

Applied Mathematics and Nonlinear Sciences

Regularizing algorithm for mixed matrix pencils

Tetiana Klymchuk!
Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, SPAIN
Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, UKRAINE

Submission Info
Communicated by Juan L.G. Guirao
Received 6th February 2017
Accepted 18th April 2017
Available online 18th April 2017

Abstract

P. Van Dooren (1979) constructed an algorithm for computing all singular summands of Kronecker's canonical form of a matrix pencil. His algorithm uses only unitary transformations, which improves its numerical stability. We extend Van Dooren's algorithm to square complex matrices with respect to consimilarity transformations $A \mapsto S A \bar{S}^{-1}$ and to pairs of $m \times n$ complex matrices with respect to transformations $(A, B) \mapsto(S A R, S B \bar{R})$, in which S and R are nonsingular matrices.

Keywords: Regularizing algorithm; Matrix pencils; Consimilarity; Unitary transformations; Canonical forms.
AMS 2010 codes: 15A22, 15A21, 65F30.

1 Introduction

Van Dooren [7] gave an algorithm that for each pair (A, B) of complex matrices of the same size constructs its regularizing decomposition; that is, it constructs a matrix pair that is simultaneously equivalent to (A, B) and has the form

$$
\left(A_{1}, B_{1}\right) \oplus \cdots \oplus\left(A_{t}, B_{t}\right) \oplus(\underline{A}, \underline{B})
$$

in which $(\underline{A}, \underline{B})$ is a pair of nonsingular matrices and each other summand has one of the forms:

$$
\left(F_{n}, G_{n}\right), \quad\left(F_{n}^{T}, G_{n}^{T}\right), \quad\left(I_{n}, J_{n}(0)\right), \quad\left(J_{n}(0), I_{n}\right),
$$

where $J_{n}(0)$ is the singular Jordan block and

$$
F_{n}:=\left[\begin{array}{lll}
0 & & 0 \\
1 & \ddots & \\
& \ddots & 0 \\
0 & & 1
\end{array}\right], \quad G_{n}:=\left[\begin{array}{lll}
1 & & 0 \\
0 & \ddots & \\
& \ddots & 1 \\
0 & & 0
\end{array}\right]
$$

[^0]are $n \times(n-1)$ matrices; $n \geq 1$. Note that $\left(F_{1}, G_{1}\right)=\left(0_{10}, 0_{10}\right)$; we denote by $0_{m n}$ the zero matrix of size $m \times n$, where $m, n \in\{0,1,2, \ldots\}$. The algorithm uses only unitary transformations, which improves its computational stability.

We extend Van Dooren's algorithm to square complex matrices up to consimilarity transformations $A \mapsto$ $S A \bar{S}^{-1}$ and to pairs of $m \times n$ matrices up to transformations $(A, B) \mapsto(S A R, S B \bar{R})$, in which S and R are nonsingular matrices.

A regularizing algorithm for matrices of undirected cycles of linear mappings was constructed by Sergeichuk [6] and, independently, by Varga [8]. A regularizing algorithm for matrices under congruence was constructed by Horn and Sergeichuk [5].

All matrices that we consider are complex matrices.

2 Regularizing unitary algorithm for matrices under consimilarity

Two matrices A and B are consimilar if there exists a nonsingular matrix S such that $S A \bar{S}^{-1}=B$. Two matrices are consimilar if and only if they represent the same semilinear operator, but in different bases. Recall that a mapping $\mathscr{A}: U \rightarrow V$ between complex vector spaces is semilinear if

$$
\mathscr{A}\left(a u_{1}+b u_{2}\right)=\bar{a} \mathscr{A} u_{1}+\bar{b} \mathscr{A} u_{2}
$$

for all $a, b \in \mathbb{C}$ and $u_{1}, u_{2} \in U$.
The canonical form of a matrix under consimilarity is the following (see [3] or [4]): Each square complex matrix is consimilar to a direct sum, uniquely determined up to permutation of direct summands, of matrices of the following types:

- a Jordan block $J_{k}(\lambda)$ with $\lambda \geq 0$, and
- $\left[\begin{array}{ll}0 & 1 \\ \mu & 0\end{array}\right]$ with $\mu \notin \mathbb{R}$ or $\mu<0$.

