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Abstract

The algebraic structure of the linear system appears in solving fractional order Poisson’s equation by Haar wavelet collo-
cation approach is considered. The fractional derivative is described in the Caputo sense. Comparison with the classical
integer case as a limiting process is illustrated. Numerical comparison is made between the solution using the Haar wavelet
method and the finite difference method. The results confirmsthe accuracy for the Haar wavelet method.
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1 Introduction

Wavelet is a wave like oscillation with a magnitude that begins at zero, increases, and then decreases back
to zero. It can typically be visualized as a brief oscillation like one recorded by a seismograph or heat mon-
itor. Generally, wavelets are purposefully crafted to havespecific properties that make them useful for signal
processing.

The Fourier transform is a useful tool to analyze the frequency components of the signal. However, if we
take the Fourier transform over the whole time axis, we cannot tell at what instant a particular frequency rises.
Short time Fourier transform uses a sliding window to find spectrogram, which gives the information of both
time and frequency. But still another problem exists: The length of window limits the resolution in frequency.
Wavelet transform seems to be a solution to the problem above. Wavelet transforms are based on small wavelets
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with limited duration. The translated-version wavelets locate where we concern. Whereas the scaled-version
wavelets allow us to analyze the signal in different scale, [1] and [2]. In the last few decades many authors
pointed out that derivatives and integrals of non-integer order are very suitable for the description of properties
of various real material, e.g. polymers. It has been shown that new fractional order models are more adequate
than previously used integer models. Fractional derivatives provide an excellent instrument for the description
of memory and hereditary properties of various materials and processes. This is the main advantage of fractional
derivatives in comparison with classical integer order models [1].

2 History

The first literature that relates to the wavelet transform isHaar wavelet. It was proposed by the mathe-
matician AlfrdHaar in 1909. However, the concept of the wavelet did not exist at that time. Until 1981, the
concept was proposed by the geophysicist Jean Morlet. Afterward, Morlet and the physicist Alex Grossman
invented the term wavelet in 1984. Before 1985, Haar waveletwas the only orthogonal wavelet people know.
A lot of researchers even thought that there was no orthogonal wavelet except Haar wavelet. Fortunately, the
mathematician Yves Meyer constructed the second orthogonal wavelet called Meyer wavelet in 1985. As more
and more scholars joined in this field, the 1st international conference was held in France in 1987. In 1988,
StephaneMallat and Meyer proposed the concept of multi resolution. In the same year, Ingrid Daubechies found
a systematical method to construct the compact support orthogonal wavelet. In 1989, Mallat proposed the fast
wavelet transform. With the appearance of this fast algorithm, the wavelet transform had numerous applications
in the signal processing field, [1]. In 1910, Haar showed that certain square wave functions could be translated
and scaled to create a basis set that span the spaceL2. Years later, it was seen that the system of Haar is a
particular wavelet system. In comparison with other techniques, which use the same structure of building bases
functions and introduce the solution as a linear combination of those base. The Haar wavelet is simple, can
implement standard algorithms with high accuracy for a small number of grid points. The simplicity in building
the wavelet bases from any function which use only two operations translation and dilation [3], this can be easily
seen in Haar wavelet.The simple form of the mother function in Haar wavelet as we see below makes the pro-
cesses of dilation and translation an easy work and the introduced wavelet family is orthogonal not only linearly
independent. Although, the wavelet function appeared in 1910, their use in the solution of differential equations
does not appear until recently [4–6], last twenty years.In 2017 Kaoud and El Dewaik, [7] have used Haar wavelet
technique to solve Poisson’s equation on a unit square domain with collocation pointsj/16, j = 1,3, . . . ,15. The
results obtained here can be seen as a generalization to those we have obtained in [7]. The classical integer case
can be seen as limiting process as the order of the fractionalderivative appears the integer case.

