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Abstract
Asymptotic and global dynamics of weak solutions for a damped nonlinear wave equation with a critical growth exponent
on the unbounded domain Rn(n≥ 3) is investigated. The existence of a global attractor is proved under typical dissipative
condition, which features the proof of asymptotic compactness of the solution semiflow in the energy space with critical
nonlinear exponent by means of Vitali-type convergence theorem.

Keywords: Nonlinear wave equation, global attractor, asymptotic compactness, critical exponent, Vitali-type convergence criterion.
AMS 2010 codes: Primary 35B40, 35B41, 35R60, 37L55; Secondary 60H15

1 Introduction

In this paper, we study the asymptotic behavior of solutions of a damped semilinear wave equation with
nonlinearity of a critical growth exponent over the Euclidean space Rn of arbitrary dimension n≥ 3,

utt −∆u+βut + f (x,u)+αu = g(x) (1)

for t ≥ 0, with the initial condition

u(x,0) = u0(x), ut(x,0) = u1(x), (2)

where α and β are arbitrary positive constants, g is a given functions defined on Rn and f (x,u) is a nonlinear
function satisfying some typical dissipative conditions to be specified.
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The asymptotic dynamics of global weak solutions for deterministic nonlinear wave equations and for more
general nonlinear hyperbolic evolutionary equations with linear or nonlinear damping have been studied in last
three decades by many authors, e.g. [1]- [4], [6]- [8], [12]- [14], [16], [19]- [22], [26]. The obtained results
focused on the existence of global attractors under certain assumptions.

In the arena of stochastic wave equations driven by additive or multiplicative noise, the solution mapping
defines a random dynamical system or called a cocycle on a state space with a parametric base space. The
existence of random attractors for stochastic damped wave equations has been studied in [9], [11], [15], [17],
[18], [23]- [25].

However, the existence problem of global attractors remains open for damped nonlinear wave equations with
nonlinearity of a critical growth exponent and on the unbounded domain Rn with arbitrary dimension. This is
the topic of this work.

In case of nonlinearity with higher or critical growth exponents and on the unbounded domain, the issue of
asymptotic compactness for the weak or mild solutions of nonlinear damped wave equations becomes difficult
to handle due to not only the lack of compactness of the Sobolev embeddings but also the necessarily involved
high-order integrable function spaces, in addition to the local existence and regularity of solutions in such spaces.
In this work we shall tackle this challenging problem and prove the existence of a global attractor by means of

1) the uniform estimates for absorbing property and norm-smallness of solutions outside a large ball,
2) the esimates of the extended energy functional for the compactness in the space H1(Rn)×L2(Rn) and
3) the Vitali-type convergence criterion (Theorem 8) for the function space Lp(Rn) shown in the paper.

This new approach has potential applications to many other nonlinear and stochastic PDEs and to longtime and
asymptotic dynamics of various problems with complex and nonlinear interactions.

In Section 2, we briefly recall basic concepts and results related to semiflow and global attractors. In Section
3, we shall conduct uniform estimates of the weak solutions for absorbing sets and for tail parts. In Section 4, we
shall establish the intricate asymptotic compactness of the solution semiflow with respect to the Hilbert energy
space H1(Rn)×L2(Rn). In Section 5, we prove the crucial asymptotic compactness of the first component of
solutions in Lp(Rn). Then the existence of a global attractor for this nonlinear damped wave equation is finally
proved.

In this paper, we shall use ‖ · ‖ and 〈·, ·〉 to denote the norm and inner product of L2(Rn), respectively. The
norm of Lr(Rn) with r 6= 2 or a Banach space X will be denoted by ‖ · ‖r or ‖ · ‖X . We use c,C or Ci to denote
generic or specific positive constants.

2 Preliminaries and Assumptions

Let (X ,‖ ·‖X) be a real Banach space. The following are the basic concepts and result on the topic of global
attractor for infinite dimensional dynamical systems, cf. [2], [8], [20] and [22].

Definition 1. A mapping Φ : R+×X → X is called a semiflow on X , if the following conditions are satisfied:
(i) Φ(0, ·) is the identity on X .
(ii) Φ(t + s, ·) = Φ(t,Φ(s, ·)), for any t,s≥ 0.
(iii) Φ : R+×X → X is a continuous mapping.

Definition 2. Let Φ be a semiflow on X . A bounded set K ⊂ X is called an absorbing set for Φ if for any
bounded subset B⊂ X there exists a finite time TB > 0 such that

Φ(t,B) = {Φ(t,x) : x ∈ B} ⊂ K, for all t > TB.

Φ is called asymptotically compact in X if for any given bounded set B⊂ X it holds that

{Φ(tm,xm)}∞
m=1 has a convergent subsequence in X ,

whenever tm→ ∞ and {xm}∞
m=1 ⊂ B.
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Definition 3. Let Φ be a semiflow on X . A set A ⊂ X is called a global attractor for Φ, if the following
conditions are satisfied:

(i) A is a compact and invariant set in the sense that Φ(t,A ) = A , for all t ≥ 0.
(iii) A attracts every bounded set B in X ,

lim
t→∞

distX(Φ(t,B), A ) = 0,

where distX(·, ·) is the Hausdorff semi-distance with respect to the X-norm.