Thus, each square matrix A is consimilar to a direct sum

$$
J_{n_{1}}(0) \oplus \cdots \oplus J_{n_{k}}(0) \oplus \underline{A},
$$

in which \underline{A} is nonsingular and is determined up to consimilarity; the other summands are uniquely determined up to permutation. This sum is called a regularizing decomposition of A. The following algorithm admits to construct a regularizing decomposition using only unitary transformations.

Algorithm 1. Let A be a singular $n \times n$ matrix. By unitary transformations of rows, we reduce it to the form

$$
S_{1} A=\left[\begin{array}{c}
0_{r_{11}} \\
A^{\prime}
\end{array}\right], \quad S_{1} \text { is unitary, }
$$

in which the rows of A^{\prime} are linearly independent. Then we make the coninverse transformations of columns and obtain

$$
S_{1} A \bar{S}_{1}^{-1}=\left[\begin{array}{cc}
0_{r_{1}} & 0 \\
\star & A_{1}
\end{array}\right]
$$

We apply the same procedure to A_{1} and obtain

$$
S_{2} A_{1} \bar{S}_{2}^{-1}=\left[\begin{array}{cc}
0_{r_{2}} & 0 \\
\star & A_{2}
\end{array}\right], \quad S_{2} \text { is unitary, }
$$

in which the rows of $\left[\star A_{2}\right]$ are linearly independent.

We repeat this procedure until we obtain

$$
S_{t} A_{t-1} \bar{S}_{t}^{-1}=\left[\begin{array}{cc}
0_{r_{t}} & 0 \\
\star & A_{t}
\end{array}\right], \quad S_{t} \text { is unitary, }
$$

in which A_{t} is nonsingular. The result of the algorithm is the sequence $r_{1}, r_{2}, \ldots, r_{t}, A_{t}$.
For a matrix A and a nonnegative integer n, we write

$$
A^{(n)}:= \begin{cases}0_{00}, & \text { if } n=0 \\ A \oplus \cdots \oplus A(n \text { summands }), & \text { if } n \geq 1\end{cases}
$$

Theorem 1. Let $r_{1}, r_{2}, \ldots, r_{t}, A_{t}$ be the sequence obtained by applying Algorithm 1 to a square complex matrix A. Then

$$
r_{1} \geq r_{2} \geq \cdots \geq r_{t}
$$

and A is consimilar to

$$
\begin{equation*}
J_{1}{ }^{\left(r_{1}-r_{2}\right)} \oplus J_{2}^{\left(r_{2}-r_{3}\right)} \oplus \cdots \oplus J_{t-1}^{\left(r_{t-1}-r_{t}\right)} \oplus J_{t}^{\left(r_{t}\right)} \oplus A_{t} \tag{1}
\end{equation*}
$$

in which $J_{k}:=J_{k}(0)$ and A_{t} is determined by A up to consimilarity and the other summands are uniquely determined.

Proof. Let $\mathscr{A}: V \rightarrow V$ be a semilinear operator whose matrix in some basis is A. Let $W:=\mathscr{A} V$ be the image of \mathscr{A}. Then the matrix of the restriction $\mathscr{A}_{1}: W \rightarrow W$ of \mathscr{A} on W is A_{1}. Applying Algorithm 1 to A_{1}, we get the sequence $r_{2}, \ldots, r_{t}, A_{t}$. Reasoning by induction on the length t of the algorithm, we suppose that $r_{2} \geq r_{3} \geq \cdots \geq r_{t}$ and that A_{1} is consimilar to

$$
\begin{equation*}
J_{1}^{\left(r_{2}-r_{3}\right)} \oplus \cdots \oplus J_{t-2}^{\left(r_{t-1}-r_{t}\right)} \oplus J_{t-1}^{\left(r_{t}\right)} \oplus A_{t} \tag{2}
\end{equation*}
$$

Thus, $\mathscr{A}_{1}: W \rightarrow W$ is given by the matrix (2) in some basis of W.
The direct sum (2) defines the decomposition of W into the direct sum of invariant subspaces

$$
W=\left(W_{21} \oplus \cdots \oplus W_{2, r_{2}-r_{3}}\right) \oplus \cdots \oplus\left(W_{t 1} \oplus \cdots \oplus W_{t r_{t}}\right) \oplus W^{\prime}
$$