3 Fractional Derivatives

There are many definitions for fractional order differentiation in fractional calculus e.g: Riemann- Lioville,
Caputo fractional and Grünwald-Letnikov fractional. Theyare given as follows, [8]:

3.1 Riemann-Liouville derivative

Let f (x)εL1, α ∈ R+. Then the fractional order integral of functionf (x) of orderα is defined as

R
aJ

α
x f (x) =

1
Γ(α)

ˆ x

a
(x− t)α−1 f (t)dt. (1)

The Riemann-Liouville derivative of orderα , for x∈ [a,b] ,is defined by

Dα
RLu(x) =

1
Γ(m−α)

(
d
dx

)
m ˆ x

a
u(ξ )(x−ξ )m−α−1 dξ . (2)
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whereΓ(.)is the Gamma function, m-1<α<m and m=[α ]+1, with [α ] denoting the integer part ofα .

3.2 Caputo Fractional Derivatives

A different representation of the fractional derivative was proposed by Caputo,

Dα
Cu(x) =

1
Γ(m−α)

ˆ x

a

dmu
d ξ m(ξ )(x−ξ )

m−α−1

dξ . (3)

Where , m-1<α<m and m=[α ]+1. The Caputo representation has some advantages over the Riemann-Liouville
representation. The most advantage is that the Caputo-derivatives of a constant is zero, whereas for the Riemann-
Liouville is not.

3.3 Grünwald-Letnikov fractional

Another way to represent the fractional derivatives is by the Grunwald-Letnikov formula, that is, forα>0

Dα
GLu(x) = lim

∆x→0

1
∆xα

⌊ x−α
∆x ⌋

∑
k=0

(−1)k Γ(α +1)
k! Γ(α −k+1)

u(x−k∆x) (4)

4 Haar Functions

In 1910 Haar showed that certain square wave functions couldbe translated and scaled to create a basis set
that spanL2([0,1]), [9].

The scaling function should have a compact support over 0≤x≤1, therefore

h0(x) =

{

1, 0< x≤1,
0, otherwise

(5)

And the mother wavelets functionh1(t) as:

h1(x) =







1, 0≤x<1
2,

−1, 1
2≤x<1,

0, otherwise
(6)

All the other subsequent functions are generated fromh1(x) with two operations: translation and dilation
That is

hn(x) =h1(2
jx−k);n ≥ 1 (7)

wheren=2 j+k, 0≤ j, 0≤k<2 j .
h0(t) is also included to make this set complete.
The Haar wavelets are orthogonal in the sense,

ˆ 1

0
hi (t)hl (t)dt = 2

− j

δil

=

{

2− j i = l = 2 j +k
0 i 6= l

Therefore, they form a set of basis functions.
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4.1 Function approximation

It is accepted that any square integrable functionin the interval [0,1],y(t)ε L2 [0,1] can be expanded in a
Haar series in the form

y(t) =
∞

∑
n=0

cnhn(t)

Where the coefficientscn are determined bycn = 2 j
´ 1

0 y(t)hn (t)dt
with,n= 2 j +k, j ≥ 0, 0≤ k< j

The series expansion ofy(t) contains infinite terms. Ify(t) is piecewise constant by itself, or may be ap-
proximated as piecewise constant during each subinterval,theny(t) will be terminated at finite terms, [10] that
is

y(t) =
m−1

∑
n=0

cnhn (t) = CT
mhm(t)

Where the coefficients vector CT
mand the Haar function vector hm(t) are defined as

CT
(m) = [c0, c1, . . . , cm−1]

And
hm(t) = [ h0 (t) , h1(t) , . . . , hm−1 (t)]

T

where T is denotes the transpose.
To facilitate the comparison with the structured systems appears in the finite difference treatment we use

eight collocation points at the pointsj16 , j = 1, 3, · · · , 15and the first eight Haar wavelet can be expressed as

h0(t) = [1 1 1 1 1 1 1 1],

h1(t) = [1 1 1 1 −1 −1 −1 − 1],

h2(t) = [1 1 −1 −1 0 0 0 0] ,

h3(t) = [0 0 0 0 1 1 −1 −1] ,

h4 (t) = [1 −1 0 0 0 0 0 0] ,

h5 (t) = [0 0 1 −1 0 0 0 0] ,

h6 (t) = [0 0 0 0 1 −1 0 0] ,

h7(t) = [0 0 0 0 0 0 1−1].

