ t and integrating over Ω , we obtain∥∥∥∥ d
dt

u(t)
∥∥∥∥2

+
1
2

d
dt

(
‖u(t)‖2 +‖∇u(t)‖2)

=

ˆ
Ω

f (u)
(

u+
∂u
∂ t

)
+

ˆ
Ω

b(t,ut)

(
u+

∂u
∂ t

)
+

ˆ
Ω

g
(

u+
∂u
∂ t

)
.

Using (1.2), (1.5), (2.5) and Young inequality, one finds

2
∥∥∥∥ d

dt
u(t)

∥∥∥∥2

+
d
dt

(
‖u(t)‖2 +‖∇u(t)‖2 +2µ

′
1‖u(t)‖

p
Lp(Ω)

)
+ 2‖∇u(t)‖2 +2µ1‖u(t)‖p

Lp(Ω)

≤ 2c|Ω|+2‖b(t,ut)‖2 +2‖g(t)‖2 +2
∥∥∥∥ d

dt
u(t)

∥∥∥∥2

+2‖u(t)‖2 .

By the fact that λ1‖u‖2 ≤ ‖∇u‖2 , after simplification one has

d
dt

(
‖u(t)‖2 +‖∇u(t)‖2 +2µ

′
1‖u(t)‖

p
Lp(Ω)

)
+ 2(1−λ

−1
1 )‖∇u(t)‖2 +2µ1‖u(t)‖p

Lp(Ω)

≤ 2c|Ω|+2‖b(t,ut)‖2 +2‖g(t)‖2 .
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Since α in lemma (3) is small enough, we can choose a positive constant α∗ sufficiently small with α < α∗ <

min
{

2 λ1−1
λ1

, 2µ1

}
, such that

2(1−λ
−1
1 )‖∇u(t)‖2 ≥ α

∗(‖u(t)‖2 +‖∇u(t)‖2) .

So, we can write
d
dt

γ1(t)+α
∗
γ1(t)≤ 2c|Ω|+2‖b(t,ut)‖2 +2‖g(t)‖2 , (3.16)

where
γ1(t) = ‖u(t)‖2 +‖∇u(t)‖2 +2µ

′
1‖u(t)‖

p
Lp(Ω) . (3.17)

Multiplying (3.16) by eα∗t , one has

eα∗t d
dt

γ1(t)+α
∗eα∗t

γ1(t)≤ 2c|Ω|eα∗t +2eα∗t‖b(t,ut)‖2 +2eα∗t‖g(t)‖2 . (3.18)

On the other hand, we have
d
dt

(
eα∗t

γ1(t)
)
= α

∗eα∗t
γ1(t)+ eα∗t d

dt
γ1(t) (3.19)

Then, by (3.18) and (3.19), we obtain

d
dt

(
eα∗t

γ1(t)
)
≤ α

∗eα∗t
γ1(t)−α

∗eα∗t
γ1(t)+2c|Ω|eα∗t

+ 2eα∗t‖b(t,ut)‖2 +2eα∗t‖g(t)‖2 ,

≤ 2c|Ω|eα∗t +2eα∗t‖b(t,ut)‖2 +2eα∗t‖g(t)‖2 .

Integrating this last one from τ to t , one gets

eα∗t
γ1(t) ≤ eα∗τ

γ1(τ)+2c|Ω|
ˆ t

τ

eα∗sds+2
ˆ t

τ

eα∗s‖b(s,us)‖2ds

+ 2
ˆ t

τ

eα∗s‖g(s)‖2ds ,

≤ eα∗τ
γ1(τ)+2c|Ω|α∗−1

(
eα∗t − eα∗τ

)
+2
ˆ t

τ

eα∗s‖b(s,us)‖2ds

+ 2
ˆ t

τ

eα∗s‖g(s)‖2ds .