Each $W_{p q}$ is generated by some basis vectors $e_{p q 2}, e_{p q 3}, \ldots, e_{p q p}$ such that

$$
\mathscr{A}: e_{p q 2} \mapsto e_{p q 3} \mapsto \cdots \mapsto e_{p q p} \mapsto 0
$$

For each $W_{p q}$, we choose $e_{p q 1} \in V$ such that $\mathscr{A} e_{p q 1}=e_{p q 2}$. The set

$$
\left\{e_{p q p} \mid 2 \leq p \leq t, 1 \leq q \leq r_{p}-r_{p+1}\right\} \quad\left(r_{t+1}:=0\right)
$$

consists of r_{2} basis vectors belonging to the kernel of \mathscr{A}; we supplement this set to a basis of the kernel of \mathscr{A} by some vectors $e_{111}, \ldots, e_{1, r_{1}-r_{2}, 1}$.

The set of vectors $e_{p q s}$ supplemented by the vectors of some basis of W^{\prime} is a basis of V. The matrix of \mathscr{A} in this basis has the form (1) because

$$
\mathscr{A}: e_{p q 1} \mapsto e_{p q 2} \mapsto e_{p q 3} \mapsto \cdots \mapsto e_{p q p} \mapsto 0
$$

for all $p=1, \ldots, t$ and $q=1, \ldots, r_{p}-r_{p+1}$. This completes the proof of Theorem 1.
Example 1. Let a square matrix A define a semilinear operator $\mathscr{A}: V \rightarrow V$ and let the singular part of its regularizing decomposition be $J_{2} \oplus J_{3} \oplus J_{4}$. This means that V possesses a set of linear independent vectors forming the Jordan chains

$$
\begin{array}{ll}
\mathscr{A}: & e_{1} \mapsto e_{2} \mapsto e_{3} \mapsto e_{4} \mapsto 0 \\
& f_{1} \mapsto f_{2} \mapsto f_{3} \mapsto 0 \tag{3}\\
& g_{1} \mapsto g_{2} \mapsto 0
\end{array}
$$

Applying the first step of Algorithm 1, we get A_{1} whose singular part corresponds to the chains

$$
\begin{array}{ll}
\mathscr{A}: & e_{2} \mapsto e_{3} \mapsto e_{4} \mapsto 0 \\
& f_{2} \mapsto f_{3} \mapsto 0 \\
& g_{2} \mapsto 0
\end{array}
$$

On the second step, we delete e_{2}, f_{2}, g_{2} and so on. Thus, r_{i} is the number of vectors in the ith column of (3): $r_{1}=3, r_{2}=3, r_{3}=2, r_{4}=1$. We get the singular part of regularizing decomposition of A :

$$
J_{1}{ }^{\left(r_{1}-r_{2}\right)} \oplus \cdots \oplus J_{t-1}^{\left(r_{t-1}-r_{t}\right)} \oplus J_{t}^{\left(r_{t}\right)}=J_{1}{ }^{(3-3)} \oplus J_{2}{ }^{(3-2)} \oplus J_{3}^{(2-1)} \oplus J_{4}^{(1)}=J_{2} \oplus J_{3} \oplus J_{4} .
$$

In particular, if

then we can apply Algorithm 1 using only transformations of permutational similarity and obtain

$\left.\begin{array}{\|lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\rvert\,$				
100	000			
010	000			
0001	000			
	100			
	010	00		
		10		

(all unspecified blocks are zero), which is the Weyr canonical form of (4), see [4].

3 Regularizing unitary algorithm for matrix pairs under mixed equivalence

We say that pairs of $m \times n$ matrices (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ are mixed equivalent if there exist nonsingular S and R such that

$$
(S A R, S B \bar{R})=\left(A^{\prime}, B^{\prime}\right)
$$

The direct sum of matrix pairs (A, B) and (C, D) is defined as follows:

$$
(A, B) \oplus(C, D)=\left(\left[\begin{array}{ll}
A & 0 \\
0 & C
\end{array}\right],\left[\begin{array}{ll}
B & 0 \\
0 & D
\end{array}\right]\right) .
$$

The canonical form of a matrix pair under mixed equivalence was obtained by Djoković [2] (his result was extended to undirected cycles of linear and semilinear mappings in [1]):

