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Abstract

The algebraic structure of the linear system appears inrgpfvactional order Poisson’s equation by Haar waveléeipeol
cation approach is considered. The fractional derivasvescribed in the Caputo sense. Comparison with the cdssic
integer case as a limiting process is illustrated. Numecimaparison is made between the solution using the Haarletave
method and the finite difference method. The results confinmgccuracy for the Haar wavelet method.
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1 Introduction

Wavelet is a wave like oscillation with a magnitude that begit zero, increases, and then decreases back
to zero. It can typically be visualized as a brief oscillatitke one recorded by a seismograph or heat mon-
itor. Generally, wavelets are purposefully crafted to hapecific properties that make them useful for signal
processing.

The Fourier transform is a useful tool to analyze the frequesomponents of the signal. However, if we
take the Fourier transform over the whole time axis, we cateibat what instant a particular frequency rises.
Short time Fourier transform uses a sliding window to findcsmgram, which gives the information of both
time and frequency. But still another problem exists: Theyth of window limits the resolution in frequency.
Wavelet transform seems to be a solution to the problem alWeeelet transforms are based on small wavelets
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with limited duration. The translated-version waveletsal® where we concern. Whereas the scaled-version
wavelets allow us to analyze the signal in different scalgahd [2]. In the last few decades many authors
pointed out that derivatives and integrals of non-integelepare very suitable for the description of properties
of various real material, e.g. polymers. It has been showhrtbw fractional order models are more adequate
than previously used integer models. Fractional derieatprovide an excellent instrument for the description
of memory and hereditary properties of various materiatsgncesses. This is the main advantage of fractional
derivatives in comparison with classical integer order aied].

2 History

The first literature that relates to the wavelet transformi@ar wavelet. It was proposed by the mathe-
matician AlfrdHaar in 1909. However, the concept of the vievdid not exist at that time. Until 1981, the
concept was proposed by the geophysicist Jean Morlet. \diel, Morlet and the physicist Alex Grossman
invented the term wavelet in 1984. Before 1985, Haar wawedet the only orthogonal wavelet people know.
A lot of researchers even thought that there was no orthdgemeelet except Haar wavelet. Fortunately, the
mathematician Yves Meyer constructed the second orthogamaelet called Meyer wavelet in 1985. As more
and more scholars joined in this field, th& thternational conference was held in France in 1987. In 1988
StephaneMallat and Meyer proposed the concept of multiugsn. In the same year, Ingrid Daubechies found
a systematical method to construct the compact suppomgotial wavelet. In 1989, Mallat proposed the fast
wavelet transform. With the appearance of this fast algorjtthe wavelet transform had numerous applications
in the signal processing fieldl]} In 1910, Haar showed that certain square wave functionkldee translated
and scaled to create a basis set that span the dgac¥ears later, it was seen that the system of Haar is a
particular wavelet system. In comparison with other teghes, which use the same structure of building bases
functions and introduce the solution as a linear combinatibthose base. The Haar wavelet is simple, can
implement standard algorithms with high accuracy for a smahber of grid points. The simplicity in building
the wavelet bases from any function which use only two opmratranslation and dilatior3], this can be easily
seen in Haar wavelet.The simple form of the mother functioklaar wavelet as we see below makes the pro-
cesses of dilation and translation an easy work and thedinted wavelet family is orthogonal not only linearly
independent. Although, the wavelet function appeared D 1their use in the solution of differential equations
does not appear until recenti-o], last twenty years.In 2017 Kaoud and El Dewail,jave used Haar wavelet
technique to solve Poisson’s equation on a unit square aowiti collocation pointg/16,j =1,3,...,15. The
results obtained here can be seen as a generalization twlosave obtained irv]. The classical integer case
can be seen as limiting process as the order of the fracti@ralative appears the integer case.