From (3.5) and (3.6), one finds

eα∗t
γ1(t) ≤ eα∗τ

γ1(τ)+2c|Ω|α∗−1
(

eα∗t − eα∗τ
)
+2Cb

ˆ t

τ−r
eα∗s‖u(s)‖2ds

+ 2
ˆ t

−∞

eα∗s‖g(s)‖2ds ,

≤ eα∗τ
γ1(τ)+2c|Ω|α∗−1

(
eα∗t − eα∗τ

)
+2Cbeα∗τ

ˆ
τ

τ−r
‖u(s)‖2ds

+ 2Cb

ˆ t

τ

eα∗s‖u(s)‖2ds+2
ˆ t

−∞

eα∗s‖g(s)‖2ds .
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We multiply this estimate by e−α∗t , we obtain

γ1(t) ≤ e−α∗(t−τ)
γ1(τ)+2Cbe−α∗(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds

+ 2c|Ω|α∗−1
(

1− e−α∗(t−τ)
)
+2Cbe−α∗t

ˆ t

τ

eα∗s‖u(s)‖2ds

+ 2e−α∗t
ˆ t

−∞

eα∗s‖g(s)‖2ds . (3.20)

On the one hand, since H1
0 (Ω)⊂ L2(Ω) and H1

0 (Ω)⊂ Lp(Ω) , we have

γ1(τ) = ‖u(τ)‖2 +‖∇u(τ)‖2 +2µ
′
1‖u(τ)‖

p
Lp(Ω) ,

≤ (1+λ
−1
1 )‖∇u(τ)‖2 +2µ

′
1‖u(τ)‖

p
Lp(Ω) ,

≤ (1+λ
−1
1 )‖∇u(τ)‖2 + k1‖∇u(τ)‖p ,

≤ k2(1+λ
−1
1 )‖∇u(τ)‖p + k1‖∇u(τ)‖p ,

≤ k3‖∇u(τ)‖p . (3.21)

So, by (3.17), (3.20) and (3.21), one finds

‖u(t)‖2 +‖∇u(t)‖2 +2µ
′
1‖u(t)‖

p
Lp(Ω) ≤ k3e−α∗(t−τ)‖∇u(τ)‖p

+ 2Cbe−α∗(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds+2c|Ω|α∗−1

(
1− e−α∗(t−τ)

)
+ 2Cbe−α∗t

ˆ t

τ

eα∗s‖u(s)‖2ds+2e−α∗t
ˆ t

−∞

eα∗s‖g(s)‖2ds .

From this last estimate and (3.8), we have

‖∇u(t)‖2 ≤ k3e−α∗(t−τ)‖∇u(τ)‖p +2Cbe−α∗(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds

+ 2c|Ω|α∗−1
(

1− e−α∗(t−τ)
)
+2e−α∗t

ˆ t

−∞

eα∗s‖g(s)‖2ds

+ 2Cbe−α∗t
ˆ t

τ

eα∗s‖u(s)‖2ds ,

≤ k3e−α∗(t−τ)‖∇u(τ)‖p +2Cbe−α∗(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds

+ 2c|Ω|α∗−1
(

1− e−α∗(t−τ)
)
+2e−α∗t

ˆ t

−∞

eα∗s‖g(s)‖2ds

+ 2Cbη
−1e−α(t−τ)‖u(τ)‖2 +2C2

bη
−1e−α(t−τ)

ˆ
τ

τ−r
‖u(s)‖2ds

+ 4Cbc|Ω|α−1
η
−1
(

1− e−α(t−τ)
)
+2Cbη

−1e−αt
ˆ t

−∞

eαs‖g(s)‖2ds ,

≤ k3e−α∗(t−τ)‖∇u(τ)‖p +2Cbη
−1e−α(t−τ)‖u(τ)‖2

+ 2Cb

(
e−α∗(t−τ)+Cbη

−1e−α(t−τ)
)ˆ τ

τ−r
‖u(s)‖2ds

+ 2c|Ω|α∗−1
(

1− e−α∗(t−τ)
)
+4Cbc|Ω|α−1

η
−1
(

1− e−α(t−τ)
)