Each pair (A, B) of matrices of the same size is mixed equivalent to a direct sum, determined uniquely up to permutation of summands, of pairs of the following types:

$$
\left(I_{n}, J_{n}(\lambda)\right),\left(I_{n},\left(\begin{array}{cc}
0 & 1 \\
\mu & 0
\end{array}\right)\right),\left(J_{n}(0), I_{n}\right),\left(F_{n}, G_{n}\right),\left(F_{n}^{T}, G_{n}^{T}\right),
$$

in which $\lambda \geq 0$ and $\mu \notin \mathbb{R}$ or $\mu<0$.
Thus, (A, B) is mixed equivalent to a direct sum of a pair $(\underline{A}, \underline{B})$ of nonsingular matrices and summands of the types:

$$
\left(I_{n}, J_{n}(0)\right),\left(J_{n}(0), I_{n}\right),\left(F_{n}, G_{n}\right),\left(F_{n}^{T}, G_{n}^{T}\right),
$$

in which $(\underline{A}, \underline{B})$ is determined up to mixed equivalence and the other summands are uniquely determined up to permutation. This sum is called a regularizing decomposition of (A, B). The following algorithm admits to construct a regularizing decomposition using only unitary transformations.

Algorithm 2. Let (A, B) be a pair of matrices of the same size in which the rows of A are linearly dependent. By unitary transformations of rows, we reduce A to the form

$$
S_{1} A=\left[\begin{array}{c}
0 \\
A^{\prime}
\end{array}\right], \quad S_{1} \text { is unitary, }
$$

in which the rows of A^{\prime} are linearly independent. These transformations change B :

$$
S_{1} B=\left[\begin{array}{c}
B^{\prime} \\
B^{\prime \prime}
\end{array}\right]
$$

By unitary transformations of columns, we reduce B^{\prime} to the form $\left[\begin{array}{lll}B_{1}^{\prime} & 0\end{array}\right]$ in which the columns of B_{1}^{\prime} are linearly independent, and obtain

$$
B R_{1}=\left[\begin{array}{cc}
B_{1}^{\prime} & 0 \\
\star & B_{1}
\end{array}\right], \quad R_{1} \text { is unitary. }
$$

These transformations change A:

$$
S_{1} A \overline{R_{1}}=\left[\begin{array}{cc}
0_{k_{1}} l_{1} & 0 \\
\star & A_{1}
\end{array}\right] .
$$

We apply the same procedure to $\left(A_{1}, B_{1}\right)$ and obtain

$$
\left(S_{2} A_{1} \overline{R_{2}}, S_{2} B_{1} R_{2}\right)=\left(\left[\begin{array}{cc}
0_{k_{2} l_{2}} & 0 \\
\star & A_{2}
\end{array}\right],\left[\begin{array}{cc}
B_{2}^{\prime} & 0 \\
\star & B_{2}
\end{array}\right]\right)
$$

in which the rows of $\left[\star A_{2}\right]$ are linearly independent, S_{2} and R_{2} are unitary, and the columns of B_{2}^{\prime} are linearly independent.

We repeat this procedure until we obtain

$$
\left(S_{t} A_{t-1} \bar{R}_{t}, S_{t} B_{t-1} R_{t}\right)=\left(\left[\begin{array}{cc}
0_{k_{t}} l_{t} & 0 \\
\star & A_{t}
\end{array}\right],\left[\begin{array}{cc}
B_{t}^{\prime} & 0 \\
\star & B_{t}
\end{array}\right]\right)
$$

in which the rows of A_{t} are linearly independent. The result of the algorithm is the sequence

$$
\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right), \ldots,\left(k_{t}, l_{t}\right),\left(A_{t}, B_{t}\right)
$$

For a matrix pair (A, B) and a nonnegative integer n, we write

$$
(A, B)^{(n)}:= \begin{cases}\left(0_{00}, 0_{00}\right), & \text { if } n=0 \\ (A, B) \oplus \cdots \oplus(A, B)(n \text { summands }), & \text { if } n \geq 1\end{cases}
$$

Theorem 2. Let (A, B) be a pair of complex matrices of the same size. Let us apply Algorithm 2 to (A, B) and obtain

$$
\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right), \ldots,\left(k_{t}, l_{t}\right),\left(A_{t}, B_{t}\right)
$$

