Applied Mathematics and Nonlinear Sciences

On linear operators and bases on Köthe spaces

M. Maldonado, J. Prada ${ }^{\dagger}$ and M. J. Senosiain.
Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, SPAIN

Submission Info

Communicated by Juan L.G. Guirao
Received 12th October 2016
Accepted 21th December 2016
Available online 21th December 2016

Abstract

We make a survey of results published by the authors about the backward and forward unilateral weighted shift operators in Kóthe spaces, the so-called generalized derivation and integration operators, extending well-known results for spaces of analytic functions.

Keywords: Shift operators; Köthe spaces.
AMS 2010 codes: 65T60, 97N40, 65R20, 45D05

1 Introduction

Weighted shift operators have been studied by many authors in different contexts, for instance the work by N. K. Nikol'skiĭ in the spaces spaces ℓ^{p}, [15-18], R. Gellar in Banach spaces, [2-4] and Grabiner in Banach algebras of power series spaces, [5-7].

Forward weighted operators (multiplication and integration operators) play a remarkable role in the study of bases in spaces of analytic functions and have been considered by many Russian mathematicians, [11]. The Gončarov polynomials, that under certain conditions are a basis in analytic spaces [1,9], are related to the backward weighted operator (derivation operator).

We work with Köthe spaces and weighted shifts on them (generalized integration and derivation operators). We characterize the forward shift-invariant isomorphisms and then determine some some quasi-power bases. Our results include, as particular cases, those of Nagnibida for the multiplication and integration operators on the space of analytic functions on a disc, [11] and Prada for the multiplication operator on infinite power series spaces, $[19,20]$. Using the backward shift operator we get conditions for the Gončarov polynomials to be a basis.

[^0]
2 Basic results

Denote by $\lambda^{p}(A), 1 \leq p<\infty$, the Köthe (echelon) space given by the matrix $A=\left(a_{n}^{k}\right)_{n=0}^{\infty}, 0<a_{n}^{k} \leq a_{n}^{k+1}$ for all n, k, that is

$$
\lambda^{p}(A)=\left\{x=\left(x_{n}\right)_{n=0}^{\infty}, x_{n} \in \mathbb{C}: \sum_{n=0}^{\infty}\left(\left|x_{n}\right| a_{n}^{k}\right)^{p}<\infty, \forall k=0,1,2, \ldots\right\}
$$

$\lambda^{p}(A)$ is a Frèchet space, [14], with the norms

$$
\|x\|_{k}=\left(\sum_{n=0}^{\infty}\left(\left|x_{n}\right| a_{n}^{k}\right)^{p}\right)^{1 / p}, \quad k=0,1,2, \ldots
$$

When $p=0, \infty$, we have

$$
\begin{aligned}
\lambda^{0}(A) & =\left\{x=\left(x_{n}\right), x_{n} \in \mathbb{C}:\|x\|_{k}=\sup \left(\left|x_{n}\right| a_{n}^{k}\right)<\infty, \forall k=0,1,2, \ldots\right\} \\
\lambda^{\infty}(A) & =\left\{x=\left(x_{n}\right), x_{n} \in \mathbb{C}:\|x\|_{k}=\lim \left(\left|x_{n}\right| a_{n}^{k}\right)=0, \forall k=0,1,2, \ldots\right\}
\end{aligned}
$$

The canonical basis in the spaces $\lambda^{p}(A), p=0,1 \leq p<\infty$, is denoted by $\delta_{n}=\left(\delta_{n, k}\right)_{k=0}^{\infty}$, where $\delta_{n, k}$ is the Kronecker delta.