5 Fractional Integration of Haar wavelets

The fractional integrals of the first eight Haar wavelets canbe expressed as

q0 =
R
0J

α
t h0 (t) =

1
αΓ(α)

tα , 0≤ t < 1,

q1 =
R
0J

α
t h1 (t) =

1
αΓ(α)

{

tα , 0≤ t < 1
2

tα −2(t − 1
2)

α , 1
2 ≤ t < 1

q2 =
R
0J

α
t h2 (t) =

1
α Γ(α)







tα , 0≤ t < 1
4

tα −2(t − 1
4)

α , 1
4 ≤ t < 1

2
tα −2(t − 1

4)
α +(t − 1

2)
α , 1

2 ≤ t < 1
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q3 =
R
0J

α
t h3 (t) =

1
α Γ(α)

{

(t − 1
2)

α , 1
2 ≤ t < 3

4
(t − 1

2)
α −2(t − 3

4)
α , 3

4 ≤ t < 1

q4 =
R
0J

α
t h4 (t) =

1
α Γ(α)







tα , 0≤ t < 1
8

tα −2(t − 1
8)

α , 1
8 ≤ t < 1

4
tα −2(t − 1

8)
α +(t − 1

4)
α , 1

4 ≤ t < 1

q5 =
R
0J

α
t h5 (t) =

1
α Γ(α)







(t − 1
4)

α , 1
4 ≤ t < 3

8
(t − 1

4)
α −2(t − 3

8)
α , 3

8 ≤ t < 1
2

(t − 1
4)

α −2(t − 3
8)

α +(t − 1
2)

α , 1
2 ≤ t < 1

q6 =
R
0J

α
t h6 (t) =

1
α Γ(α)







(t − 1
2)

α , 1
2 ≤ t < 5

8
(t − 1

2)
α −2(t − 5

8)
α , 5

8 ≤ t < 3
4

(t − 1
2)

α −2(t − 5
8)

α +(t − 3
4)

α , 3
4 ≤ t < 1

q7 =
R
0J

α
t h7 (t) =

1
α Γ(α)

{

(t − 3
4)

α , 3
4 ≤ t < 7

8
(t − 3

4)
α −2(t − 7

8)
α , 7

8 ≤ t < 1

6 The solution of Fractional Poisson’s equation using Haar wavelet method

Fractional Poisson’s equation has the form

∂ αu
∂xα +

∂ αu
∂yα = F (x,y) ,1< α ≤ 2 (8)

0≤ x≤ 1 , 0≤ y≤ 1,

With boundary conditions
u(x,0) = f1(x)
u(x,1) = f2(x)

}

0≤ x≤ 1 (9)

u(0,y) = g1(y)
u(1,y) = g2(y)

}

0≤ y≤ 1. (10)

According to the two-dimensional multi-resolution analysis, [11], any function u(x,y) which is square integrable
on [0,1]×[0,1] can be expressed in terms of two dimensional Haar series as follows

u(x,y) =
∞

∑
i=1

∞

∑
j=1

ai, j hi(x)h j (y) (11)

This series can be taken as an approximation for the solutionof Poisson’s equation. Moreover, the expansion of
u(x,y) can be terminated.

u(x,y) =
2M1

∑
i=1

2M2

∑
j=1

ai, jhi(x)h j(y) (12)

where the wavelet coefficientsai, j i=1,2,. . . ,2M1, j=1,2,. . . ,2M2are to be determined.
The approach of Haar wavelet depends on writing the dominantderivative term in the form

uxα yα =
2M1

∑
i=1

2M2

∑
j=1

ai, jhi(x)h j (y) (13)

Integrating (13) with respect to y in the limits [0,y]

uxα yα−1 =
2M1

∑
i=1

2M2

∑
j=1

ai, j hi (x)Pj (y)+C1(x) (14)
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Integrating (14) with respect to y (fractional of orderα −1), we get

uxα =
2M1

∑
i=1

2M2

∑
j=1

ai, j hi (x)q j (y)+yα−1 C1(x)
(α −1)Γ(α −1)