3 Fractional Derivatives

There are many definitions for fractional order differetidia in fractional calculus e.g: Riemann- Lioville,
Caputo fractional and Griinwald-Letnikov fractional. Tteeg given as follows d]:

3.1 Riemann-Liouville derivative

Let f (x)eL!, a € R*. Then the fractional order integral of functidr(x) of ordera is defined as

Rq9 _ 1 /X _o-1
ad f(x) = Fa) /. (x—t)97*f () dt. 1)
The Riemann-Liouville derivative of order , for x € [a,b] ,is defined by
DR u(x)—;(g)m /Xu(f)(x—f)m_“_ldf 2
RV " Tm—a)dx’  /, '
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wherd (.)is the Gamma function, m<da <m and ma| + 1, with [a] denoting the integer part af.
3.2 Caputo Fractional Derivatives
A different representation of the fractional derivativesyaoposed by Caputo,

1 X dMu m—a—1

Where , m-kXa<m and m#a]+ 1. The Caputo representation has some advantages oveethaii-Liouville
representation. The most advantage is that the Caputeatieeis of a constant is zero, whereas for the Riemann-
Liouville is not.

3.3 Grunwald-Letnikov fractional

Another way to represent the fractional derivatives is y@runwald-Letnikov formula, that is, far>0

1 s M(a+1)

DELu(X) = lim k; (—1)kmU(X—kAX) (4)

4 Haar Functions

In 1910 Haar showed that certain square wave functions dmtdanslated and scaled to create a basis set
that spari.?([0,1]), [9].
The scaling function should have a compact support o¥e«(QL, therefore

1,0 < x<L1,
ho(x) = { 0, otherwise ®)
And the mother wavelets functidm (t) as:
1, 0<x<3,
hy(x) =4 —1, 3<x<1, (6)

0, otherwise

All the other subsequent functions are generated tgfr) with two operations: translation and dilation
That is

ha(X) =hy (2)x—k);n > 1 @

wheren=2i+k, 0<j, 0<k<2i.
ho (t) is also included to make this set complete.
The Haar wavelets are orthogonal in the sense,

1 =]
/0 h(Oh Odt=2 &

271 i=1=2+k
0 i |

Therefore, they form a set of basis functions.
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4.1 Function approximation

It is accepted that any square integrable functionin therval [0,1],y(t) € L2[0,1] can be expanded in a
Haar series in the form

y(t) = i)cnhn(t)

Where the coefficients, are determined ly, = 2/ foly(t) hn (t) dt
withn=2'+k, >0, 0<k<]j
The series expansion gft) contains infinite terms. If(t) is piecewise constant by itself, or may be ap-
proximated as piecewise constant during each subintahexy(t) will be terminated at finite terms1{] that
is o
y(t) = Z)Cnhn (t) = Crhm(t)

n=

Where the coefficients vectori@nd the Haar function vectogfit) are defined as

C-(rm) = [007 Cy,..-, Cmfl]
And
hm(t) = [ho(t), hy(t), ..., hp_1 (D)]T
where T is denotes the transpose.

To facilitate the comparison with the structured systemseays in the finite difference treatment we use
eight collocation points at the poings , j =1, 3, ---, 15and the first eight Haar wavelet can be expressed as

hot)=[1 1111111
ht)=[1111-1-1 -1 —1],
he(t)=[11 -1 -1 0 0 0 Q,
hs(t)=[0 0 0 0 1 1-1 —1],
hs(t)=[1 =1 0 0 00 0 0,
hs(t)=[00 1 -1 0 00 Q,
he(t)=[00 0 0 1-100,
h,(t)=[00 0 0 00 1—1].