Theorem 1. Let Φ be a semiflow on a Banach space X. If the following two conditions are satisfied:
(1) there is a bounded absorbing set K for the semiflow Φ in X, and
(2) Φ is asymptotically compact in X,

then there exists a global attractor A in X for the semiflow Φ, which is given by

A = ω(K) =
⋂
τ≥0

⋃
t≥τ

Φ(t,K). (3)

Now we formulate the original initial value problem of the nonlinear damped wave equation (1)-(2). Let
ξ = ut +δu, where δ is a positive number to be specified later. Then (1)-(2) can be rewritten as

ut +δu = v,

vt −δv+(δ 2 +α +A)u+β (v−δu)+ f (x,u) = g(x)

u(x,τ) = u0(x), v(x,τ) = v0(x) = u1(x)+δu0(x),

(4)

where the linear operator A =−∆ : H2(Rn)→ L2(Rn).
Standing Assumption. Throughout the paper, assume that the nonlinear term f ∈ C1(Rn×R,R), n ≥ 3,

and its antiderivative F(x,u) =
´ u

0 f (x,s)ds satisfy the following conditions:

| f (x,u)| ≤C1|u|p−1 +φ1(x), φ1(x) ∈ H1(Rn), (5)

f (x,u)u−C2F(x,u)≥ φ2(x), φ2(x) ∈ L1(Rn), (6)

F(x,u)≥C3|u|p−φ3(x), φ3(x) ∈ L1(Rn), (7)

where C1,C2 and C3 are positive constants and 1≤ p≤ n+2
n−2 is arbitrarily given. Assume that g ∈ H1(Rn).

Define the phase space
E =

(
H1(Rn)∩Lp(Rn)

)
×L2(Rn)

endowed with the norm

‖(u,v)‖(H1∩Lp)×L2 =
(
‖∇u‖2 +‖u‖2 +‖v‖2) 1

2 +‖u‖Lp , for (u,v) ∈ E. (8)

Lemma 2. For any given g0 = (u0,v0) ∈ E, the initial value problem (4) has a unique global weak solution

(u(·,u0),v(·,v0)) ∈C([0,∞),E).

Moreover, for any t ≥ 0, the solution (u(t,u0),v(t,v0)) is weakly continuous with respect to g0 = (u0,v0) ∈ E in
the sense that

(u(t,u0,m),v(t,v0,m))⇀ (u(t,u0),v(t,v0))

weakly in E, provided that g0,m = (u0,m,v0,m)⇀ g0 = (u0,v0) weakly in E.

Proof. The local existence and uniqueness of a weak solution for this problem (4) in the phase space E =
(H1(Rn)∩Lp(Rn))×L2(Rn) and its weakly continuous dependence on the initial data can be established by the
Galerkin approximation method as in [8, Chapter XV] and [3]. Also see [20], [22] and [25]. Here the detail is
omitted. The proof of the global existence of weak solutions will be included in the proof of Lemma 3 below.

http://www.up4sciences.org


584 Yuncheng You. Applied Mathematics and Nonlinear Sciences 1(2016) 581–602

3 Uniform Estimates of Solution Trajectories

In this section, we shall derive uniform estimates on the solutions of the nonlinear damped wave equation
(4) defined on Rn in a long run. These a priori estimates pave the way to proving the existence of absorbing
set and the asymptotic compactness of the semiflow Φ. In particular, we will show that tails of the solutions for
large spatial variables are uniformly small when time is sufficiently large.

Define a new norm of E by

‖(u,v)‖E =
(
‖v‖2 +(α +δ

2−βδ )‖u‖2 +‖∇u‖2) 1
2 +‖u‖Lp , (9)

in which and hereafter let δ be a fixed positive constant satisfying

α +δ
2−βδ > 0 and β −3δ > 0. (10)

Obviously the norm ‖ · ‖E in (9) and the Sobolev norm ‖ · ‖(H1∩Lp)×L2 in (8) are equivalent.

3.1 Absorbing Set

The next lemma shows that there exists an absorbing set in the Banach space E for the semiflow Φ generated
by the weak solutions (u(t,u0),(v(t,v0)) to the problem (4),

Φ(t,g0) = (u(t,u0),v(t,v0)), t ≥ 0, g0 = (u0,v0).

Lemma 3. There exists an absorbing set K ⊂ E for the solution semiflow Φ of the problem (4). For any bounded
set B⊂ E, there exists a finite TB > 0, such that

Φ(t,B)⊂ K, for all t > TB.

Proof. Take the inner product of the second equation of (4) with v in L2(Rn) to get

1
2

d
dt
‖v‖2−δ‖v‖2 +(α +δ

2)〈u,v〉+ 〈Au,v〉+ 〈 f (x,u),v〉=−〈β (v−δu,v〉+ 〈g(x),v〉. (11)

Then we find that

〈u,v〉= 〈u,ut +δu〉= 1
2

d
dt
‖u‖2 +δ‖u‖2 and 〈Au,v〉= 1

2
d
dt
‖∇u‖2 +δ‖∇u‖2.

For the last term on the left-hand side of (11), we have

〈 f (x,u),v〉= d
dt

ˆ
Rn

F(x,u)dx+δ 〈 f (x,u),u〉.

By (6), we get

δ 〈 f (x,u),u〉 ≥ δC2

ˆ
Rn

F(x,u)dx+δ

ˆ
Rn

φ2 dx.

For the last term on the right-hand side of (11),

〈g,v〉 ≤ ‖g‖‖v‖ ≤ ‖g‖2

2(β −δ )
+

β −δ

2
‖v‖2.

Substitute the above inequalities into (11) to obtain

1
2

d
dt

[
‖v‖2 +

(
α +δ

2−βδ
)
‖u‖2 +‖∇u‖2 +2

ˆ
Rn

F(x,u)dx
]

+
δ

2
[
‖v‖2 +

(
α +δ

2−βδ
)
‖u‖2 +‖∇u‖2]+δC2

ˆ
Rn

F(x,u)dx

≤ 3δ −β

2
‖v‖2 +

‖g‖2

2(β −δ )
+δ‖φ2‖L1 ≤

‖g‖2

2(β −δ )
+δ‖φ2‖L1 , t ≥ 0.

(12)

http://www.up4sciences.org


Global Attractor for Nonlinear Wave Equations 585

where the term (3δ −β )‖v‖2/2≤ 0 due to (10). Let σ be a fixed positive constant:

σ = min{δ , δC2}> 0. (13)

Note that
´
Rn(F(x,u)+φ3(x))dx≥ 0 due to (7). It follows from (12) and (13) that

d
dt

[
‖v‖2 +

(
α +δ

2−βδ
)
‖u‖2 +‖∇u‖2 +2

ˆ
Rn
(F(x,u)+φ3(x))dx

]
+σ

[
‖v‖2 +

(
α +δ

2−βδ
)
‖u‖2 +‖∇u‖2 +2

ˆ
Rn
(F(x,u)+φ3(x))dx

]
≤ ‖g‖

2

β −δ
+2δ (C2‖φ3‖L1 +‖φ2‖L1), t ≥ 0.