+C
2
(x) (15)

Using the boundary and the initial conditions we can getC1(x)and C2 (x) .And accordingly one can obtain

uxα (x,y) =
2M1

∑
i=1

2M2

∑
j=1

ai, jhi (x)
[

q j (y)−yα−1q j (1)
]

+yα−1∂ α f2(x)
∂xα +(1−yα−1)

∂ α f1(x)
∂xα (16)

Similarly, integrating (13) with respect tox in the limits [0,x]

uxα−1yα =
2M1

∑
i=1

2M2

∑
j=1

ai, j h j (y)Pi (x)+C3(y) (17)

Integrating (17) with respect tox (fractional of orderα −1), we get

uyα =
2M1

∑
i=1

2M2

∑
j=1

ai, j h j (y)qi (x)+xα−1 C3(y)
(α −1)Γ(α −1)

+C
4
(y) (18)

Using the boundary and the initial conditions we can getC3(y)and C4(y). And accordingly one can obtain

uxα (x,y) =
2M1

∑
i=1

2M2

∑
j=1

ai, jh j (y)
[

qi (x)−xα−1qi (1)
]

+xα−1∂ αg2(x)
∂yα +(1−xα−1)

∂ αg1(x)
∂yα (19)

Then we Integrate equation (16) two times with respect tox and using equation (10), we obtain

u(x,y) = ∑2M1
i=1 ∑2M2

j=1 ai, j
[

qi (x)−xα−1qi (1)
][

q j (y)−yα−1q j (1)
]

+xα−1g2(y)+
(

1−xα−1
)

g1 (y)+yα−1 f2 (x)
+
(

1−yα−1
)

f1 (x)−xα−1yα−1 f2(1)+xα−1
(

1−yα−1
)

f1(1)
−
(

1−xα−1
)

yα−1 f2 (0)− (1−xα−1)(1−yα−1) f1(0)

(20)

The wavelet collocation points are defined by

xl =
l −0.5
2M1

, l = 1,2, . . . , 2M1 (21)

yn =
n−0.5

2M2
, n= 1,2, . . . , 2M2 (22)

Substituting equations (17) and (18) in equation (8), and replacingx by xl andy by yn in the obtained equations
and equation (16), we arrive at

2M1

∑
i=1

2M2

∑
j=1

ai, j A(i, j, l ,n) = /0(xl ,yn) (23)

Where
A(i, j, l ,n) = hi (xl )

[

q j (yn)−yα−1
n q j (1)

]

+
[

qi (xl )−xα−1
l qi(1)

]

h j(yn) (24)

/0(xl ,yn) =
(

yα−1
n −1

)

f
′′

1 (xl )−yα−1
n

∂ α f2(xl )

∂xα +
(

xα−1
l −1

) ∂ αg1(yn)

∂yα −xα−1
l

∂ αg2(yn)

∂yα +F(xl ,yn) (25)

u(xl ,yn) = ∑2M1
i=1 ∑2M2

j=1 ai, j
[

qi (xl )−xα−1
l qi (1)

][

q j (yn)−yα−1
n q j (1)

]

+xα−1
l g2 (yn)+

(

1−xα−1
l

)

g1 (yn)+yα−1
n f2 (xl )

+
(

1−yα−1
n

)

f1 (xl )−yα−1
n xα−1

l f 2 (1)−xα−1
l

(

1−yα−1
n

)

f1 (1)
−
(

1−xα−1
l

)

yα−1
n f2 (0)− (1−xα−1

l )(1−yα−1
n ) f1(0)

(26)

The coefficientsai, j , i=1,2,. . . ,2M1, j=1,2,. . . ,2M2 are found from equation (19). Then we substitute in equation
(22) to obtain the Haar solution at the collocation pointsxl , l = 1,2, . . .2M1, j = 1,2, . . . ,2M2.
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7 Comparison between the resulting coefficients matrix in case of finite difference and Haar wavelet
methods

This section is a generalization of a previous work done for the integer case [7]. The properties of the
resulting linear system using Haar wavelet method are investigated.