The dual space of $\lambda^{p}(A), 1 \leq p<\infty, p=0, \frac{1}{p}+\frac{1}{q}=1$ is given by

$$
\begin{aligned}
& \left(\lambda^{p}(A)\right)^{\times}=\left\{\left(x_{n}\right)_{n=0}^{\infty}, x_{n} \in \mathbb{C}:\left(\sum_{n=0}^{\infty} \frac{\left|x_{n}\right|^{q}}{\left(a_{n}^{k}\right)^{q}}\right)^{\frac{1}{q}}<\infty, \text { for a suitable } k\right\}, 1<p<\infty . \\
& \left(\lambda^{1}(A)\right)^{\times}=\left\{\left(x_{n}\right)_{n=0}^{\infty}, x_{n} \in \mathbb{C}: \sup _{n \geq 0}\left\{\frac{\left|x_{n}\right|}{a_{n}^{k}}\right\}<\infty, \text { for a suitable } k\right\}, p=1 . \\
& \left(\lambda^{0}(A)\right)^{\times}=\left\{\left(x_{n}\right)_{n=0}^{\infty}, x_{n} \in \mathbb{C}: \sum_{n=0}^{\infty} \frac{\left|x_{n}\right|}{a_{n}^{k}}<\infty, \text { for a suitable } k\right\}, p=0 .
\end{aligned}
$$

Recall that the coordinate operators are continuous, [14].
$\lambda^{p}(A), p \in[1, \infty), p=0$ is the projective limit of the Banach spaces $\ell^{p}\left(a^{k}\right), c_{0}\left(a^{k}\right)$, diagonal transformations of ℓ^{p}, c_{0}, with the usual topology:

$$
\begin{aligned}
& \ell^{p}\left(a^{k}\right)=\left\{x=\left(x_{n}\right)_{n=0}^{\infty}:\left(x_{n} a_{n}^{k}\right)_{n=0}^{\infty} \in \ell^{p}\right\}, \quad 1 \leq p<\infty \\
& c_{0}\left(a^{k}\right)=\left\{x=\left(x_{n}\right)_{n=0}^{\infty}:\left(x_{n} a_{n}^{k}\right)_{n=0}^{\infty} \in c_{0}\right\} .
\end{aligned}
$$

The space $\ell^{1}\left(a^{k}\right)$ is a Banach algebra if and only if the following condition holds

$$
\exists C(k)>0: a_{m+n}^{k} \leq C(k) a_{m}^{k} a_{n}^{k}, \quad \forall n, m=0,1,2, \ldots
$$

The space $\lambda^{1}(A)$ is nuclear if and only if

$$
\forall k, \exists r(k): \frac{a_{n}^{k}}{a_{n}^{r(k)}} \in \ell^{1}
$$

and therefore $\lambda^{p}(A)=\lambda^{1}(A)=\lambda^{0}(A), 1 \leq p<\infty$ [14].
If $\lambda=\left(\lambda_{n}\right)$ is a sequence of nonzero complex numbers with $\lambda_{0}=1$ to simplify computations, the operator J_{λ} defined by

$$
J_{\lambda}\left(\delta_{n}\right)=\frac{\lambda_{n+1}}{\lambda_{n}} \delta_{n+1}
$$

is called the generalized integration operator. If $\lambda_{n}=\frac{1}{n!}, J_{\lambda}=J$, is the integration operator and if $\lambda_{n}=1, J_{\lambda}=U$, is the multiplication one (shift operator), see [11].

We assume that the operator J_{λ}, where the sequence $\left(\lambda_{n}\right)$ are positive real numbers without lost of generality, is continuous on $\lambda^{p}(A)$, that is the following condition is fulfilled

$$
\forall k, \exists r=r(k): \sup _{n \geq 0}\left(\frac{\lambda_{n+1}}{\lambda_{n}} \frac{a_{n}^{k+1}}{a_{n}^{k}}\right)<\infty
$$

If $\left(d_{n}\right)$ is a sequence of positive real numbers, the operator D given by

$$
D\left(\delta_{n}\right)=\frac{d_{n-1}}{d_{n}} \delta_{n-1}
$$

is called the generalized derivation operator, being the usual derivation when $d_{n}=\frac{1}{n!}$.