(14)

Apply Gronwall inequality to (14) and see that every weak solution of (4) satisfies

‖v(t)‖2 +
(
α +δ

2−βδ
)
‖u(t)‖2 +‖∇u(t)‖2 +2

ˆ
Rn
(F(x,u(t))+φ3(x))dx

≤e−σ(t−τ)

[
‖v0‖2 +

(
α +δ

2−βδ
)
‖u0‖2 +‖∇u0‖2 +2

ˆ
Rn

F(x,u0)dx
]

+2e−σ(t−τ)‖φ3‖L1 +
1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

)
.

(15)

Thus for any given bounded set B⊂ E and any (u0,v0) ∈ B, we have

‖v(t)‖2 +
(
α +δ

2−βδ
)
‖u(t‖2 +‖∇u(t)‖2 +2

ˆ
Rn
(F(x,u(t))+φ3(x))dx

≤e−σt
[
‖v0‖2 +

(
α +δ

2−βδ
)
‖u0‖2 +‖∇u0‖2 +2

ˆ
Rn

F(x,u0)dx+2‖φ3‖L1

]
+

1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

)
t ≥ 0.

(16)

According to the assumption (5) and (6), there exists a constant c = c(C1,C2,φ1,φ2)> 0 such that
ˆ
Rn

F(x,u0)dx≤ c
(
1+‖u0‖2 +‖u0‖p

Lp

)
.

It follows that, for any given bounded set B⊂ E and (u0,v0) ∈ B, there exist a constant C > 0 and a finite TB > 0
such that

e−σt
[
‖v0‖2 +

(
α +δ

2−βδ
)
‖u0‖2 +‖∇u0‖2 +2

ˆ
Rn

F(x,u0)dx+2‖φ3‖L1

]
≤Ce−σt (1+‖v0‖2 +‖u0‖2

H1 +‖u0‖p
Lp

)
≤ 1, for all t > TB.

(17)

Substitute (17) into the right-hand side of the last equality in (16) and note that (7) implies

2
ˆ
Rn
(F(x,u(t,u0)+φ3(x))dx≥ 2C3‖u(t,u0)‖p

Lp .

Then it results in

‖v(t,v0)‖2 +
(
α +δ

2−βδ
)
‖u(t,u0)‖2 +‖∇u(t,u0)‖2 +2C3‖u(t,u0)‖p

Lp

≤ 1+
1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

)
, for t > TB.

(18)
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The inequality (18) show that Φ(t,B)⊂ K = BE(0,R) for t > TB, where the radius of the ball BE(0,R) in E is

R =

(
1

min{1,(α +δ 2−βδ )}

[
1+

1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

)]) 1
2

+

(
1

2C3

[
1+

1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

)]) 1
p

.

(19)

Therefore, this set K = BE(0,R) is an absorbing set in the phase space E for the solution semiflow Φ. The proof
is completed.

3.2 Tail Estimates

Next we conduct uniform estimates on the tail parts of the weak solutions for large spatial and time variables.
These estimates play key roles in proving the asymptotic compactness in the space E of the dynamical systems
Φ generated by the nonlinear wave equation (4) on the unbounded domain Rn.

Lemma 4. For every bounded set B⊂ E and 0 < η ≤ 1, there exists T = T (B,η)> 0 and V =V (η)≥ 1 such
that the semiflow Φ generated by the nonlinear damped wave equation (4) satisfies

‖Φ(t,B)‖E(Rn\Br) = max
g0∈B
‖Φ(t,g0)ζBc

r
‖E < η , (20)

for all t > T and every r >V , where ζBc
r
(x) is the characteristic function of the set {x ∈ Rn : |x|> r}.

Proof. Choose a smooth and nondecreasing function ρ such that 0≤ ρ(s)≤ 1 for all s ∈ [0,∞) and

ρ(s) =


0, i f 0≤ s < 1,

1, i f s > 2,
(21)

with 0≤ ρ ′(s)≤ 2 for s≥ 0. Taking the inner product of the second equation of (4) with ρ(|x|2/r2)v in L2(Rn),
we get

1
2

d
dt

ˆ
Rn

ρ

(
|x|2

r2

)
|v|2 dx−δ

ˆ
Rn

ρ

(
|x|2

r2

)
|v|2 dx

+(α +δ
2)

ˆ
Rn

ρ

(
|x|2

r2

)
uvdx+

ˆ
Rn
(Au)ρ

(
|x|2

r2

)
vdx+

ˆ
Rn

ρ

(
|x|2

r2

)
f (x,u)vdx

=

ˆ
Rn

ρ

(
|x|2

r2

)
gvdx−

ˆ
Rn

ρ

(
|x|2

r2

)
β (v−δu)vdx.

(22)

Hence we have

1
2

d
dt

ˆ
Rn

ρ

(
|x|2

r2

)
|v|2 dx+(α +δ

2−βδ )

ˆ
Rn

ρ

(
|x|2

r2

)
uvdx

+(β −δ )

ˆ
Rn

ρ

(
|x|2

r2

)
|v|2 dx+

ˆ
Rn
(Au)ρ

(
|x|2

r2

)
vdx+

ˆ
Rn

ρ

(
|x|2

r2

)
f (x,u)vdx

≤ δ

2

ˆ
Rn

ρ

(
|x|2

r2

)
|v|2 dx+

ˆ
Rn

ρ

(
|x|2

r2

)
gvdx.