5 Fractional Integration of Haar wavelets

The fractional integrals of the first eight Haar wavelets barexpressed as

a 1

R a
=aJd hg(t) = t 0<t«1
To 0t 0() ar(a) ) SU<l
1 t 0<t<?i
:Ra e — ) - 2
G =od (1) ar(a){ tr-2(t-3)9, i<t<1
ta 0<t<s
Rqa 1 a \a 1 1
U2 =oJ; h2(t) t9—2(t—3)%, 7 St<s3
al’(a) a 1o 1\a 1
tr=20t—-7)"+(t-3)", 3 <t<1
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1 (t—1)@ 1<t<?
__R4@ — 2) 2 = 4
=80 = o (e age, foiod
[t 0<t<g
a
s =53, h4(t):al'(a) t0—2(t—1)7, % <t<z
-2t -3+ (t-5He, 7 <t<1
t—1)a lct<d
1 ( 47 > 4 — 8
G =53 Ns () = o rrgy | (- 4)° -~ 2=, 2 <t<d
(=372t +(t-5". 3 <t<I
_La 14_5
R1¥ 1 \ 22 a 5\a 52_t<%
U6 = 0J he(t) ar (@) (t—3)"—2(t—3)", g <t<3
(=3 —2t-g) "+t -3, 3 <t<l
a 1 (t—32)a, 3<t<
LR TR SEPIE S S
6 The solution of Fractional Poisson’s equation using Haar avelet method
Fractional Poisson’s equation has the form
2% 0%
axa%—a—ya:F(x,y),l<a§2 (8)
0<x<1,0<y<],
With boundary conditions
u(x,0) = 1(X)}
0<x<1 9
uxl) =) 0SS ©
unw=mM}
o<y<l1 10
u(1y) = g(y) =Y= (10)

According to the two-dimensional multi-resolution an&y$11], any function u(x,y) which is square integrable
on [0,1]x[0,1] can be expressed in terms of two dimensional Haarseasdollows

u(xy) = Z ia,j OOy (y) (1)
I=1]=

This series can be taken as an approximation for the solofi@®oisson’s equation. Moreover, the expansion of
u(x,y) can be terminated.
2My 2My

u(xy) = 21 Zlai,jhi (Oh; (y) (12)
I=1]=

where the wavelet coefficients; i=1,2,...,My, j=1,2,... ,Msare to be determined.
The approach of Haar wavelet depends on writing the domitheniative term in the form
2M; 2M;
ey = 33 aROOR ) (13)
i=1j=1
Integrating (3) with respect to y in the limits [0,y]

2M1 2M2

Uxaya—l = Z Z g ]hl —|—C1( ) (14)
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Integrating (4) with respect to y (fractional of order — 1), we get

22w, . | i C1(X) c 15
Ux"—i;glau | (%) g5 (y) +y* (a—l)l'(a—l)+ (x) (15)

2

Using the boundary and the initial conditions we can@gx) and G (x) .And accordingly one can obtain

G 0 f(x) 0 fa(x)
o -1 2 . 1 1
e (0Y) = 5 lea 09 [a3 () =y (D] +y* o g (LY =g (16)
Similarly, integrating 13) with respect tokin the limits [0X]
2M1 2M;
Uxa—lya = Z Z g ] +C3(Y) (17)
|
Integrating (7) with respect to (fractional of ordera — 1), we get
2M1 2M> C3(y)
= ajh; (y)g (x) +x1 +C (y (18)

Using the boundary and the initial conditions we can@gty) and G, (y). And accordingly one can obtain

2M1 2M> a a
e 0cy) = 3.5 by ) [0 = ()] 4o 1T g 1y T
i=1j=

Then we Integrate equatiof§) two times with respect tg and using equatiornL(), we obtain

u(xy) =324 5™ a (6 () - X" (1)] [0; () -y a; (1)]
XTI (y) + (1= x"H) gr () + Y 2(x) (20)
+(L—y* 1) fL () = x0Ty, (1) +x0 1 (1—ya ) £1(1)
—(1=xT) Yy (0) = (1 xTH)(1 -y 1) f1(0)
The wavelet collocation points are defined by
| -05

(19)

X = l=12,...,2M 21

| 2M17 y &y ) 1 ( )
n—0.5

= =12...,2M 22

yn 2M2 I n ] 9 2 ( )