3 Isomorphisms commuting with J_{λ}. Bases in Köthe spaces

We characterize the isomorphisms between Köthe spaces that commute with the generalized integration operator J_{λ} determining some bases, related with it, on $\lambda^{1}(A)$.
Theorem 1. Let $T: \lambda^{1}(A) \rightarrow \lambda^{1}(A)$ be a continuous linear operator. $\left\{\frac{1}{\lambda_{n}} T^{n} x\right\}_{n=0}^{\infty}, x \in \lambda^{1}(A)$ is a basis in $\lambda^{1}(A)$ if and only if there exists an isomorphism $S: \lambda^{1}(A) \rightarrow \lambda^{1}(A)$ such that $T \circ S=S \circ J_{\lambda}$ and $x=S \delta_{0}$.

Proof. If $\left\{\frac{1}{\lambda_{n}} T^{n} x\right\}, n \geq 0$, is a basis in $\lambda^{1}(A)$, then there exists an isomorphism S such that $S \delta_{n}=\frac{1}{\lambda_{n}} T^{n} x$, $n=0,1,2, \ldots$ It follows that $S \delta_{0}=x$ and for $n \in \mathbb{N}$

$$
\left(S \circ J_{\lambda}\right) \delta_{n}=\frac{\lambda_{n+1}}{\lambda_{n}} S \delta_{n+1}=\frac{1}{\lambda_{n}}\left(T \circ T^{n} x\right)=(T \circ S) \delta_{n}
$$

Conversely

$$
T^{n} x=\left(T^{n-1} T S\right) \delta_{0}=\left(T^{n-1} S J_{\lambda}\right) \delta_{0}=\left(S J_{\lambda}^{n}\right) \delta_{0}=\lambda_{n} S \delta_{n}
$$

Corollary 2. $\left\{\frac{1}{\lambda_{n}} J_{\lambda}^{n} x\right\}, x \in \lambda^{1}(A)$ is a basis in $\lambda^{1}(A)$ if and only if there exists an isomorphism $T: \lambda^{1}(A) \rightarrow$ $\lambda^{1}(A)$ that commutes with J_{λ} and $x=T \delta_{0}$.

Proposition 3. [13] A linear operator $T: \lambda^{1}(A) \rightarrow \lambda^{1}(A)$ is continuous and commutes with J_{λ} if and only if

$$
T=\sum_{m=0}^{\infty} \frac{b_{m}}{\lambda_{m}} J_{\lambda}^{m}, \quad b=\left(b_{m}\right)_{m=0}^{\infty}=T \delta_{0}
$$

and the condition

$$
\forall k, \exists r=r(k): \sup _{n}\left\{\sum_{m=0}^{\infty}\left|b_{m}\right| \frac{\lambda_{m+n}}{\lambda_{m} \lambda_{n}} \frac{a_{m+n}^{k}}{a_{n}^{r}}\right\}<\infty
$$

is fulfilled.

Proposition 4 (c.f. [13]). Let T be a linear operator from $\lambda^{1}(A)$ onto itself commuting with J_{λ} and $b=\left(b_{n}\right)=$ $T\left(\delta_{0}\right)\left(b_{0} \neq 0\right)$. If T^{-1} is the formal operator given by the inverse matrix of $T, c=\left(c_{n}\right)=T^{-1}\left(\delta_{0}\right)$ and k,

$$
\forall k, \exists r=r(k): \sup _{m \geq 0, n \geq 0}\left\{\frac{\lambda_{m+n}}{\lambda_{m} \lambda_{n}} \frac{a_{m+n}^{k}}{a_{m}^{k} a_{n}^{r}}\right\}<\infty
$$

then T is an isomorphism if and only if $b, c \in \lambda^{1}(A)$.
Remark 1. Recall that the matrix $\left(t_{i, j}\right)$ of a continuous linear operator T commuting with J_{λ} is lower triangular so, formally, $\left(t_{i, j}\right)$ has an inverse of the same type if $T \delta_{0}=\left(b_{n}\right)$ with $b_{0} \neq 0$. The operator T^{-1} given by this inverse matrix is always linear and commutes with J_{λ}. Then a continuous operator T is an isomorphism if and only if T^{-1} is continuous and T^{-1} can be written

$$
T^{-1}=\sum_{n=0}^{\infty} \frac{c_{n}}{\lambda_{n}} J_{\lambda}^{n}, \quad c=\left(c_{n}\right)=T^{-1}\left(\delta_{0}\right)
$$