Let us apply Algorithm 2 to $(\underline{A}, \underline{B}):=\left(B_{t}^{T}, A_{t}^{T}\right)$ and obtain

$$
\left(\underline{k}_{1}, \underline{l}_{1}\right),\left(\underline{k}_{2}, \underline{l}_{2}\right), \ldots,\left(\underline{k}_{t}, \underline{l}_{t}\right),\left(\underline{A}_{\underline{t}}, \underline{B}_{\underline{t}}\right)
$$

Then (A, B) is mixed equivalent to

$$
\begin{aligned}
&\left(F_{1}, G_{1}\right)^{\left(k_{1}-l_{1}\right)} \oplus \cdots \oplus\left(F_{t-1}, G_{t-1}\right)^{\left(k_{t-1}-l_{t-1}\right)} \oplus\left(F_{t}, G_{t}\right)^{\left(k_{t}-l_{t}\right)} \\
& \oplus\left(J_{1}, I_{1}\right)^{\left(l_{1}-k_{2}\right)} \oplus \cdots \oplus\left(J_{t-1}, I_{t-1}\right)^{\left(l_{t-1}-k_{t}\right)} \oplus\left(J_{t}, I_{t}\right)^{\left(l_{t}\right)} \\
& \oplus\left(F_{1}^{T}, G_{1}^{T}\right)^{\left(k_{1}-\underline{l}_{1}\right)} \oplus \cdots \oplus\left(F_{\underline{t-1}}^{T}, G_{\underline{t-1}}^{T}\right)^{\left(k_{\underline{t}-1}-l_{\underline{t}-1}\right)} \oplus\left(F_{\underline{t}}^{T}, G_{\underline{t}}^{T}\right)^{\left(k_{\underline{t}}-l_{\underline{t}}\right)} \\
& \oplus\left(I_{1}, J_{1}\right)^{\left(\underline{l}_{1}-\underline{k}_{2}\right)} \oplus \cdots \oplus\left(I_{\underline{t}-1}, J_{\underline{t}-1}\right)^{\left(l_{\underline{t}-1}-\underline{k}_{\underline{t}}\right)} \oplus\left(I_{\underline{t}}, J_{\underline{t}}\right)^{\left(l_{\underline{t}}\right)} \\
& \oplus\left(\underline{B}_{\underline{t}}^{T}, \underline{A}_{\underline{t}}^{T}\right)
\end{aligned}
$$

(all exponents in parentheses are nonnegative). The pair $\left(\underline{B}_{\underline{t}}^{T}, \underline{A}_{\underline{t}}^{T}\right)$ consists of nonsingular matrices; it is determined up to mixed equivalence. The other summands are uniquely determined by (A, B).

The rows of A_{t} in Theorem 2 are linearly independent, and so the columns of $\underline{B}:=A_{t}^{T}$ are linearly independent. As follows from Algorithm 2, the columns of \underline{B}_{t} are linearly independent too. Since the rows of \underline{A}_{t} are linearly independent and the columns of $\underline{B}_{\underline{t}}$ are linearly independent, we have that the matrices in $\left(\underline{A}_{t}, \underline{B}_{t}\right)$ have the same size, these matrices are square, and so they are nonsingular. The pairs $\left(I_{n}, J_{n}^{T}\right)$ and $\left(G_{n}^{T}, F_{n}^{T}\right)$ are permutationally equivalent to $\left(I_{n}, J_{n}\right)$ and $\left(F_{n}^{T}, G_{n}^{T}\right)$. Therefore, the following lemma implies Theorem 2.

Lemma 1. Let (A, B) be a pair of complex matrices of the same size. Let us apply Algorithm 2 to (A, B) and obtain

$$
\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right), \ldots,\left(k_{t}, l_{t}\right),\left(A_{t}, B_{t}\right)
$$

Then (A, B) is mixed equivalent to

$$
\begin{align*}
& \left(F_{1}, G_{1}\right)^{\left(k_{1}-l_{1}\right)} \oplus \cdots \oplus\left(F_{t-1}, G_{t-1}\right)^{\left(k_{t-1}-l_{t-1}\right)} \oplus\left(F_{t}, G_{t}\right)^{\left(k_{t}-l_{t}\right)} \\
\oplus & \left(J_{1}, I_{1}\right)^{\left(l_{1}-k_{2}\right)} \oplus \cdots \oplus\left(J_{t-1}, I_{t-1}\right)^{\left(l_{t-1}-k_{t}\right)} \tag{5}\\
\oplus & \left(J_{t}, I_{t}\right)^{\left(l_{t}\right)} \oplus\left(A_{t}, B_{t}\right)
\end{align*}
$$

(all exponents in parentheses are nonnegative). The rows of A_{t} are linearly independent. The pair $\left(A_{t}, B_{t}\right)$ is determined up to mixed equivalence. The other summands are uniquely determined by (A, B).