(23)

http://www.up4sciences.org


Global Attractor for Nonlinear Wave Equations 587

For the second term on the left-hand side of (23), by (4) we have

(α +δ
2−βδ )

ˆ
Rn

ρ

(
|x|2

r2

)
uvdx = (α +δ

2−βδ )

ˆ
Rn

ρ

(
|x|2

r2

)
u(ut +δu)dx

≥(α +δ
2−βδ )

(
1
2

d
dt

ˆ
Rn

ρ

(
|x|2

r2

)
|u|2 dx+δ

ˆ
Rn

ρ

(
|x|2

r2

)
|u|2 dx

)
− δ

2
(α +δ

2−βδ )

ˆ
Rn

ρ

(
|x|2

r2

)
|u|2 dx.

(24)

For the fourth term on the left-hand side of (23),
ˆ
Rn
(Au)ρ

(
|x|2

r2

)
vdx =

ˆ
Rn
(Au)ρ

(
|x|2

r2

)
(ut +δu)dx =

ˆ
Rn
(∇u)∇

(
ρ

(
|x|2

r2

)
(ut +δu)

)
dx

=

ˆ
Rn
(∇u)

2x
r2 ρ

′
(
|x|2

r2

)
vdx+

ˆ
Rn
(∇u)ρ

(
|x|2

r2

)
∇(ut +δu)dx

=

ˆ
Rn
(∇u)

2x
r2 ρ

′
(
|x|2

r2

)
vdx+

1
2

d
dt

ˆ
Rn

ρ

(
|x|2

r2

)
|∇u|2 dx+δ

ˆ
Rn

ρ

(
|x|2

r2

)
|∇u|2 dx.

Since 0≤ ρ ′(s)≤ 2, it follows that
ˆ
Rn
(Au)ρ

(
|x|2

r2

)
vdx≥−

ˆ
r≤|x|≤

√
2r

4|x|
r2 |(∇u)v|dx

+
1
2

d
dt

ˆ
Rn

ρ

(
|x|2

r2

)
|∇u|2 dx+δ

ˆ
Rn

ρ

(
|x|2

r2

)
|∇u|2 dx

≥− 2
√

2
r

ˆ
r≤|x|≤

√
2r
(|∇u|2 + |v|2)dx+

1
2

d
dt

ˆ
Rn

ρ

(
|x|2

r2

)
|∇u|2 dx+

δ

2

ˆ
Rn

ρ

(
|x|2

r2

)
|∇u|2 dx.

(25)

For the fifth term on the left-hand side of (23), by (5)-(7), we have
ˆ
Rn

ρ

(
|x|2

r2

)
f (x,u)vdx =

ˆ
Rn

ρ

(
|x|2

r2

)
f (x,u)(ut +δu)dx

≥ d
dt

ˆ
Rn

ρ

(
|x|2

r2

)
F(x,u)dx+δ

ˆ
Rn

ρ

(
|x|2

r2

)
(C2F(x,u)+φ2(x))dx.

(26)

For the last term on the right-hand side of (23), we see
ˆ
Rn

ρ

(
|x|2

r2

)
gvdx≤ 1

2(β −δ )

ˆ
Rn

ρ

(
|x|2

r2

)
|g|2 dx+

β −δ

2

ˆ
Rn

ρ

(
|x|2

r2

)
|v|2 dx. (27)

Now substitute (24)-(27) into (23), we obtain

1
2

d
dt

ˆ
Rn

ρ

(
|x|2

r2

)(
|v|2 +(α +δ

2−βδ )|u|2 + |∇u|2 +2F(x,u)
)

dx

+
δ

2

ˆ
Rn

ρ

(
|x|2

r2

)
|v|2 dx+

δ

2

ˆ
Rn

ρ

(
|x|2

r2

)
((α +δ

2−βδ )|u|2 + |∇u|2)dx

+δC2

ˆ
Rn

ρ

(
|x|2

r2

)
F(x,u)dx

≤ 2
√

2
r

ˆ
r≤|x|≤

√
2r
(|∇u|2 + |v|2)dx+

ˆ
Rn

ρ

(
|x|2

r2

)(
|g|2

β −δ
+δ |φ2|

)
dx.

(28)
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Since g ∈ L2(Rn) and φ2,φ3 ∈ L1(Rn), for any η > 0, there exists K0 = K0(η)≥ 1 such that for all r ≥ K0,

ˆ
Rn

ρ

(
|x|2

r2

)(
|g|2

β −δ
+δ |φ2|+2σ |φ3|

)
dx≤

ˆ
|x|≥r

(
|g|2

β −δ
+δ |φ2|+2σ |φ3|

)
dx < η . (29)

By (13) and (28)-(29), there exists K1 = K1(η)≥ 1 such that for all r > K1,

d
dt

ˆ
Rn

ρ

(
|x|2

r2

)(
|v|2 +(α +δ

2−βδ )|u|2 + |∇u|2 +2(F(x,u)+φ3)
)

dx

+σ

ˆ
Rn

ρ

(
|x|2

r2

)(
|v|2 +(α +δ

2−βδ )|u|2 + |∇u|2 +2(F(x,u)+φ3)
)

dx

≤η

[
1+
ˆ

r≤|x|≤
√

2r
(|∇u|2 + |v|2)dx

]
.

Therefore, for any t > 0 and r > K1, it holds that

ˆ
Rn

ρ

(
|x|2

r2

)[
|v(t)|2 +

(
α +δ

2−βδ
)
|u(t)|2 + |∇u(t)|2 +2(F(x,u(t))+φ3(x))

]
dx

≤e−σt
ˆ
Rn

ρ

(
|x|2

r2

)
(|v0|2 +(α +δ

2−βδ )|u0|2 + |∇u0|2 +2(F(x,u0)+φ3(x)))dx

+
η

σ
+η

ˆ t

0
e−σ(t−s)

ˆ
r≤|x|≤

√
2r
(|∇u(s)|2 + |v(s)|2)dxds.