Theorem 5 (c.f. [13]). Assume the following conditions:

1. $a_{m+n}^{k} \leq C_{k} a_{m}^{k} a_{n}^{k}, \forall k$, that is, the spaces $\ell^{1}\left(a^{k}\right)$ are Banach algebras.
2. $\lambda_{m+n} \leq C \lambda_{m} \lambda_{n}, \forall m, n$.
3. Let $T=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} J_{\lambda}^{n}$ be a linear operator on $\lambda^{1}(A)$ commuting with J_{λ}.

Then T is an isomorphism if and only if any of the following equivalent conditions are satisfied:

1. The sequence $\left(\frac{b_{n}}{\lambda_{n}}\right)$ is an exponential (invertible) element of all the Banach algebras $\ell^{1}\left(b^{k}\right), b_{n}^{k}=\lambda_{n} a_{n}^{k}$, for all k.
2. The sequence $\left(b_{n}\right) \in \lambda^{1}(A)$ and

$$
\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} z^{n} \neq 0, \quad|z| \leq r_{k}, \quad r_{k}=\lim _{n}\left(\lambda_{n} a_{n}^{k}\right)^{\frac{1}{n}} \text { for all } k
$$

Corollary 6 (c.f. [13]). Let T be a linear operator commuting with J_{λ}

$$
T=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} J_{\lambda}^{n}, b=\left(b_{n}\right)=T \delta_{0}, b_{0} \neq 0
$$

Suppose the following conditions are satisfied:

$$
\begin{aligned}
\forall k, \exists C_{k}>0: & a_{m+n}^{k} \leq C_{k} a_{m}^{k} a_{n}^{k}, \\
& \lambda_{m+n} \leq C \lambda_{m} \lambda_{n}, \forall m, n .
\end{aligned}
$$

If $\left(\frac{b_{n}}{\lambda_{n}}\right)$ is an exponential (invertible) element of $\lambda^{1}(B), B=\left(b_{n}^{k}\right)=\left(\lambda_{n} a_{n}^{k}\right)$, then the system

$$
\left\{\lambda_{n} T^{n}\left(\frac{b_{j}}{\lambda_{j}}\right)_{j=0}^{\infty}\right\}_{n=0}^{\infty}
$$

is a basis in $\lambda^{1}(A)$.
Proposition 7. [13] Let T be a linear operator on $\lambda^{1}(A)$ commuting with $J_{\lambda}, T=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} J_{\lambda}^{n}, b_{0} \neq 0$.

1. If there exists $M_{k}=\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}} \frac{a_{n+1}^{k}}{a_{n}^{k}}, M_{k} \neq 0$, for a suitable k, then the function $\phi(z)=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} z^{n}$ is an holomorphic one with no zeros in a disc $D(0, \rho)$, with $\rho \geq M_{k}$.
2. If $\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}} \frac{a_{n+1}^{k}}{a_{n}^{k}}=\infty$ for a suitable k, then the function $\phi(z)=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} z^{n}$ is an entire function without zeros.