Theorem 1The coefficient matrix is symmetric matrix as shown in the following

1
α Γ(α)









Dα
1 Aα

1 Aα
2 Aα

3
(Aα

1 )
T Dα

2 Bα
1 Bα

2
(Aα

2 )
T (Bα

1 )
T Dα

3 Cα
1

(Aα
3 )

T (Bα
2 )

T (Cα
1 )

T Dα
4









(27)

WhereDα
1 ,Dα

2 ,Dα
3 ,Dα

4 ,Aα
1 ,Aα

2 ,Aα
3 ,Bα

1 ,Bα
2 ,andCα

1 are illustrated in the appendix. For the integer case
(at α = 2) we have

D2
1 =

1
64









−7 −11−11 −7
−11−15−15−11
−11−15−15−11
−7 −11−11 −7









,D2
2 =

1
64









−3 −3 3 3
−3 −3 3 3
3 3 −3−3
3 3 −3−3









,D2
3 =

1
128









0 4 3 1
4 −8 −3−1
3 −1 0 0
1 −1 0 0









,

D2
4 =

1
128









0 0 −1 1
0 0 −3 3
−1 −3 −8 4
1 3 4 0









,A2
1 =

1
64









−5−5 5 5
−9−9 9 9
−9−9 9 9
−5−5 5 5









,

A2
2 =

1
128









−7 11 3 1
−15 19 3 1
−15 19 3 1
−7 11 3 1









,A2
3 =

1
128









−1−3 −11 7
−1−3 −19 15
−1−3 −19 15
−1−3 −11 7









,

B2
1 =

1
128









−3 7 3 1
−3 7 3 1

3 −7 −3 −1
3 −7 −3 −1









, B2
2 =

1
128









−1 −3 −7 3
−1 −3 −7 3

1 3 7 −3
1 3 7 −3









,

C2
1 =

1
128









−1−3 −4 0
1 3 8 −4
0 0 3 −3
0 0 1 −1









.

Theorem 2
As α → 2

1
αΓ(α)

Dα
1 → D2

1,
1

αΓ(α)
Dα

2 → D2
2,

1
αΓ(α)

Dα
3 → D2

3,
1

αΓ(α)
Dα

4 → D2
4,

1
αΓ(α)

Aα
1 → A2

1, 1
αΓ(α)A

α
2 → A2

2,

1
αΓ(α)

Aα
3 → A2

3
1

αΓ(α)
Bα

1 → B2
1,

1
αΓ(α)

Bα
2 → B2

2 and
1

αΓ(α)
Cα

1 →C2
1.
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Finite difference approximations of fractional derivatives
In (2014) I.K.Youssef and A.M.Shoukr, [12], represented the structure of the coefficient matrix of fractional

Poisson’s equation using finite difference method.
In this method the integral in Caputo’s formula is replaced by a finite sum of integrals at the discretization

points, and approximate the second order derivative by using the standard finite difference formula, then the
finite difference formula of fractional Poisson’s equationtakes the form:

i−1

∑
k=0

bk(Ui−k+1, j −2Ui−k, j +Ui−k−1, j +b∗s (Ui, j−s+1−2Ui, j−s+Ui, j−s−1) = fi, j

The structure of coefficient matrix

A=









A′′1 (b∗0)∗ I 0 0
(b∗0−2b∗1)∗ I A1 (b∗0)∗ I 0
(b∗1−2b∗2)∗ I (b∗0−2b∗1−2b∗2)∗ I A1 (b∗0)∗ I
(b∗2−2b∗3)∗ I (b∗1−2b∗2−2b∗3)∗ I (b∗0−2b∗1−2b∗2)∗ I A1









,

A1=









(b1−2b0−2b∗0+b∗1) b0 0 0
b0−2b1 (b1−2b0−2b∗0+b∗1) b0 0
b1−2b2 (b∗0−2b∗1−2b∗2)∗ I (b1−2b0−2b∗0+b∗1) b0

b2−2b3 (b∗1−2b∗2−2b∗3)∗ I (b∗0−2b∗1−2b∗2)∗ I (b1−2b0−2b∗0+b∗1)