Substituting equationsly) and (L8) in equation 8), and replacing by x andy by y, in the obtained equations
and equationX6), we arrive at

2M1 2M>
ZZaI,J A('alal,n):(b(xl,)’n) (23)
i=1j=1
Where
A, §,0,m) =hi (%) [0 (Yn) — Y5 a5 (1)] + [a (%) =X i (1)] hy(yn) (24)
0(x.yn) = (682 2) 1 00) 38 22720 o ot g) ) o180 iy oy
u(x,yn) = ZZMl JZMialJ [QI( ) =X QI ] [QJ Yn) yg_l(Jj (1)]
g () (17 ) gl(yn)+y“ H2(4) (26)
+(1—yq ) f () —ya I, (1) =T (1—ya ) £ (D)

— (1) YA (0) - (1— Xf”l)(l—yﬁfl) f1(0)
The coefficientsy j, i=1,2,...,My, j=1,2,...,M; are found from equatioril@). Then we substitute in equation
(22) to obtain the Haar solution at the collocation poixts | =1,2,...2M4, j=1,2,...,2M.
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7 Comparison between the resulting coefficients matrix in cse of finite difference and Haar wavelet
methods

This section is a generalization of a previous work done lier integer case’]. The properties of the
resulting linear system using Haar wavelet method are figaed.
Theorem 1 The coefficient matrix is symmetric matrix as shown in thécf@ing

DI Al A A
1 |(A)T DI Bf Bf
al(a) | (A5)T (Bf)T D§ Cf
(A)T (BS)" (Cf)T Df

(27)

WhereD{ ,Df ,DF ,DJ ,Af AT A ,Bf ,BS ,andCY are illustrated in the appendix. For the integer case
(ata = 2) we have

-7 —11-11 -7 -3-33 3 04 3 1
» 1 |-11-15-15-11 Dz—i -3-33 3 , 1 |4-8-3-1
1764|-11-15-15-11|""2 64| 3 3 -3-3|’°37 128(3-10 0|’
-7 —11-11 -7 3 3-3-3 1-10 O
0 0-11 -5-555

pp_ 1|0 0-33 , 1|-9-999

47128 -1-3-84|"17 64| -9-999]|"
1 3 40 5555
~7 1131 ~1-3-11 7

, 1 |-151931 ,, 1 |-1-3-1915
27 128|-151931|’"3 128| -1-3-1915|"’

~71131 1-3-117
-3 7 3 1 -1-3-7 3
» 1 1-3 7 3 1 Bz—i -1-3-7 3
17928 3-7-3-1|>2"128| 1 3 7-3}|’
3-7-3-1 1 3 7-3
~1-3-40
cz—i 1 3 8 -4
17128/ 0 0 3 -3
0 0 1-1
Theorem 2
AS](:¥—>2 L
—— DY 3D? ——DY D2
al (a) 17D al(a) 2 7 Y2
1 1
Da D2, Da DZ,
ar(a) 3 Ma) 4 "4
1 2 1 2
TM)A?%A]" T(G)Ag—)A,

1
—— A? A2~ BI_,B2
al (a) 3 3ar(a) 1 1

1
——B§ —»B3and——C{ - C%
aT (o) 2 zanda Cf —=Cf
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Finite difference approximations of fractional derivatives

In (2014) I.K.Youssef and A.M.Shoukr] #], represented the structure of the coefficient matrix aftfcanal
Poisson’s equation using finite difference method.