Proof. We write

$$
(A, B) \Longrightarrow\left(k_{1}, l_{1},\left(A_{1}, B_{1}\right)\right)
$$

if $k_{1}, l_{1},\left(A_{1}, B_{1}\right)$ are obtained from (A, B) in the first step of Algorithm 2.
First we prove two statements.
Statement 1: If

$$
\begin{align*}
& (A, B) \Longrightarrow\left(k_{1}, l_{1},\left(A_{1}, B_{1}\right)\right) \\
& (\widetilde{A}, \widetilde{B}) \Longrightarrow\left(\tilde{k}_{1}, \tilde{l}_{1},\left(\widetilde{A}_{1}, \widetilde{B}_{1}\right)\right), \tag{6}
\end{align*}
$$

and (A, B) is mixed equivalent to $(\widetilde{A}, \widetilde{B})$, then $k_{1}=\tilde{k}_{1}, l_{1}=\tilde{l}_{1}$, and $\left(A_{1}, B_{1}\right)$ is mixed equivalent to $\left(\widetilde{A}_{1}, \widetilde{B}_{1}\right)$.
Let m be the number of rows in A. Then

$$
k_{1}=m-\operatorname{rank} A=m-\operatorname{rank} \tilde{A}=\tilde{k}_{1}
$$

Since (A, B) and $(\widetilde{A}, \widetilde{B})$ are mixed equivalent and they are reduced by mixed equivalence transformations to

$$
\left(\left[\begin{array}{cc}
0_{k_{1} l_{1}} & 0 \tag{7}\\
X & A_{1}
\end{array}\right],\left[\begin{array}{cc}
B_{1}^{\prime} & 0 \\
Y & B_{1}
\end{array}\right]\right), \quad\left(\left[\begin{array}{cc}
0_{k_{1} \tilde{I}_{1}} & 0 \\
\widetilde{X} & \widetilde{A}_{1}
\end{array}\right],\left[\begin{array}{cc}
\widetilde{B}_{1}^{\prime} & 0 \\
\widetilde{Y} & \widetilde{B}_{1}
\end{array}\right]\right)
$$

there exist nonsingular S and R such that

$$
\left(S\left[\begin{array}{cc}
0_{k_{1} l_{1}} & 0 \tag{8}\\
X & A_{1}
\end{array}\right], S\left[\begin{array}{cc}
B_{1}^{\prime} & 0 \\
Y & B_{1}
\end{array}\right]\right)=\left(\left[\begin{array}{cc}
0_{k_{1} \tilde{l}_{1}} & 0 \\
\widetilde{X} & \widetilde{A}_{1}
\end{array}\right] R,\left[\begin{array}{cc}
\widetilde{B}_{1}^{\prime} & 0 \\
\widetilde{Y} & \widetilde{B}_{1}
\end{array}\right] \bar{R}\right)
$$

Equating the first matrices of these pairs, we find that S has the form

$$
S=\left[\begin{array}{cc}
S_{11} & 0 \\
S_{21} & S_{22}
\end{array}\right], \quad S_{11} \text { is } k_{1} \times k_{1}
$$

Equating the second matrices of the pairs (8), we find that

$$
S_{11}\left[\begin{array}{ll}
B_{1}^{\prime} & 0
\end{array}\right]=\left[\begin{array}{ll}
\widetilde{B}_{1}^{\prime} & 0 \tag{9}
\end{array}\right] \bar{R}
$$

and so

$$
l_{1}=\operatorname{rank}\left[B_{1}^{\prime} 0\right]=\operatorname{rank}\left[\widetilde{B}_{1}^{\prime} 0\right]=\tilde{l}_{1}
$$