(A′′1)i j =































−2b0−2b•0 i f i = j
b1−2b0−2b∗0+b•1 i f i = j = 2,3, ...,N−1

b0 i f j = i +1, i = 1,2, ...,N−2
bi−2−2bi−1 i f i = 2,3, ...,N−1, j = 1

bi− j−1−2bi− j −2bi− j+1 i f i ≻ j, j = 2,3, ...,N−1, j = 1
0 othereise

While in case of the finite difference method the resulting coefficient matrix is block tri diagonal matrix with
the natural ordering is considered [13], [14].

8 Numerical Results and Discussion

The following fractional Poisson’s equation:

∂ αU(x,y)
∂ xα +

∂ αU(x,y)
∂ yα = f (x,y)

Was considered on a finite domain 0≤ x ≤ 1and 0≤ y ≤ 1 with the non-homogeneous functionf (x,y) =
Γ(α +1)(xα +yα) and the boundary conditions:

U (x,0) =U (0,y) = 0,U (x,1) = xα , U (1, y) = yα .

This fractional Poisson’s equation has the exact solutionU (x,y) = (xy)α . The fractional Poisson absolute error
is defined by:

Error = 1
(m−1)2

√

∑m−1
i, j=1 (Ui, j −ui, j)2, in whichUi, j andui, j are the exact and numerical solutions respectively,

[15].
This problem is solved using Haar wavelet method. The results show higher accuracy compared with the

finite difference method, [15].
The approximate solution atα = 2 error of order 10−19

The approximate solution atα = 1.75 error of order 10−18
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(a) The approximate solution at α = 2.
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(b) The exact solution at α = 2
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Fig. 1 Comparison between the approximate and exact solutions when α = 2
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(a) The approximate solution at

α = 1.75.
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(b) The exact solution at α = 1.75
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Fig. 2 Comparison between the approximate and exact solutions when α = 1.75
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(a) The approximate solution at

α = 1.5.
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(b) The exact solution at α = 1.5
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Fig. 3 Comparison between the approximate and exact solutions when α = 1.5

9 Conclusion

The wavelet solution gives reliable results for the fractional order Poisson’s equation as in the integer case.
The numerical results obtained generalize the results of the classical integer case. Moreover, the matrix structure
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α = 1.25.
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Fig. 4 Comparison between the approximate and exact solutions when α = 1.25

of the linear system (27) has the symmetric block structure. Comparison with the corresponding matrix appears
in the finite difference treatment help in building the blockstructure [12]. The memory and hereditary behaviors
of the fractional order derivatives appears with the coefficients through the Gamma function factors.

10 Appendix

Dα
1 = [d1i j ]

d111 =
−1
4

+21−3α , d122 =
−3
4

+21−3α(3)α , d133 =
−5
4

+21−3α(5)α ,d144 =
−7
4

+21−3α(7)α

d112 = d121 =
−1
2

+(
3
8
)α +8−α ,d113 = d131 =

−3
4

+(
5
8
)α +8−α

d114 = d41 =−1+(
7
8
)α +8−α , d123 = d132 =−1+(

3
8
)α +(

5
8
)α

d124 = d42 =
−5
4

+(
3
8
)α +(

5
8
)α ,d134 = d143 =

−3
2

+(
5
8
)α +(

7
8
)α .