+ 2e−α∗t
ˆ t

−∞

eα∗s‖g(s)‖2ds+2Cbη
−1e−αt

ˆ t

−∞

eαs‖g(s)‖2ds .
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In the fact that
‖ϕ‖2

L2([−r,0];L2(Ω)) ≤ r‖ϕ‖2
C([−r,0];L2(Ω)) ,

one has

‖∇u(t)‖2 ≤ k3e−α∗(t−τ)‖∇u(τ)‖p +2Cbη
−1e−α(t−τ)‖u(τ)‖2

+ 2Cbr
(

e−α∗(t−τ)+Cbη
−1e−α(t−τ)

)
‖ϕ‖2

C([−r,0];L2(Ω))

+ 2c|Ω|α∗−1
(

1− e−α∗(t−τ)
)
+4Cbc|Ω|α−1

η
−1
(

1− e−α(t−τ)
)

+ 2e−α∗t
ˆ t

−∞

eα∗s‖g(s)‖2ds+2Cbη
−1e−αt

ˆ t

−∞

eαs‖g(s)‖2ds

≤ k3e−α∗(t−τ)‖∇u(τ)‖p +2Cbη
−1e−α(t−τ)‖u(τ)‖2

+ 2Cbr
(

e−α∗(t−τ)+Cbη
−1e−α(t−τ)

)
‖ϕ‖2

C([−r,0];L2(Ω))

+ 2c|Ω|α∗−1 +4Cbc|Ω|α−1
η
−1

+ 2e−α∗t
ˆ t

−∞

eα∗s‖g(s)‖2ds+2Cbη
−1e−αt

ˆ t

−∞

eαs‖g(s)‖2ds . (3.22)

If we take t ≥ τ + r i.e. t +θ ≥ τ , it follows

‖∇u(t +θ)‖2 ≤ k3e−α∗(t+θ−τ)‖∇u(τ)‖p +2Cbη
−1e−α(t+θ−τ)‖u(τ)‖2

+ 2Cbr
(

e−α∗(t+θ−τ)+Cbη
−1e−α(t+θ−τ)

)
‖ϕ‖2

C([−r,0];L2(Ω))

+ 2c|Ω|α∗−1
(

1− e−α∗(t+θ−τ)
)
+4Cbc|Ω|α−1

η
−1
(

1− e−α(t+θ−τ)
)

+ 2e−α∗(t+θ)

ˆ t+θ

−∞

eα∗s‖g(s)‖2ds+2Cbη
−1e−α(t+θ)

ˆ t+θ

−∞

eαs‖g(s)‖2ds .

Hence,

‖U(t,τ)(u0,ϕ)‖2
C([−r,0];H1

0 (Ω)) = sup
θ∈[−r,0]

‖∇u(t +θ)‖2 ,

≤ k3e−α∗(t−r−τ)‖∇u(τ)‖p +2Cbη
−1e−α(t−r−τ)‖u(τ)‖2

+ 2Cbr
(

e−α∗(t−r−τ)+Cbη
−1e−α(t−r−τ)

)
‖ϕ‖2

C([−r,0];L2(Ω))

+ 2c|Ω|α∗−1
(

1− e−α∗(t−r−τ)
)
+4Cbc|Ω|α−1

η
−1
(

1− e−α(t−r−τ)
)

+ 2e−α∗(t−r)
ˆ t

−∞

eα∗s‖g(s)‖2ds+2Cbη
−1e−α(t−r)

ˆ t

−∞

eαs‖g(s)‖2ds .