Proposition 8 (c.f. [13]). Let T be a linear operator on $\lambda^{1}(A)$ commuting with J_{λ}

$$
T=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} J_{\lambda}^{n}, b_{0} \neq 0
$$

Suppose that

$$
\forall k, \exists M_{k}=\sup _{n}\left\{\frac{\lambda_{n+1}}{\lambda_{n}} \frac{a_{n+1}^{k}}{a_{n}^{k}}\right\}<\infty .
$$

If the function $\phi(z)=\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} z^{n}$ is holomorphic without zeros in a disc $\mathbb{D}_{\rho}, \rho>\sup _{k}\left\{M_{k}\right\}$ or $\rho=\infty$, then T is an isomorphism from $\lambda^{1}(A)$ onto itself.

Proposition 9 (c.f. [13]). If for a suitable k,

$$
\lim _{n \rightarrow \infty} \lambda_{n} a_{n}^{k}=\infty, \quad \lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}} \frac{a_{n+1}^{k}}{a_{n}^{k}}=\infty, \quad \lim _{n \rightarrow \infty} \sup \frac{\log (n+1)}{\log \left(\frac{\lambda_{n+1}}{\lambda_{n}} \frac{a_{n+1}^{k}}{a_{n}^{k}}\right)}=0
$$

then the only entire functions without zeros that give continuous linear operators on $\lambda^{1}(A)$ are the constants.
Example 10. The space of holomorphic functions, $\mathscr{H}\left(\mathbb{D}_{R}\right)$, on the disc $\mathbb{D}_{R}=\mathbb{D}(0, R), 0<R \leq \infty$ is a Köthe space $\lambda^{1}(A)$, with $A=\left(a_{n}^{k}\right)=\left(t_{k}^{n}\right)$, where $\left(t_{k}\right)$ is an increasing sequence of real positive numbers converging to R.

- If $\lambda_{n}=1, \forall n$ then a continuous linear operator $T=\sum_{n=0}^{\infty} b_{n} U^{n}$ on $\mathscr{H}\left(\mathbb{D}_{R}\right)$, commuting with the multiplication operator U, is an isomorphism if and only if the function $\phi(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \in \mathscr{H}\left(\mathbb{D}_{R}\right)$ and has no zeros in the disc \mathbb{D}_{R}, see [11].
- If $\lambda_{n}=\frac{1}{n!}, \forall n$ then $J_{\lambda}=J$ and a linear continuous operator T on $\mathscr{H}\left(\mathbb{D}_{R}\right)$, commuting with J, is an isomorphism if and only if the function $\phi(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \in \mathscr{H}\left(\mathbb{D}_{R}\right)$ and $b_{0} \neq 0$, see [11].

Example 11. The space $\lambda^{1}(A)=\Lambda_{\infty}(\alpha), A=\left(e^{k \alpha_{n}}\right)$ with $\left(\alpha_{n}\right)$ an increasing sequence of positive numbers going to infinity, is an infinite power series space.

- If $\lambda_{n}=1, \forall n$, and $\alpha_{m+n} \leq C+\alpha_{n}+\alpha_{m}, \forall m, n$, then a continuous linear operator T on $\Lambda_{\infty}(\alpha)$, commuting with U, is an isomorphismif and only if the sequence $T \delta_{0}=\left(b_{n}\right) \in \Lambda_{\infty}(\alpha)$ and the function $\phi(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ has no zeros in the closed disk $D(0,1)\left(\right.$ if $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{n}=0$) or has no zeros in the complex plane (if $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{n}>0$) [20].
- If $\lambda_{n}=\frac{1}{n!}, \forall n, \alpha_{m+n} \leq C+\alpha_{n}+\alpha_{m}, \forall m, n$, and $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{n}<\infty$, then a continuous linear operator T is an isomorphism on $\Lambda_{\infty}(\alpha)$ commuting with J if and only if $T \delta_{0}=\left(b_{n}\right) \in \Lambda_{\infty}(\alpha)$ and $b_{0} \neq 0$.

Example 12. The conditions of the proposition 9 are fulfilled, for instance, if $\lambda_{n}=1$ or $\lambda_{n}=\frac{1}{n!}$ and $a_{n}^{k}=e^{n^{\alpha} k}$, $\alpha>0$.