Dα
2 = [d2i j ]

d211 =
−1
4

+21−3α +2−1−α ,d222 =
−3
4

+21−3α(3)α +3(2)−1−α ,

d233 = 2−2−3α(16−5(2)1+2α −8 (5)
α
+5(8)α ,

d244 = 2−1−3α(4−3(2)1+2α +4 (3)
α
−2

(

5)α −2(7)α +3(8)α) ,

d212 = d221 =
−1
2

+(
3
8
)α +3(2)−2−α +8−α ,d213 = d231 =

−1
2

+(
5
8
)α +(2)−α +3(8)−α

d214 = d221 = 2−2−3α(−4+3(2)1+2α −8 (3)
α
+4

(

7)α −3(8)α) ,

d223 = d232 = 2−2−3α(−8+(2)1+2α −4 (3)
α
+4

(

5)α − (8)α) ,

d224 = d242 =
−1
2

+(
7
8
)α +2−α +31+α 8−α ,

d234 = d243 = 2−1−3α(4−3(2)1+2α +4 (3)
α
−2

(

5)α −2(7)α +3(8)α) ,
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Dα
3 = [d3i j ]

d311= 2−2−3α(8+(3)α(2)1+α − (4)
α
−(8)α) ,d322= 2−2−3α(16−8(3)α +3 (4)α

−
(

6)1+α +3(8)α) ,d333= d344= 0

,
d312 = d321 = 2−2−3α(−12+4 (3)α +(3)α(2)1+α −

(

4)α − (8)α) ,

d313 = d331 = 2−3(1+α)(8−16(3)α +5(3)α(2)1+α −5
(

4)α +8(5)α −5(8)α) ,

d314 = d341 = 2−3(1+α)(8(3)α +7(3)α(2)1+α −7
(

4)α −16(5)α +8(7)α −7(8)α)

,
d323 = d332 = 2−3(1+α)(−8+16(3)α −5(3)α(2)1+α +5

(

4)α −8(5)α +5(8)α) ,

d324 = d342 = 2−3(1+α)(−8(3)α−7(3)α(2)1+α +7
(

4)α +16(5)α −8(7)α +7(8)α) ,

d334 = d343 = 0

Dα
4 = [d4i j ]

d411= d422= 0,d433= 2−2−3α(8+5(2)1+α −5 (4)
α
),d444= 2−2−3α(16−7(2)1+α −8 (3)

α
+7(4)αd412= d421= 0,

d413 = d431 = d414 = d441 =−2−3−2α(−2+(2)α)d423 = d432 =−3(2)−3−2α(−2+ 2α)

d424 = d442 = 3(2)−3−2α(−2+ 2α),d434 = d443 = (2)−3−2α(−12+ 2α+1+4(3)α −4α

Aα
1 = [a1i j ]

a111 = 2−2−3α(8+4α −8α),a121 =−
1
2
+(

3
8
)

α
+2−2−α +8−α

a131 = 2−2−3α(4+4α +4(5α)−3(8α)),a141 =−1+(
7
8
)

α
+2−2−α +8−α

a112 =−
1
2
+(

3
8
)

α
+3(2)−2−α +8−α ,a122 = 2−2−3α(8(3)α +3(4)α −3(8)α)

a132 =−1+(
3
8
)

α
+(

5
8
)

α
+3(2)−2−α ,a142 = 2−2−3α(4(3)α +3(4)α +4(7)α −5(8)α)

a113 = 2−2−3α(−12−21+3α +5(4)α +4(5)α),a123 = 2−2−3α(−8−4(3)α +5(4)α +4(5)α − (8)α)

a133 = 2−2−3α(−8+5(4)α),a134 = 2−2−3α(−8+5(4)α +4(5)α −4(7)α +(8)α)

a141 = 2−2−3α(−4−8(3)α +7(4)α +4(7)α −3(8)α),

a142 = 2−2−3α(−21+3α −4(3)1+α +7(4)α +4(7)α),

a143 = 2−2−3α(−8(3)α +7(4)α −4(5)α +4(7)α − (8)α),a144 = 2−2−3α(−8(3)α +7(4)α),

Aα
2 = [a2i j ]

a211 =−2−3(1+α)
(

−16+21+3α −21+α3α +4α) ,a221 =−2−3(1+α)(−8+22+3α −8(3)α −21+α3α +4α),

a231 = 8−1−α(8−3(2)1+3α +21+α(3)α −4α +8(5)α),a241 = 2−3(1+α)(8+21+α3α −4α +8(7)α −81+α),