In this method the integral in Caputo’s formula is replacgdaldinite sum of integrals at the discretization
points, and approximate the second order derivative bygus$ia standard finite difference formula, then the
finite difference formula of fractional Poisson’s equattakes the form:

i—1
> k(Uickirj — Uik +Uikerj +05(Uijosir — Ui jos+Uij-s-1) = fi
k=0

The structure of coefficient matrix

A1 (bg) 1 0 0
A_ | (B5—2b]) < Al (bg) 1 0
= | (b7 —2b3) * 1 (b — 2b% — 2b3) *1 Al (bg) *1 |~
(b — 2005) # | (b — 205 — 2D5) # | (b — 205 — 2b5) 1 Al
(b — 2bg — 205+ b%) bo 0 0
Al— bg — 2by (bl —2bg — 2b6 + bi) bo 0
b1 — 2by (b(*)—Zbi—Zb;)*| (b1—2b0—2b(*)—|—bak_) bg
by — 2bs (b7 — 25 — 2b3) « | (g — 2b; — 203) « | (by — 2bg — 2y + b)
( —2by— 2y ifi=j
by — 200 — 205+ b ifi=j=23.,N-1
p bo ifj=i+1i=12.,N-2
(ATL)ij = bi_o— 201 ifi=23,.. ,N-1j=1
bi,j,]_—Zbi,j —Zbi,jJrl ifi- j, J =23,...,N—-1, j =1
0 othereise

While in case of the finite difference method the resultingffioient matrix is block tri diagonal matrix with
the natural ordering is consideredd], [14].

8 Numerical Results and Discussion

The following fractional Poisson’s equation:

29U (xy)  09U(xy)
g xa ] ya - f(X7y)

Was considered on a finite domain<Ox < land 0< y < 1 with the non-homogeneous functidn(x,y) =
I (a+1)(x*+y?) and the boundary conditions:

U (x,0)=U (0,y) =0,U (x,1) = x*, U (1, y) = y“.

This fractional Poisson’s equation has the exact solutigr y) = (xy)?. The fractional Poisson absolute error
is defined by:

Error = Flly \/zm;ll (Uij —uij)?, inwhichU; j andu; ; are the exact and numerical solutions respectively,
[15].

This problem is solved using Haar wavelet method. The resliow higher accuracy compared with the
finite difference method,1[].

The approximate solution at = 2 error of order 10%°

The approximate solution at = 1.75 error of order 108
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(a) The approximate solution at a = 2. (b) The exact solution at ov = 2

Fig. 1 Comparison between the approximate and exact solutions whe 2

8 8
(a) The approximate solution at (b) The exact solution at o = 1.75
o =1.75.

Fig. 2 Comparison between the approximate and exact solutions whe1.75

(a) The approximate solution at (b) The exact solution at o« = 1.5
o =1.5.

Fig. 3 Comparison between the approximate and exact solutions whe 1.5

9 Conclusion

The wavelet solution gives reliable results for the frawsiioorder Poisson’s equation as in the integer case.
The numerical results obtained generalize the resultsedfldssical integer case. Moreover, the matrix erricture

N3
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(a) The approximate solution at (b) The exact solution at o = 1.25
a=1.25.

Fig. 4 Comparison between the approximate and exact solutions whe1.25

of the linear system2{7) has the symmetric block structure. Comparison with theesmponding matrix appears
in the finite difference treatment help in building the blatkucture [L2]. The memory and hereditary behaviors
of the fractional order derivatives appears with the coieffits through the Gamma function factors.

10 Appendix
DI = [d1]
_ __1 1-3a _ __3 1-3a a _ __5 1-3a a _ __7 1-3a o
dly = ) +27°% dlyn = ) +27°%(3)%, dlzz = 2 +2 (5)9,d14s = ) +227°9(7)
1 L 3a ga 1. T3 D\a_ ga
dlio=dly = > +(8) +8 7, dliz3=dl3 = 4 +(8) +8
7 a —a 3 a 5 a
d114=d41=—1+(§) +8 ,d123:d132=—1+(§) +(§)
-5 3 5 -3 5 7
1 — —— “\a “\a 1 — —_ - “Na o a.
dlos = dap ) +(8) +(8) ,d134 = d1y3 2 +(8) +(8)
DS = [d2;]

d2y = -+ 2130 4 271 d2p, = Vi 2130(3)7 4+ 3(2) 17,

d233=27239(16—-5(2)*27 8 (5)" +5(8)°,
244 =2 13(4-3(2)% % 14 (3)" —2(5)7 —2(7)" +3(8)),