(30)

Next we conduct estimates of the terms on the right-hand side of in (30). For the first term, there exists
T1 = T1(B,η)> 0 and a constant C4 > 0 such that

e−σt
ˆ
Rn

ρ

(
|x|2

r2

)
(|v0|2 +(α +δ

2−βδ )|u0)|2 + |∇u0|2 +2(F(x,u0)+φ3))dx

≤e−σt
ˆ
Rn

(
|v0|2 +(α +δ

2−βδ )|u0|2 + |∇u0|2
)

dx

+2e−σt
ˆ
Rn

[
1

C2
(C1|u0|p + |u0||φ1(x)|+ |φ2(x)|)+ |φ3(x)|

]
dx

≤C4 e−σt(‖(v0,u0)‖2 +‖∇u0‖2 +‖u0‖p
Lp +‖φ1‖2 +‖φ2‖L1 +‖φ3‖L1)< η

(31)

for all t > T1. For the second integral term on the right-hand side of (30), applying the Gronwall inequality to
(14) while taking the spatial integral over the region r ≤ |x| ≤

√
2r, with (13) in mind, we get

ˆ 0

−t
eσs
ˆ

r≤|x|≤
√

2r
(|∇u(s)|2 + |v(s)|2)dxds

≤e−σ(s+t) (‖v0‖2 +(α +δ
2−βδ )‖u0‖2 +‖∇u0‖2)

+2e−σ(s+t)
ˆ
Rn

(F(x,u0)+φ3(x)) dx+
1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

1
β −δ

‖g‖2
)
.

(32)

http://www.up4sciences.org


Global Attractor for Nonlinear Wave Equations 589

Based on (31) and (32), there exists T2 = T2(B,η)> 0 such that

ˆ 0

−t
eσs
ˆ

r≤|x|≤
√

2r

(
|∇u(s)|2 + |v(s)|2

)
dxds

≤Ct e−σt
[
‖(u0,v0)‖2 +‖∇u0‖2 +

ˆ
Rn
(F(x,u0)+φ3(x))dx

]
+

1
σ

(
C6 +

1
β −δ

‖g‖2
)

≤Ct e−σt
[
‖(u0,v0)‖2 +‖∇u0‖2 +‖φ3‖L1 +

1
C2

(C1‖u0‖p
Lp +‖u0‖2 +‖φ1‖2 +‖φ2‖L1)

]
+

1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

1
β −δ

‖g‖2
)
≤M, for all t ≥ T2,

(33)

where the constant

M = 1+
1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

1
β −δ

‖g‖2
)
.

Now assemble all these estimates and substitute (31) and (33) into (30). It shows that for any bounded set B and
any 0 < η ≤ 1, as long as r >V = max{K0,K1} and t > max{T1,T2}, one has

ˆ
|x|≥
√

2r
(|v(t)|2 +(α +δ

2−βδ )|u(t)|2 + |∇u(t)|2 + |u(t)|p)dx

≤
ˆ
Rn

ρ

(
|x|2

r2

)(
|v(t)|2 +(α +δ

2−βδ )|u(t)|2 + |∇u(t)|2
)

dx

+
2

C3

ˆ
Rn

ρ

(
|x|2

r2

)
(F(x,u(t)+φ3(x))dx≤

(
1+

1
C3

)
(2+M)η .

(34)

By (9), the above inequality (34) demonstrates that for any bounded B⊂ E it holds that

9Φ(t,B)9E(Rn\BR) = max
g0∈B
‖Φ(t,g0)‖E(Rn\BR)

≤
[(

1+
1

C3

)
(2+M)η

]1/2

+

[(
1+

1
C3

)
(2+M)η

]1/p

,
(35)

where R =
√

2r. (35) implies that (20) is satisfied as stated in this theorem just by renaming r to be R and η to
be ((1+1/C3)(2+M)η)1/2 +((1+1/C3)(2+M)η)1/p. The proof is completed.

4 Asymptotic Compactness in H1(Rn)×L2(Rn)

In this section, we shall prove the asymptotic compactness in the space H1(Rn)× L2(Rn) of the solution
semiflow Φ associated with the nonlinear damped wave equation (4).

Lemma 5. The following statements hold for Lp(Rn).
1) For 1 ≤ p < ∞, let {ψm} be a sequence and ψ be a function in Lp(Rn) such that ‖ψm−ψ‖Lp → 0 as

m→ ∞. Then there exists a subsequence {ψmk} such that

lim
k→∞

ψmk(x) = ψ(x), a.e. on Rn.

2) For 1 < p < ∞, if a sequence {ψm} and a function ψ in Lp(Rn) satisfy the following two conditions:

lim
m→∞

ψm(x) = ψ(x), a.e. on Rn and {ψm} is bounded in Lp(Rn), (36)
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then ψm→ ψ weakly in Lp(Rn), as m→ ∞.
3) For 1 < p < ∞, if a sequence {ψm} and a function ψ in Lp(Rn) satisfy the following two conditions:

lim
m→∞

ψm(x) = ψ(x), a.e. on Rn and lim
m→∞
‖ψm‖Lp = ‖ψ‖Lp , (37)

then limm→∞ ‖ψm−ψ‖Lp = 0.

Proof. Since Rn with the Lebesgue measure is a σ -finite measure space, the first item is a standard result in Real
and Functional Analysis.

For the second item, since Lp(Rn) is a reflexive Banach space for 1 < p < ∞, the boundedness of {ψm} in
Lp(Rn) implies that there is ϕ ∈ Lp(Rn) such that ψm → ϕ weakly as m→ ∞. By Mazur’s lemma, this weak
convergence implies there exists a sequence {ζm} ⊂ Lp(Rn) such that

ζm ∈ conv{ψm,ψm+1, · · ·} and ζm→ ϕ strongly in Lp(Rn). (38)

From the condition ψm→ ψ a.e. and ζm ∈ conv(
⋃

∞
i=m ψi), it follows that

ζm→ ψ a.e. in Rn. (39)

On the other hand, by the first statement in this lemma, the strong convergence in (38) implies that there exists a
subsequence {ζmk} such that ζmk → ϕ a.e. as k→∞. Therefore, (39) leads to ψ = ϕ a.e. on Rn so that ψm→ ψ

weakly as m→ ∞. The third item is a known result in Functional Analysis, cf. [5, Chapter 4]. Thus the proof is
completed.