Two continuous operators commuting with J_{λ} commute with each other [2] but the converse is not true. For example, take an operator given by an infinite two-block matrix

$$
\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{0,1}
\end{array}\right), \quad a_{0,1}, a_{1,0} \neq 0, \quad a_{0,0} \neq a_{1,1}
$$

and the operator J_{λ}^{2}. We show that for certain spaces the result is true.
Theorem 13. Let T be a linear operator from $\lambda^{p}(A)$ to $\lambda^{p}(A), p=0, p \in[1,+\infty)$ commuting with $J_{\lambda}, T=$ $\sum_{n=0}^{\infty} \frac{b_{n}}{\lambda_{n}} J_{\lambda}^{n}$ and $\left\{\lambda_{n} U^{n}\left(\frac{b_{j+1}}{\lambda_{j+1}}\right)_{j=0}^{\infty}\right\}_{n=0}^{\infty}$ is a basis of $\lambda^{1}(A)$. Then any continuous linear operator S on $\lambda^{p}(A)$, commuting with T, commutes with J_{λ}.

Proof. It is similar to the proof of theorem 3.5 in [20].

4 Gončarov polynomials in a nuclear Köthe space

Conditions for the generalized Gončarov polynomials to be a basis in the nuclear space spaces $\lambda^{1}(A)$ are given.

Given a sequence of complex numbers $\left(z_{n}\right)_{n=0}^{\infty}$, the Gončarov polynomials $G_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ are recursively defined by

$$
\begin{aligned}
G_{0}(z) & =1 \\
G_{1}\left(z ; z_{0}\right) & =z-z_{0} \\
& \cdots \\
G_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right) & =\frac{z^{n}}{n!}-\sum_{k=0}^{n-1} \frac{z_{k}^{n-k}}{(n-k)!} G_{k}\left(z ; z_{1}, \ldots, z_{k-1}\right) .
\end{aligned}
$$

The generalized Gončarov polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ are given by

$$
\begin{aligned}
Q_{0}(z) & =1 \\
G_{1}\left(z ; z_{0}\right) & =d_{1}\left(z-z_{0}\right) \\
& \ldots \\
Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right) & =d_{n} z^{n}-\sum_{k=0}^{n-1} d_{n-k} z_{k}^{n-k} Q_{k}\left(z ; z_{1}, \ldots, z_{k-1}\right)
\end{aligned}
$$

where $\left(d_{n}\right)$ is a sequence of positive real numbers.
Recall that if X is a locally convex space, a biorthogonal system $\left\{e_{i}, f_{i}\right\}, e_{i} \in X, f_{i} \in X^{\prime}, f_{i}\left(e_{j}\right)=\delta_{i j}$, is complete, if the finite linear combinations of $\left(e_{i}\right)$ are dense in X, see [14].

If we define the functionals $D_{m}, L_{m}, m \geq 0$ on $\mathscr{H}\left(\mathbb{D}_{R}\right)$ by

$$
\begin{aligned}
& D_{m}(f(z)) \sum_{n=m}^{\infty} x_{n} \frac{n!}{(n-m)!} z_{m}^{n-m} \\
& L_{m}(f(z))=\sum_{n=m}^{\infty} x_{n} \frac{d_{n-m}}{d_{n}} z_{m}^{n-m},
\end{aligned} \quad f(z)=\sum_{n=0}^{\infty} x_{n} z^{n} \in \mathscr{H}\left(\mathbb{D}_{R}\right),
$$

then $\left\{G_{m}\left(z ; z_{0}, z_{1}, \ldots, z_{m-1}\right) ; D_{m}\right\}_{m=0}^{\infty}$ and $\left\{Q_{m}\left(z ; z_{0}, z_{1}, \ldots, z_{m-1}\right) ; L_{m}\right\}_{m=0}^{\infty}$ are biorthogonal systems for $\mathscr{H}\left(\mathbb{D}_{R}\right)$.