-1 3 o -1 5 _ _
d212=d221=7+(§)a+3(2) 2 a+87a,d213=d231=7+(§)a+(2) “+3(8)°

214 = d21 = 2723 (—443(2)27 8 (3)" +4(7)" —3(8)7),

23 = d237 =2 23 (=84 (2% —4 (3)" +4(5)7 — (8)7),

-1 7
(.1224:(.1242:7 (é)a_i_zfa_i_slﬂx 8701 ’

234 = d243= 27234 —3(2)¥2% 1+ 4 (3)" —2(5)7 —2(7) +3(8)%),
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D3 = [d3;]

~(8)%) 322 =2 (16-8(3)" +3 (4)" — (6" +3(8)") 33 = l31a=0

a

d313=2"2739(8+(3)% (2" - (4)

d31p = d3p1 =27 273(—12+4 (3)7 + (3)7(2) — (4)7 — (8)%),
d313 = d3s; = 2 319 (8 - 16(3) +-5(3)*(2)*"" —5(4)* +8(5)" —5(8)7),
d314 = d341 = 273149 (8(3)" +7(3)7(2)* —7(4)% — 16(5)" +8(7)* —7(8)%)

d3,3 = d3gp = 273119 (—84+16(3)* —5(3)%(2)*™* +5 (4)* —8(5)" +5(8)7),
d3p4 = d34p = 27 3149)(—8(3)7~7(3)7 ()" + 7(4)* +16(5)" —8(7)" +7(8)%),
d334=d34,3=0

D3 = [d4j]
411 = ddpp = 0,ddgg =2 239 (8+5(2)11% — 5 (4)”) ddgy =22 3(16—7(2)**% — 8 (3)" +7(4)dd1p = ddpy =0,
d413 = ddg; = ddyg = ddgg = —27 3729 (=24 (2)")ddps = ddgy = —3(2) > 27(—2+ 29)
ddog = ddygp = 3(2) 3727 (=24 29),ddgs = ddygz = (2) > 2 (—124 2971 4 4(3)7 — 47
Al = [alij]
alyy =2 %37(8+4% —8%) aly = —% + (g)a +2% 8

7 a
alay =272 (4447 +4(57) - 3(8")) ala = —1+(g) +27 7 +87°

Al = 3+ (3) +32) 78l =2 F (B3 134 - 387
algy=—1+ (S)a + (g)a +3(2)7* %, alaz=223(4(3)" +-3(4)" +4(7)" ~5(8)")

aljz=22730(—12- 2130 1 5(4)7 £ 4(5)%),aly3 =2 2739(—8—4(3)" +5(4) + 4(5)7 — (8)%)
alzz=2"2739(—8+5(4)%),alzs = 22739 (—8+5(4) +4(5)% —4(7)7 + (8)7)
aly; =2239(—4-8(3)7 +7(4)° +47)" —3(8)%),
8.142 _ 2727301(_21+30( . 4(3)l+a + 7(4)(1 _’_4(7)(1)7
alyz=2"7"%1(=8(3)" + 7(4)" —4(5)" +4(7)" — (8)"),alaa = 2723 (=8(3)T + 7(4)%),

A7 = [a2]