So, we obtain

‖U(t,τ)(u0,ϕ)‖2
C([−r,0];H1

0 (Ω))

≤ k3e−α∗(t−r−τ)‖∇u(τ)‖p +2Cbη
−1e−α(t−r−τ)‖u(τ)‖2

+ 2Cbr
(

e−α∗(t−r−τ)+Cbη
−1e−α(t−r−τ)

)
‖ϕ‖2

C([−r,0];L2(Ω))

+ 2c|Ω|
(

α
∗−1eα∗r +2Cbα

−1
η
−1eαr

)
+ 2Cbη

−1e−α(t−r)
ˆ t

−∞

eαs‖g(s)‖2ds

+ 2e−α∗(t−r)
ˆ t

−∞

eα∗s‖g(s)‖2ds . (3.23)
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Similarly to the Lemma 3, let R be the set of all functions ρ : R−→ (0,+∞) such that

lim
t→−∞

eα∗t
ρ

2(t) = 0 ,

by D we denote the class of all families D̂ = {D(t) : t ∈ R} ⊂ P(C([−r,0];H1
0 (Ω))) such that D(t) ⊂

BC([−r,0];H1
0 (Ω))(0,ρ(t)) , for some ρ ∈ R , where we denote by BC([−r,0];H1

0 (Ω))(0,ρ(t)) the closed ball in
C([−r,0];H1

0 (Ω)) centered at 0 with radius ρ(t) . Let

R2
2(t) = 2c|Ω|

(
α
∗−1eα∗r +2Cbα

−1
η
−1eαr

)
+ 2Cbη

−1e−α(t−r)
ˆ t

−∞

eαs‖g(s)‖2ds+2e−α∗(t−r)
ˆ t

−∞

eα∗s‖g(s)‖2ds .

Thus, for all D̂ ∈D and all t ∈ R , by (3.23) there exists τ0(D̂, t)≤ t such that

‖U(t,τ)(u0,ϕ)‖2
C([−r,0];H1

0 (Ω)) ≤ R2
2(t) , (3.24)

for all τ ≤ τ0(D̂, t) , this means that B2(t) = BC([−r,0];H1
0 (Ω))(0,R2(t)) is pullback D-absorbing for the mapping

U(t,τ) .
The proof of the proposition is completed.

3.5 Existence of pullback D-attractor

To prove the existence of pullback D-attractor, we need to prove the following lemma.

Lemma 4. Assume that conditions of lemma (3) are satisfied. Then the process {S(t,τ)} corresponding to (1.1)
is pullback D-asymptotically compact.

Proof. Let t ∈ R , D̂ ∈ D , a sequences τn→n→+∞ −∞ and (u0,n,ϕn) ∈ D(τn) , be fixed. We have to check
that the sequence

{S(t,τn)(u0,n,ϕn)}= {(u(t,τn,(u0,n,ϕn)),ut(.,τn,(u0,n,ϕn)))} ,
is relatively compact in H . In order to show this, we need to prove that the sequence

{U(t,τn)(u0,n,ϕn)}= {ut(.,τn,(u0,n,ϕn))}

is relatively compact in C([−r,0];L2(Ω)) . To this end, we use the Ascoli-Arzela theorem. In other words, we
check

(a) the equicontinuity property for the sequence {ut(.,τn,(u0,n,ϕn))} := {un
t (.)} , i.e. ∀ε > 0, ∃δ > 0 such

that if |θ1−θ2| ≤ δ , then ‖un
t (θ1)−un

t (θ2)‖ ≤ ε , for all θ1 > θ2 ∈ [−r,0] ;

(b) the uniform boundedness of {un
t (θ)} , for all θ ∈ [−r,0] .