Let us define the following energy functional on E: for (u,v) ∈ E,

Γ(u,v) = ‖v‖2 +
(
α +δ

2−βδ
)
‖u‖2 +‖∇u‖2 +2

ˆ
Rn
(F(x,u)+φ3(x))dx. (40)

Compare (9) and (40), we see that

Γ(u,v)≤ ‖(u,v)‖2
E +2

ˆ
Rn
(F(x,u)+φ3(x))dx. (41)

Lemma 6. For every bounded set B⊂ E and any integer k > 0, there exists a constant M1 = M1(B,k)> 0 such
that for all m > M1 one has tm > k with the property that

Γ(u(tm− t,u0,m),v(tm− t,v0,m))≤ R+1+
1
σ

[
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

]
(42)

for all t ∈ [0,k] and (u0,m,v0,m) ∈ B, where the constant R is the same as in (19).

Proof. Integrate the inequality (14) over the time interval [0, t] ⊂ [0,k], where δ ≥ σ by (13). Similar to (18),
there exists M1 = M1(B,k)> 0 such that for all m > M1 one has tm > k and

Γ(u(tm− t,u0,m),v(tm− t,v0,m))≤ e−σ(k−t)
Γ(u(tm− k,u0,m),v(tm− k,v0,m))

+

ˆ k

t
e−σ(s−t)

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

)
ds

≤R+1+
1
σ

[
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

]
, t ∈ [0,k].

(43)

Therefore, (42) is proved.
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Theorem 7. For every bounded set B and for any sequences tm→ ∞ and g0,m = (u0,m,v0,m) ∈ B, the sequence
{Φ(tm,g0,m)}∞

m=1 has a strongly convergent subsequence in H1(Rn)×L2(Rn), where Φ is the solution semiflow
generated by the nonlinear damped wave equation (4).

Proof. The proof goes through the following steps.
STEP 1. By Lemma 3, there is a constant M2 = M2(B)> 0 such that for all m≥M2 and g0,m ∈ B, we have

‖Φ(tm, g0,m)‖E ≤ R+1 (44)

where R > 0 is given by (19). Then there is (ũ, ṽ) ∈ E such that, up to a subsequence and relabeled as the same,

Φ(tm, g0,m)−→ (ũ, ṽ) weakly in E and

Φ(tm, g0,m)−→ (ũ, ṽ) weakly in H1(Rn)×L2(Rn).
(45)

Since E is a reflexive and separable Banach space, the weak lower-semicontinuity of the E-norm and of the
norm of H1(Rn)×L2(Rn) as well implies that

liminf
m→∞

‖Φ(tm, g0,m)‖E ≥ ‖(ũ, ṽ)‖E ,

liminf
m→∞

‖Φ(tm, g0,m)‖H1×L2 ≥ ‖(ũ, ṽ)‖H1×L2 .
(46)

Next we want to prove that in the Hilbert space H1(Rn)×L2(Rn),

Φ(tm, g0,m)−→ (ũ, ṽ) strongly. (47)

It suffices to show that

limsup
m→∞

‖Φ(tm, g0,m)‖H1×L2 ≤ ‖(ũ, ṽ)‖H1×L2 . (48)

If so, then (46) and (48) will lead to limm→∞ ‖Φ(tm,g0,m)‖H1×L2 = ‖(ũ, ṽ)‖H1×L2 . By the item 3 of Lemma 5, we
shall obtain (47).

STEP 2. By Lemma 6 and (7), there exists a constant C > 0 such that, for any given integer k > 0 and all
m≥M1(B,k), one has tm > k and

‖(u(tm− t,u0,m),v(tm− t,v0,m))‖E

≤C
[

R+1+
1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

)]1/2

+C
[

R+1+
1
σ

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

)]1/p

, t ∈ [0,k],

(49)

for any (u0,m,v0,m) ∈ B. In particular, (49) is satisfied for t = k.
According to Banach-Alaoglu theorem, there exists a sequence {ũk, ṽk}∞

k=1 in the space E and subsequences
of {tm}∞

m=1 and {(u0,m,v0,m)}∞
m=1 again relabeled as the same, such that for every integer k ≥ 1,

(u(tm− k,u0,m),v(tm− k,v0,m))−→ (ũk, ṽk) weakly in E, (50)

as m→ ∞, which can be extracted through a diagonal selection procedure as in Real Analysis.
By the weakly continuous dependence on the initial data of the weak solutions stated in Lemma 2, here the

weak convergence (50) together with the concatenation

(u(tm,u0,m), v(tm,v0,m)) = (u(k,u(tm− k,u0,m)), v(k,v(tm− k,v0,m))) (51)
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implies that for all integers k ≥ 1, when m→ ∞,

(u(tm,u0,m),v(tm,v0,m))−→ (u(k, ũk),v(k, ṽk)) weakly in E. (52)

Thus (45) and (52) validate the following equality that for all positive integers k,

(ũ, ṽ) = (u(k, ũk),v(k, ṽk)). (53)

By the similar argument from (11) to(12), the weak solutions (u,v) of (4) satisfy

d
dt

Γ(u(t,u0),v(t,v0))+2σ Γ(u(t,u0),v(t,v0))≤ G(u(t,u0),v(t,v0)), (54)

where

G(u,v) =−2(β −δ −σ)‖v‖2−2(δ −σ)
(
α +δ

2−βδ
)
‖u‖2

−2(δ −σ)‖∇u‖2 +4σ

ˆ
Rn
(F(x,u)+φ3(x))dx−2δ 〈 f (x,u),u〉+2〈g,v〉.