3211 _ _2—3(1-}-0) (—16+ 21+3a _ 21+030 +4a) 78221 _ _2—3(l+a)(_8+22+3a _ 8(3)0 - 21+C!36! _’_40)7
8231 _ 8—1—0(8_ 3(2)l+3a + 21—}-0(3)(1 - 40 + 8(5)0)78241 _ 2—3(1+Cf)(8+ 21+C!36! o 46! + 8(7)0 - 81—1—0()’
a2y, =8 170(—24— 21139 1 8(3)% —3(4)" +617%), a2y, = 8 179 (—16—3(4)" +619),
a232 — 2—3(1+a)(_16+ 21+3C! + 8(3)0 _ 3(4)0 o 8(5)(1 + 61+C!),
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a242 — 2—3(1+a)(_16+ 22+3C! + 8(3)0 _ 3(4)0 + 61+a _ 8(7)0),
a23 = @23 = @233 = a3 = 2 S 1F9)(8— 163" 4 5(219)3% —5(4)? +-8(5) —5(8)%),
a214 = @294 = 8234 = 8244 = 273179 (8(3%) +-7(211)3% — 7(4”) — 16(57) + 8(7%) — 7(8%)),

A3 = [a3jj]
a31; = aly = a3 = @34 = —2 5 29(—2+2%),a31, = a3y = a3p3 = a3y = —3(2 32 (—2+2%),
3313_ (l+0)(16+5( )1+a_5(4)a_80)’a323_ (1+a)(8+5( )l+a+8(3)a_5(4)a_3(8)a 7

)

a333 = 2 3+ (84.5(2)1 % _5(4) +8(5)% —5(8)7),a343 =231+ (84 5(2)1" " —5(4)* +8(7)" —7(8)%),

a3y = 2 384 5(2)1T —5(4)% +-8(7)% — 7(8)%),a3p4 = 231 (—16+ 7(2)1 7 — 7(4)7 +3(8)%),
a3, = 2 3 (164 7(2)1 T +8(3)" — 7(4)Y —8(5)* +5(8)%),

)
a8y =2 2O (—1647(2)1 +-8(3)* — 7(4)* — 8(7)* +7(8)%),

B = [bl;j]
bly; =8 179(16— 21430 1 21Ha(3)T 1 49) 1y = 8 179(8— 22430 1 8(3)% 4+ 2149 (3%) 4-5(4)7)
blsy = —2731%0) (244 2230 4 p1+a(3)7 _11(4)* —8(5)%),

b2;3 = 27310 (164 5(2)1T — 3(4)% — (8)7), b2z = 27317 (84 5(2)1 Y + 8(3)* 449 — 3(8)7),

b2g3 =817 (—24—5(2)*"" + 15(4)* +8(5)* — 5(8)%),
b243 = —27 33+ (84 5(2)17 1 16(3)" — 19(4)" —8(7) +7(8)7),
b214 = 2739 (—24+ 7(2)7 + 8(3) — 9(4)" + (8)7),b2p4 = 273N (— 16+ 7(2) T — 13(4)7 +3(8)“),
b2gs = 2731 (32-7(2)"* 7 — 8(3)7 —3(4) —8(5) +5(8
b24s = 273+ (16—7(2)1% +-8(3)% — 7(4)* —8(7)* +7(8
Cf = [cLyj]
Cli=—Co1=—2 320(242%) c31 =Ca1 =0, C1p= —Cpp = —3(2 > 2")(—2+29),c3p=Cs2=0
C13 = 8_1_a(16+ 5(2)1+a o 3(2)1+2a + (21+a)3a —8%),
Coz =2 31 (443(2)%)(—6+2"7 +2(3)7 - 47),
Caz = 231+ ) (8- 16(3)" 4 5(21+)3% —5(4)* +-8(5)% —5(8)%),
Caz =273+ (8(3) + 7(2M )37 — 7(4)Y — 16(5) +8(7)% — 7(8)%),
=8 19 (—4427)(6— 217 —2(3)7 +4%),
Cop=2" <1+°'>(32 721 +5(2)12 —16(3)7 — 6179 +3(8)7),
Cag = 2 3+0)(_84+16(3)* —5(21+%)3% 4 5(4)" —8(5)% +5(8)%),
Caq =273+ (_g(3)" —7(21")3% + 7(4)7 +16(5)" — 8(7)" +7(8)%),
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