Theorem 14 (c.f. [8]). If $\lambda^{1}(A)$ is nuclear, a complete biorthogonal system, $\left(e_{i}, f_{i}\right), f_{i}=\left(f_{i, j}\right)$, is a Schauder basis for $\lambda^{1}(A)$ if and only if $\forall k \in \mathbb{N}$ there exists $r=r(k) \in \mathbb{N}$ such that:

$$
\sup _{i, j}\left(\frac{\left|f_{i, j}\right|}{a_{j}^{r}}\left\|e_{i}\right\|_{k}\right)<\infty
$$

Theorem 15 (c.f. [9]). Let $\left(t_{k}\right)$ be a sequence such that $t_{k}<t_{k+1}$ and $\lim _{k \rightarrow \infty} t_{k}=R, 0<R \leq \infty$. The Gončarov polynomials $G_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ are a Schauder basis in $\mathscr{H}\left(\mathbb{D}_{R}\right)$, if and only if $\forall k \in \mathbb{N}$, there exists $r=r(k)$ such that

$$
\sup _{n \geq 0} \sup _{m \geq n}\left\{\frac{m!\left|z_{n}\right|^{m-n}}{(m-n)!\left(t_{r}\right)^{m}} \sum_{j=0}^{n} \frac{\left(t_{k}\right)^{j}}{j!}\left|G_{n-j}\left(0 ; z_{j}, \ldots, z_{n-1}\right)\right|\right\}<\infty
$$

Theorem 16 (c.f. [10]). The generalized Gončarov polynomials $Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)$ are a basis in $\mathscr{H}\left(\mathbb{D}_{R}\right), 0<$ $R \leq \infty$, if and only if $\forall k \in \mathbb{N}, \exists r=r(k)$ such that

$$
\sup _{n \geq 0} \sup _{m \geq n}\left\{\frac{d_{m-n}}{d_{m}\left(t_{r}\right)^{m}}\left|z_{n}\right|^{m-n} \sum_{j=0}^{n} d_{j}\left(t_{k}\right)^{j}\left|Q_{n-j}\left(0 ; z_{j}, \ldots, z_{n-1}\right)\right|\right\}<\infty .
$$

The generalized Gončarov polynomials $\left\{Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)\right\}_{n=0}^{\infty}$ are a complete system in a nuclear space $\lambda^{1}(A)$ and $L_{n} \in\left(\lambda^{1}(A)\right)^{\prime}$ if and only if

$$
\sup _{m \geq n}\left(\frac{d_{m-n}}{d_{m} a_{m}^{r}}\left|z_{n}\right|^{m-n}\right)<\infty
$$

Proposition 17. If $\lambda^{1}(A)$ is a nuclear space, the generalized Gončarov polynomials $\left\{Q_{n}\left(z ; z_{0}, \ldots, z_{n-1}\right)\right\}_{n=0}^{\infty}$ are a basis in $\lambda^{1}(A)$ if and only if $\forall k \in \mathbb{N}, \exists r=r(k) \in \mathbb{N}$ such that:

$$
\sup _{n \geq 0}\left\{\sup _{m \geq n}\left(\frac{d_{m-n}}{d_{m} a_{r}^{m}}\left|z_{n}^{m-n}\right|\right) \sum_{j=0}^{\infty}\left|Q_{n-j}\left(0 ; z_{j}, \ldots, z_{n-1}\right) d_{j} a_{j}^{k}\right|\right\}<\infty
$$

Proof. Follows easily from Theorem 14.