Since B_{1}^{\prime} and $\widetilde{B}_{1}^{\prime}$ are $k_{1} \times l_{1}$ and have linearly independent columns, (9) implies that R is of the form

$$
R=\left[\begin{array}{cc}
R_{11} & 0 \\
R_{21} & R_{22}
\end{array}\right], \quad R_{11} \text { is } l_{1} \times l_{1}
$$

Equating the $(2,2)$ entries in the matrices (8), we get

$$
S_{22} A_{1}=\widetilde{A}_{1} R_{22}, \quad S_{22} B_{1}=\widetilde{B}_{1} \bar{R}_{22}
$$

hence $\left(A_{1}, B_{1}\right)$ and $\left(\widetilde{A}_{1}, \widetilde{B}_{1}\right)$ are mixed equivalent, which completes the proof of Statement 1.
Statement 2: If (6), then

$$
(A, B) \oplus(\widetilde{A}, \widetilde{B}) \Longrightarrow\left(k_{1}+\tilde{k}_{1}, l_{1}+\tilde{l}_{1},\left(A_{1} \oplus \widetilde{A}_{1}, B_{1} \oplus \widetilde{B}_{1}\right)\right)
$$

Indeed, if (A, B) and $(\widetilde{A}, \widetilde{B})$ are reduced to (7), then $(A, B) \oplus(\widetilde{A}, \widetilde{B})$ is reduced to

$$
\left(\left[\begin{array}{cc}
0_{k_{1} l_{1}} \oplus 0_{\tilde{k}_{1} \tilde{l}_{1}} & 0 \oplus 0 \\
X \oplus \widetilde{X} & A_{1} \oplus \widetilde{A}_{1}
\end{array}\right],\left[\begin{array}{cc}
B_{1}^{\prime} \oplus \widetilde{B}_{1}^{\prime} & 0 \oplus 0 \\
Y \oplus \widetilde{Y} & B_{1} \oplus \widetilde{B}_{1}
\end{array}\right]\right)
$$

which is permutationally equivalent to

$$
\left(\left[\begin{array}{cc}
0_{k_{1} l_{1}} & 0 \\
X & A_{1}
\end{array}\right],\left[\begin{array}{cc}
B_{1}^{\prime} & 0 \\
Y & B_{1}
\end{array}\right]\right) \oplus\left(\left[\begin{array}{cc}
0_{\tilde{k}_{1}} \tilde{l}_{1} & 0 \\
\widetilde{X} & \widetilde{A}_{1}
\end{array}\right],\left[\begin{array}{cc}
\widetilde{B_{1}^{\prime}} & 0 \\
\widetilde{Y} & \widetilde{B}_{1}
\end{array}\right]\right) .
$$

We are ready to prove Lemma 1 for any pair (A, B). Due to Statement 1, we can replace (A, B) by any mixed equivalent pair. In particular, we can take

$$
\begin{equation*}
(A, B)=\left(F_{1}, G_{1}\right)^{\left(r_{1}\right)} \oplus \cdots \oplus\left(F_{t}, G_{t}\right)^{\left(r_{t}\right)} \oplus\left(J_{1}, I_{1}\right)^{\left(s_{1}\right)} \oplus \cdots \oplus\left(J_{t}, I_{t}\right)^{\left(s_{t}\right)} \oplus(C, D) \tag{10}
\end{equation*}
$$

for some nonnegative $t, r_{1}, \ldots, r_{t}, s_{1}, \ldots, r_{t}$ and some pair (C, D) in which C has linearly independent rows.

Clearly,

$$
\left(J_{i}, I_{i}\right) \Longrightarrow \begin{cases}\left(1,1,\left(J_{i-1}, I_{i-1}\right)\right), & \text { if } i \neq 1 \\ \left(1,1,\left(0_{00}, 0_{00}\right)\right), & \text { if } i=1,\end{cases}
$$

and

$$
\left(F_{i}, G_{i}\right) \Longrightarrow \begin{cases}\left(1,1,\left(F_{i-1}, G_{i-1}\right)\right), & \text { if } i \neq 1 \\ \left(1,0,\left(0_{00}, 0_{00}\right)\right), & \text { if } i=1\end{cases}
$$