In order to prove (b), we consider un , u the corresponding solutions to (1.1), so by Lemma 1 we can deduce that
{un

t } and {ut} are uniformly bounded in C([−r,0];L2(Ω)) .
To prove (a), we proceed as follows :

‖un
t (θ1)−un

t (θ2)‖ = ‖u(t +θ1)−u(t +θ2)‖ ,

=

∥∥∥∥ˆ t+θ1

t+θ2

u′(s)ds
∥∥∥∥ ,

≤
ˆ t+θ1

t+θ2

‖u′(s)‖ds ,

≤
ˆ t+θ1

t+θ2

(
‖∆u(s)‖+‖ f (u(s))‖+‖b(s,us)‖

+ ‖g(s)‖
)

ds . (3.25)
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Now, we estimate the terms on the right hand side of this inequality
1). From the Holder inequality, we have

ˆ t+θ1

t+θ2

‖∆u(s)‖ds ≤

(ˆ t+θ1

t+θ2

ds

)1/2(ˆ t+θ1

t+θ2

‖∆u(s)‖2ds

)1/2

,

≤ |θ1−θ2|1/2

(ˆ t+θ1

t+θ2

‖∆u(s)‖2ds

)1/2

.

On the one hand, we have
‖∆u‖2 ≤ λm‖∇u‖2 .

So, using this inequality in (3.22) and integrating it over [t +θ2, t +θ1] , one obtain

ˆ t+θ1

t+θ2

‖∆u(s)‖2ds≤ λm

ˆ t+θ1

t+θ2

‖∇u(s)‖2ds

≤ k3λm

ˆ t+θ1

t+θ2

e−α∗(s−τ)‖∇u(τ)‖pds+2Cbη
−1

λm

ˆ t+θ1

t+θ2

e−α(s−τ)‖u(τ)‖2ds

+ 2Cbrλm

ˆ t+θ1

t+θ2

(
e−α∗(s−τ)+Cbη

−1e−α(s−τ)
)
‖ϕ‖2

C([−r,0];L2(Ω))ds

+ 2c|Ω|λm

ˆ t+θ1

t+θ2

(
α
∗−1
(

1− e−α∗(s−τ)
)
+Cbα

−1
η
−1
(

1− e−α(s−τ)
))

ds

+ 2λm

ˆ t+θ1

t+θ2

e−α∗s
ˆ s

−∞

eα∗s′‖g(s′)‖2ds′ds

+ 2Cbη
−1

λm

ˆ t+θ1

t+θ2

e−αs
ˆ s

−∞

eαs′‖g(s′)‖2ds′ds .

Therefore, one obtains

ˆ t+θ1

t+θ2

‖∆u(s)‖2ds

≤ k3λm‖∇u(τ)‖p
α
∗−1e−α∗(t−τ)

(
e−α∗θ2− e−α∗θ1

)
+ 2Cbη

−1
λm‖u(τ)‖2

α
−1e−α(t−τ)

(
e−αθ2− e−αθ1

)
+ 2Cbrλm‖ϕ‖2

C([−r,0];L2(Ω))α
∗−1e−α∗(t−τ)

(
e−α∗θ2− e−α∗θ1

)
+ 2C2

brλm‖ϕ‖2
C([−r,0];L2(Ω))η

−1
α
−1e−α(t−τ)

(
e−αθ2− e−αθ1

)
+ 2c|Ω|λmα

∗−1
(

1−α
∗−1e−α∗(t−τ)

(
e−α∗θ2− e−α∗θ1

))
+ 2c|Ω|Cbη

−1
λmα

−1
(

1−α
−1e−α(t−τ)

(
e−αθ2− e−αθ1

))
+ 2λmα

∗−1
(

e−α∗θ2− e−α∗θ1
)

e−α∗t
ˆ t

−∞

eα∗s′‖g(s′)‖2ds′

+ 2Cbη
−1

λmα
−1
(

e−αθ2− e−αθ1
)

e−αt
ˆ t

−∞

eαs′‖g(s′)‖2ds′ (3.26)

→ 0 when θ1→ θ2 .
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Hence, it follows that

ˆ t+θ1

t+θ2

‖∆u(s)‖ds ≤ |θ1−θ2|1/2

(ˆ t+θ1

t+θ2

‖∆u(s)‖2ds

)1/2

→ 0 when θ1→ θ2 .