Acknowledgements

References

[1] J.L Frank and J.K Shaw, (1974), Abel-Gončarov Polynomial Expansions, Journal of Approximation Theory 10, No 1, 6-22. doi 10.1016/0021-9045(74)90092-6
[2] R. Gellar, (1969), Operators Commuting with a Weighted Shift, Proceedings of the American Mathematical Society, 23, No 3, 538-545. doi 10.2307/2036580
[3] R. Gellar, (1969), Cyclic Vectors and Parts of the Spectrum of a Weighted Shift, Transactions of the American Mathematical Society, 146, 69-85. doi 10.2307/1995160
[4] R. Gellar, (1974/1975), A Generalization of Weighted Shifts, Indiana University Mathematics Journal, 24, 259-264.
[5] S. Grabiner, (1975), Weighted Shifts and Banach Algebras of Power Series, American Journal of Mathematics, 97, No 1, 16-42. doi 10.2307/2373659
[6] S. Grabiner, (1986), Dense subspaces of entire functions, The Michigan Mathematical Journal, 33, 417-422.
[7] S. Grabiner, (1988), Convergent expansions and bounded operators in the umbral calculus, Advances in Mathematics, 72, No 1, 132-167. doi 10.1016/0001-8708(88)90020-5
[8] F. Haslinger, (1978), Complete biorthogonal systems in nuclear (F)-spaces, Mathematische Nachrichten 83, 305-310. doi 10.1002/mana. 19780830125
[9] F. Haslinger, (1980), Abel-Gončarov Polynomial Expansions in Spaces of Holomorphic Functions, Journal of the London Mathematical Society s2-21, No 3, 487-495. doi $10.1112 / \mathrm{j} 1 \mathrm{~ms} / \mathrm{s} 2-21.3 .487$
[10] F. Haslinger, (1979), Generalized Abel-Gončarov bases in spaces of holomorphic functions, Journal of Approximation Theory, 27, No 4, 297-308. doi 10.1016/0021-9045(79)90119-9
[11] I. I. Ibragimov and N. I. Nagnibida, (1975), The Matrix Method and Quasi-Power Bases in the Space of Analytic Functions in a Disc, Russian Mathematical Surveys, 30, No 6, 107-154. doi 10.1070/RM1975v030n06ABEH001533
[12] R. Lorentz, S. Tringali and C. H. Yan, Generalized Goncarov polynomials, to appear in S. Butler, J. Cooper, and G. Hurlbert (eds.), Connections in Discrete Mathematics: A Celebration of the Work of Ron Graham, Cambridge University Press. arXiv 1511.04039
[13] M. Maldonado and J. Prada, (2006), Weighted shift operators on Köthe spaces, Mathematische Nachrichten 279, No 1-2, 188-197. doi 10.1002/mana. 200310355
[14] R. Meise and D. Vogt, (1997), Introduction to Functional Analysis, The Clarendon Press, Oxford University Press, Oxford.
[15] N. K. Nikol'skiĭ, (1967), Invariant Subspaces of Weighted Shift Operators, Mathematics of the USSR-Sbornik, 3, No 2, 159-176. doi 10.1070/SM1967v003n02ABEH002367
[16] N. K. Nikol'skir̆, (1967), The unicellularity and nonunicellularity of weighted shift operators, Soviet Mathematics Doklady, 8, 91-94.
[17] N. K. Nikol'skiĭ, (1968), Basicity and unicellularity of weighted shift operators, Mathematics of the USSR-Izvestiya, 2, 1077-1089. doi 10.1070/IM1968v002n05ABEH000703
[18] N. K. Nikol'skiĭ, (1970), Spectral Synthesis for a Shift Operator and Zeros in certain Classes of Analytic Functions Smooth Up to the Boundary, Soviet Mathematics Doklady, 11, 206-209.
[19] J. Prada, (2002), Delta Operators on Sequence Spaces, Scientiae Mathematicae Japonicae, 55, No 2, 223-231.
[20] J. Prada, (2004), Operators commuting with the shift on sequence spaces, International Journal of Mathematics and Mathematical Sciences, 43, Volume 2004, 2273-2278. doi 10.1155/S0161171204310124
©UP4 Sciences. All right reserved.

[^0]: ${ }^{\dagger}$ Corresponding author.
 Email address: prada@usal.es