a212 = 8−1−α(−24−21+3α +8(3)α −3(4)α +61+α),a222 = 8−1−α(−16−3(4)α +61+α),

a232 = 2−3(1+α)(−16+21+3α +8(3)α −3(4)α −8(5)α +61+α),
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a242 = 2−3(1+α)(−16+22+3α +8(3)α −3(4)α +61+α −8(7)α),

a213 = a223 = a233 = a243 = 2−3(1+α)(8−163α +5(21+α)3α −5(4)α +8(5)α −5(8)α),

a214 = a224 = a234 = a244 = 2−3(1+α)(8(3α)+7(21+α)3α −7(4α)−16(5α)+8(7α)−7(8α)),

Aα
3 = [a3i j ]

a311 = a322 = a331 = a341 =−2−3−2α(−2+2α),a312 = a322 = a323 = a324 =−3(2−3−2α )(−2+2α),

a313 = 2−3(1+α)(16+5(2)1+α −5(4)α −8α),a323 = 2−3(1+α)(8+5(2)1+α +8(3)α −5(4)α −3(8)α),

a333 = 2−3(1+α)(8+5(2)1+α −5(4)α +8(5)α −5(8)α),a343= 2−3(1+α)(8+5(2)1+α −5(4)α +8(7)α −7(8)α),

a314 = 2−3(1+α)(8+5(2)1+α −5(4)α +8(7)α −7(8)α),a324 = 2−3(1+α)(−16+7(2)1+α −7(4)α +3(8)α),

a334 = 2−3(1+α)(−16+7(2)1+α +8(3)α −7(4)α −8(5)α +5(8)α),

a344 = 2−3(1+α)(−16+7(2)1+α +8(3)α −7(4)α −8(7)α +7(8)α),

Bα
1 = [b1i j ]

b111 = 8−1−α(16−21+3α +21+α(3)α +4α),b121 = 8−1−α(8−22+3α +8(3)α +21+α(3α)+5(4)α)

b131 =−2−3(1+α)(24+22+3α +21+α(3)α −11(4)α −8(5)α),

b213 = 2−3(1+α)(16+5(2)1+α −3(4)α − (8)α),b223 = 2−3(1+α)(8+5(2)1+α +8(3)α +4α −3(8)α),

b233 = 8−1−α(−24−5(2)1+α +15(4)α +8(5)α −5(8)α),

b243 =−2−3(1+α)(8+5(2)1+α +16(3)α −19(4)α −8(7)α +7(8)α),

b214 = 2−3(1+α)(−24+7(2)1+α +8(3)α −9(4)α +(8)α),b224 = 2−3(1+α)(−16+7(2)1+α −13(4)α +3(8)α),

b234 = 2−3(1+α)(32−7(2)1+α −8(3)α −3(4)α −8(5)α +5(8)α),

b244 = 2−3(1+α)(16−7(2)1+α +8(3)α −7(4)α −8(7)α +7(8)α),

Cα
1 = [c1i j ]

c11 =−c21 =−2−3−2α(−2+2α),c31 = c41 = 0, c12 =−c22 =−3(2−3−2α)(−2+2α),c32 = c42 = 0

c13 = 8−1−α(16+5(2)1+α −3(2)1+2α +(21+α)3α −8α),

c23 = 2−3(1+α)(4+3(2)α)(−6+21+α +2(3)α −4α),

c33 = 2−3(1+α)(8−16(3)α +5(21+α)3α −5(4)α +8(5)α −5(8)α),

c43 = 2−3(1+α)(8(3)α +7(21+α)3α −7(4)α −16(5)α +8(7)α −7(8)α),

c14 = 8−1−α(−4+2α)(6−21+α −2(3)α +4α),

c24 = 2−3(1+α)(32−7(2)1+α +5(2)1+2α −16(3)α −61+α +3(8)α),

c34 = 2−3(1+α)(−8+16(3)α −5(21+α)3α +5(4)α −8(5)α +5(8)α),

c44 = 2−3(1+α)(−8(3)α −7(21+α)3α +7(4)α +16(5)α −8(7)α +7(8)α),
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