Due to Statement 2,

- $k_{1}=m-\operatorname{rank} A$ is the number of all summands of the types $\left(J_{i}, I_{i}\right)$ and $\left(F_{i}, G_{i}\right)$,
- l_{1} is the number of all summands of the types $\left(J_{i}, I_{i}\right)$ and $\left(F_{i}, G_{i}\right)$, except for $\left(F_{1}, G_{1}\right)$,
- and

$$
\begin{equation*}
\left(A_{1}, B_{1}\right)=\left(F_{1}, G_{1}\right)^{\left(r_{2}\right)} \oplus \cdots \oplus\left(F_{t-1}, G_{t-1}\right)^{\left(r_{t}\right)} \oplus\left(J_{1}, I_{1}\right)^{\left(s_{2}\right)} \oplus \cdots \oplus\left(J_{t-1}, I_{t-1}\right)^{\left(s_{t}\right)} \oplus(C, D) . \tag{11}
\end{equation*}
$$

We find that $k_{1}-l_{1}$ is the number of summands of the type $\left(F_{1}, G_{1}\right)$.
Applying the same reasoning to (11) instead of (10) we get that

- k_{2} is the number of all summands of the types $\left(J_{i}, I_{i}\right)$ and $\left(F_{i}, G_{i}\right)$ with $i \geq 2$,
- l_{1} is the number of all summands of the types $\left(J_{i}, I_{i}\right)$ with $i \geq 2$ and $\left(F_{i}, G_{i}\right)$ with $i \geq 3$,
- $\left(A_{2}, B_{2}\right)=\left(F_{1}, G_{1}\right)^{\left(r_{3}\right)} \oplus \cdots \oplus\left(F_{t-2}, G_{t-2}\right)^{\left(r_{t}\right)} \oplus\left(J_{1}, I_{1}\right)^{\left(s_{3}\right)} \oplus \cdots \oplus\left(J_{t-2}, I_{t-2}\right)^{\left(s_{t}\right)} \oplus(C, D)$.

We find that $k_{2}-l_{2}$ is the number of summands of the type $\left(F_{2}, G_{2}\right)$, and that $l_{1}-k_{2}$ is the number of summands of the type (J_{1}, I_{1}), and so on, until we obtain (5).

The fact that the pair $\left(A_{t}, B_{t}\right)$ in (5) is determined up to mixed equivalence and the other summands are uniquely determined by (A, B) follows from Statement 1 (or from the canonical form of a matrix pair up to mixed equivalence). This concludes the proof of Lemma 1 and Theorem 1.

References

[1] D.D. de Oliveira, R.A. Horn, T. Klimchuk, V.V. Sergeichuk, (2012), Remarks on the classification of a pair of commuting semilinear operators, Linear Algebra Appl., 436, 3362-3372, doi 10.1016/j.laa.2011.11.029
[2] D.Ž. Djoković, (1978), Classification of pairs consisting of a linear and a semilinear map, Linear Algebra Appl., 20, 147-165, doi 10.1016/0024-3795(78)90047-2
[3] Y.P. Hong, R.A. Horn, (1988), A canonical form for matrices under consimilarity, Linear Algebra Appl., 102, 143-168, doi 10.1016/0024-3795(88)90324-2
[4] R.A. Horn, C.R. Johnson, (2012), Matrix Analysis, 2nd ed., Cambridge University Press, New York, doi 10.1017/CBO9780511810817
[5] R.A. Horn, V.V. Sergeichuk, (2006), A regularization algorithm for matrices of bilinear and sesquilinear forms, Linear Algebra Appl., 412, 380-395, doi 10.1016/j.laa.2005.07.004
[6] V.V. Sergeichuk, (2004), Computation of canonical matrices for chains and cycles of linear mappings, Linear Algebra Appl., 376, 235-263, doi 10.1016/j.laa.2003.07.001
[7] P. Van Dooren, (1979), The computation of Kronecker's canonical form of a singular pencil, Linear Algebra Appl., 27, 103-140, doi 10.1016/0024-3795(79)90035-1
[8] A. Varga, (2004), Computation of Kronecker-like forms of periodic matrix pairs, Symp. on Mathematical Theory of Networks and Systems, Leuven, Belgium, July 5-9.

[^0]: ${ }^{\dagger}$ Email address: tetiana.klymchuk@upc.edu