2). From the Holder inequality, we have

ˆ t+θ1

t+θ2

‖ f (u(s))‖ds≤ |θ1−θ2|1/2 ·

(ˆ t+θ1

t+θ2

‖ f (u(s))‖2ds

)1/2

. (3.27)

Using (1.4) and the convexity of the power, one gets

‖ f (u(t))‖2 =

ˆ
Ω

| f (u(t,x))|2dx ,

≤ 2l2‖u(t)‖2(p−1)+2l2|Ω| .

Integrating this estimate over [t +θ2, t +θ1] , one finds
ˆ t+θ1

t+θ2

‖ f (u(s))‖2ds≤ 2l2
ˆ t+θ1

t+θ2

‖u(s)‖2(p−1)ds+2l2|Ω| · |θ1−θ2| .

Since λ1‖u‖2 ≤ ‖∇u‖2 , we have
ˆ t+θ1

t+θ2

‖ f (u(s))‖2ds≤ 2l2
λ
(p−1)
1

ˆ t+θ1

t+θ2

‖∇u(s)‖2(p−1)ds+2l2|Ω| · |θ1−θ2| . (3.28)

From (3.22), one has

‖∇u(t)‖2(p−1) ≤
{

k3e−α∗(t−τ)‖∇u(τ)‖p +2Cbη
−1e−α(t−τ)‖u(τ)‖2

+ 2Cbr
(

e−α∗(t−τ)+Cbη
−1e−α(t−τ)

)
‖ϕ‖2

C([−r,0];L2(Ω))

+ 2c|Ω|α∗−1 +4Cbc|Ω|α−1
η
−1

+ 2e−α∗t
ˆ t

−∞

eα∗s‖g(s)‖2ds+2Cbη
−1e−αt

ˆ t

−∞

eαs‖g(s)‖2ds
}(p−1)

.

By applying the convexity of power three times, one gets

‖∇u(t)‖2(p−1)

≤ 22(p−2)
(

k3‖∇u(τ)‖p +2Cbr‖ϕ‖2
C([−r,0];L2(Ω))

)(p−1)
e−(p−1)α∗(t−τ)

+ 22(p−2)
(

2Cbη
−1‖u(τ)‖2 +2C2

brη
−1‖ϕ‖2

C([−r,0];L2(Ω))

)(p−1)
e−(p−1)α(t−τ)

+ 22(p−2)
(

2c|Ω|α∗−1 +4Cbc|Ω|α−1
η
−1
)(p−1)

+ 23(p−2)2(p−1)
(ˆ t

−∞

eα∗s‖g(s)‖2ds
)(p−1)

e−(p−1)α∗t

+ 23(p−2)(2Cbη
−1)(p−1)

(ˆ t

−∞

eαs‖g(s)‖2ds
)(p−1)

e−(p−1)αt .
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Integrating it over [t +θ2, t +θ1] , one obtains
ˆ t+θ1

t+θ2

‖∇u(s)‖2(p−1)ds

≤ 22(p−2)
(

k3‖∇u(τ)‖p +2Cbr‖ϕ‖2
C([−r,0];L2(Ω))

)(p−1)
ˆ t+θ1

t+θ2

e−(p−1)α∗(s−τ)ds

+ 22(p−2)
(

2Cbη
−1‖u(τ)‖2 +2C2

brη
−1‖ϕ‖2

C([−r,0];L2(Ω))

)(p−1)
ˆ t+θ1

t+θ2

e−(p−1)α(s−τ)ds

+ 22(p−2)
(

2c|Ω|α∗−1 +4Cbc|Ω|α−1
η
−1
)(p−1)

|θ1−θ2|

+ 23(p−2)2(p−1)
(ˆ t

−∞

eα∗s‖g(s)‖2ds
)(p−1)ˆ t+θ1

t+θ2

e−(p−1)α∗sds

+ 23(p−2)(2Cbη
−1)(p−1)

(ˆ t

−∞

eαs‖g(s)‖2ds
)(p−1)ˆ t+θ1

t+θ2

e−(p−1)αsds .