(55)

From (53) and (54), for any integer k ≥ 1 we have

Γ(ũ, ṽ)≤ e−2σk
Γ(ũk, ṽk)+

ˆ k

0
e−2σξ G(u(ξ , ũk),v(ξ , ṽk))dξ . (56)

STEP 3. On the other hand, from the concatenation (51) and the inequality (54), we obtain

Γ(u(tm, u0,m),v(tm, v0,m))≤ e−2σk
Γ(u(tm− k, u0,m),v(tm− k, v0,m))

−2(β −δ −σ)

ˆ k

0
e−2σξ‖v(ξ ,v(tm− k, v0,m))‖2d ξ

−2(δ −σ)
(
α +δ

2−βδ
)ˆ k

0
e−2σξ‖u(ξ ,u(tm− k, u0,m))‖2dξ

−2(δ −σ)

ˆ k

0
e−2σξ‖∇u(ξ ,u(tm− k, u0,m))‖2 dξ

+4σ

ˆ k

0
e−2σξ

ˆ
Rn
(F(x,u(ξ ,u(tm− k, u0,m)))+φ3(x))dxdξ

−2δ

ˆ k

0
e−2σξ

ˆ
Rn

f (x,u(ξ ,u(tm− k, u0,m)))u(ξ ,u(tm− k, u0,m))dxdξ

+2
ˆ k

0
e−2σξ

ˆ
Rn

g(x)v(ξ ,v(tm− k, v0,m))dxdξ .

(57)

Below we treat all these terms on the right-hand side of the inequality (57).
1) For the first term on the right-hand side of (57), by (42) in Lemma 6, for all m≥M1(B,k) we have

e−2σk
Γ(u(tm− k,u0,m),v(tm− k,v0,m))

≤e−2σk
(

R+1+
1
σ

e
1
2 σk
[

2δ (C2‖φ3‖L1 +‖φ2‖L1)+
‖g‖2

β −δ

])
≤e−σk

(
R+1+

1
σ

[
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

])
.

(58)
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2) For the second term on the right-hand side of (57), by (50) and the weakly continuous dependence of
solutions on the initial data stated in Lemma 2, we find that for any ξ ∈ [0,k], when m→ ∞,

v(ξ , v(tm− k, v0,m))−→ v(ξ , ṽk) weakly in L2(Rn),

which implies that for all ξ ∈ [0,k],

liminf
m→∞

‖v(ξ , v(tm− k, v0,m))‖2 ≥ ‖v(ξ , ṽk)‖2. (59)

By (59) and Fatou’s lemma we obtain

liminf
m→∞

ˆ k

0
e−2σξ‖v(ξ , v(tm− k, v0,m))‖2 dξ

≥
ˆ k

0
e−2σξ liminf

m→∞
‖v(ξ , v(tm− k, v0,m))‖2 dξ ≥

ˆ k

0
e−2σξ‖v(ξ , ṽk)‖2 dξ .

(60)

Since (10) and (13) implies β −δ −σ ≥ β −2δ > 0, (60) leads to

limsup
m→∞

−2(β −δ −σ)

ˆ k

0
e−2σξ‖v(ξ , v(tm− k, v0,m))‖2 dξ

= −2(β −δ −σ) liminf
m→∞

ˆ k

0
e−2σξ‖v(ξ , v(tm− k, v0,m))‖2 dξ

≤ −2(β −δ −σ)

ˆ k

0
e−2σξ‖v(ξ , ṽk)‖2 dξ .

(61)

Similarly for the third and fourth terms, by (50) and Fatou’s lemma we obtain

limsup
m→∞

−2(δ −σ)
(
α +δ

2−βδ
)ˆ k

0
e−2σξ‖u(ξ , u(tm− k, u0,m))‖2 dξ

≤−2(δ −σ)
(
α +δ

2−βδ
)ˆ k

0
e−2σξ‖u(ξ , ũk)‖2 dξ ,

limsup
m→∞

−2(δ −σ)

ˆ k

0
e−2σξ‖∇u(ξ , u(tm− k, u0,m))‖2 dξ

≤−2(δ −σ)

ˆ k

0
e−2σξ‖∇u(ξ , ũk)‖2 dξ .

(62)

3) For the fifth term on the right-hand side of (57), we have∣∣∣∣ˆ k

0
e−2σξ

ˆ
Rn

(F(x,u(ξ ,u(tm− k,u0,m)))−F(x,u(ξ , ũk)))dxdξ

∣∣∣∣
≤
ˆ k

0
e−2σξ

ˆ
|x|>r
|F(x,u(ξ ,u(tm− k,u0,m)))−F(x,u(ξ , ũk))|dxdξ

+

ˆ k

0
e−2σξ

ˆ
|x|≤r
|F(x,u(ξ ,u(tm− k,u0,m)))−F(x,u(ξ , ũk))|dxdξ .

(63)

A) For any given η > 0, by the proof of Lemma 4 adapted to the time interval [k,∞), there exist M3 =
M3(B,η)> M2 and K = K(B,η)≥ 1 such that for ξ ∈ [0,k], whenever r > K and m > M3, one has

ˆ
|x|>r

(
|u(tm−ξ ,u0,m)|2 + |u(tm−ξ ,u0,m)|p + |φ1|2 + |φ2|+ |φ3|

)
dx < η . (64)
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In view of (5) and (6), there is a constant L1 > 0 such that for any ξ ∈ [0,k] one has
ˆ
|x|>r
|F(x,u(tm−ξ ,u0,m))|dx

≤
ˆ
|x|>r

L1(|u(tm−ξ ,u0,m)|2 + |u(tm−ξ ,u0,m)|p + |φ1|2 + |φ2|+ |φ3|)dx < L1η ,

for all r > K and m > M3.
B) Since (50) shows that

ũk = (weak) lim
m→∞

u(tm− k,u0,m) in L2(Rn)∩Lp(Rn),

by the weakly continuous dependence of solutions on intial data stated in Lemma 2, by the weak lower-
semicontinuity of the L2 and Lp norms, it yields from (64) that

ˆ k

0
e−2σξ

ˆ
|x|>r
|F(x, u(k−ξ , ũk))|dxdξ

≤
ˆ k

0
e−2σξ

ˆ
|x|>r

L1(|u(k−ξ , ũk)|2 + |u(k−ξ , ũk)|p + |φ1|2 + |φ2|+ |φ3|)dxdξ

=

ˆ k

0
e−2σξ L1

(
‖u(k−ξ , ũk)‖2

L2(Rn\Br)
+‖u(k−ξ , ũk)‖p

Lp(Rn\Br)

)
dξ

+

ˆ k

0
e−2σξ L1

ˆ
|x|>r

(|φ1|2 + |φ2|+ |φ3|)dxdξ

≤
ˆ k

0
e−2σξ L1

[
liminf

m→∞
‖u(k−ξ , ũk)‖2

L2(Rn\Br)
+ liminf

m→∞
‖u(k−ξ , ũk)‖p

Lp(Rn\Br)

]
dξ

+

ˆ k

0
e−2σξ L1

ˆ
|x|>r

(|φ1|2 + |φ2|+ |φ3|)dxdξ ≤ L1

2σ
η , for r > K, m > M3.