Therefore, we get
ˆ t+θ1

t+θ2

‖∇u(s)‖2(p−1)ds ≤ C′1e−(p−1)α∗(t−τ)
(

e−(p−1)α∗θ2− e−(p−1)α∗θ1
)

+ C′2e−(p−1)α(t−τ)
(

e−(p−1)αθ2− e−(p−1)αθ1
)

+ C′3|θ1−θ2|+C′4e−(p−1)αt
(

e−(p−1)αθ2− e−(p−1)αθ1
)

+ C′5e−(p−1)α∗t
(

e−(p−1)α∗θ2− e−(p−1)α∗θ1
)

→ 0 as θ1→ θ2 .

Hence by (3.27), (3.28) and this last estimate we deduce that
ˆ t+θ1

t+θ2

‖ f (u(s))‖ds → 0 as θ1→ θ2 .

3). Similarly, by the Holder inequality, we have

ˆ t+θ1

t+θ2

‖b(s,us)‖ds≤ |θ1−θ2|1/2 ·

(ˆ t+θ1

t+θ2

‖b(s,us)‖2ds

)1/2

. (3.29)

On the other hand, by (II), (1.7) and since λ1‖u‖2 ≤ ‖∇u‖2 , one has
ˆ t+θ1

t+θ2

‖b(s,us)‖2ds ≤ Cb

ˆ t+θ1

t+θ2−r
‖u(s)‖2ds

≤
ˆ t+θ2

t+θ2−r
‖u(s)‖2ds+

ˆ t+θ1

t+θ2

‖u(s)‖2ds

≤ ‖ϕ‖2
L2([−r,0];L2(Ω))+λ

−1
1

ˆ t+θ1

t+θ2

‖∇u(s)‖2ds . (3.30)

By (3.26), it follows that ˆ t+θ1

t+θ2

‖∇u(s)‖2ds → 0 as θ1→ θ2 .
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Then, from (3.29), (3.30) and this last estimate, we deduce that
ˆ t+θ1

t+θ2

‖b(s,us)‖ds → 0 when θ1→ θ2 .

4). Finally, we use the Holder inequality to obtain

ˆ t+θ1

t+θ2

‖g(s)‖ds≤ |θ1−θ2|1/2 ·

(ˆ t+θ1

t+θ2

‖g(s)‖2ds

)1/2

.

Since g ∈ L2
loc(R;L2(Ω)) , one gets

ˆ t+θ1

t+θ2

‖g(s)‖ds ≤ |θ1−θ2|1/2 · ‖g‖L2([t+θ2,t+θ1];L2(Ω))

→ 0 when θ1→ θ2 .

Consequently, by 1), 2), 3), 4) and (3.25), we deduce that

‖u(t +θ1)−u(t +θ2)‖ → 0 when θ1→ θ2 ,

and this ensures the equicontinuity property in C([−r,0];L2(Ω)) ; i.e. the sequence {U(t,τn)(u0,n,ϕn)} is rela-
tively compact in C([−r,0];L2(Ω)) .

Since we have S(t,τn)(u0,n,ϕn) = j(U(t,τn)(u0,n,ϕn)) , so {S(t,τn)(u0,n,ϕn)} is relatively compact in the
space L2(Ω)×C([−r,0];L2(Ω)) and by the continuous injection of L2(Ω)×C([−r,0];L2(Ω)) in H , we deduce
that {S(t,τn)(u0,n,ϕn)} is relatively compact in H . The proof of this lemma is completed.

By Proposition 1 and Lemma 4, we proved that the process S(t,τ) has a pullback D-absorbing set and it is
pullback D-asymptotically compact, then by Theorem 2 we can deduce the following result.

Theorem 4. The process {S(t,τ)} corresponding to (1.1) has a pullback D-attractor Â = {A(t) : t ∈ R} in H .
Furetheremore, Â⊂ L2(Ω)×C([−r,0];L2(Ω)) .
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