The above two inequalities show that there exists a constant L2 = L1(1+1/(2σ))> 0 such that the first term on
the right-hand side of (63) satisfies

ˆ k

0
e−2σξ

ˆ
|x|>r
|F(x,u(k−ξ ,u(tm− k,u0,m)))−F(x,u(k−ξ , ũk))|dxdξ

≤
ˆ k

0
e−2σξ

ˆ
|x|>r

(|F(x,u(tm−ξ ,u0,m))|+ |F(x,u(k−ξ , ũk))|)dxdξ ≤ L2η ,

(65)

for all r > K and m > M3.
C) For the second term on the right-hand side of (63), by (50) we have

u(k−ξ , u(tm− k,u0,m))−→ u(k−ξ , ũk) weakly in H1(Br)∩Lp(Br).

Since H1(Br) is compactly embedded in L2(Br), it follows that for any ξ ∈ [0,k],

u(k−ξ , u(tm− k,u0,m))−→ u(k−ξ , ũk) strongly in L2(Br). (66)

Then by the first item of Lemma 5 and the continuity of F(x,u),

F(x,u(k−ξ , u(tm− k,u0,m)))−→ F(x, u(k−ξ , ũk)) in Br, as m→ ∞. (67)
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On the other hand, by the Standing Assumption and Lemma 6, we have the following uniform bound that there
is a constant L3 > 0 such thatˆ

|x|<r
|F(x,u(k−ξ , u(tm− k,u0,m)))| dx≤ L1

(
‖u(k−ξ , u(tm− k,u0,m))‖2

L2(Br)

+‖u(k−ξ , u(tm− k,u0,m))‖p
Lp(Br)

+‖φ1‖2 +‖φ2‖L1(Rn)+‖φ3‖L1(Rn)

)
≤L3

[
R+1+

1
σ

e
1
2 σk
(

2δ (C2‖φ3‖L1 +‖φ2‖L1)+
‖g‖2

β −δ

)
+‖φ1‖2 +‖φ2‖L1 +‖φ3‖L1

] (68)

for any ξ ∈ [0,k] and m > M1. By the second item of Lemma 6, it follows from (67) and (68) that

F(x, u(k−ξ , u(tm− k,u0,m)))−→ F(x, u(k−ξ , ũk)) weakly in L1(Br),

as m→ ∞. Consequently, when m→ ∞,
ˆ
|x|<r

F(x, u(k−ξ , u(tm− k,u0,m)))dx−→
ˆ
|x|<r

F(x, u(k−ξ , ũk))dx. (69)

Furthermore, (68) shows that∣∣∣∣ˆ
|x|<r

[F(x, u(k−ξ , u(tm− k,u0,m)))−F(x, u(k−ξ , ũk))]dx
∣∣∣∣

≤L3

[
R+1+

1
σ

e
1
2 σk
(

2δ (C2‖φ3‖L1 +‖φ2‖L1)+
‖g‖2

β −δ

)
+‖φ1‖2 +‖φ2‖L1 +‖φ3‖L1

]
+‖F(·, u(k−ξ , ũk))‖L1(Rn).

(70)

According to Lebesgue dominated convergence theorem, (69) and (70) imply that for every integer k ≥ 1 and
any r ≥ K,

lim
m→∞

ˆ k

0
e−2σξ

ˆ
|x|<r

F(x, u(k−ξ , u(tm− k, u0,m)))dxdξ

=

ˆ k

0
e−2σξ

ˆ
|x|<r

F(x, u(k−ξ , ũk))dxdξ .

(71)

Put together (63), (65) and (71). Then we obtain

lim
m→∞

ˆ k

0
e−2σξ

ˆ
Rn

(F(x, u(k−ξ , u(tm− k, u0,m)))+φ3(x)) dxdξ

=

ˆ k

0
e−2σξ

ˆ
Rn

(F(x, u(k−ξ , ũk))+φ3(x)) dxdξ .

(72)

4) By an argument similar to the proof of (72), we can also prove the convergence of the sixth term on the
right-hand side of (57),

lim
m→∞

ˆ k

0
e−2σξ

ˆ
Rn

f (x, u(k−ξ , u(tm− k,u0,m)))u(k−ξ , u(tm− k,u0,m))dxdξ

=

ˆ k

0
e−2σξ

ˆ
Rn

f (x, u(k−ξ , ũk))u(k−ξ , ũk)dxdξ ,

lim
m→∞

ˆ k

0
e−2σξ

ˆ
Rn

g(x)v(k−ξ , v(tm− k, v0,m))dxdξ =

ˆ k

0
e−2σξ

ˆ
Rn

g(x)v(k−ξ , ṽk)dxdξ .
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STEP 4. Take the limit of (57) as m→ ∞ and assemble together the results shown above in the items 1)
through 5) of Step 3. Then we get

limsup
m→∞

Γ(u(tm,u0,m), v(tm,v0,m))≤ e−σk
(

R+1+
1
σ

[
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

])
−2(β −δ −σ)

ˆ k

0
e−2σξ‖v(k−ξ , ṽk)‖2 dξ −2(δ −σ)

(
α +δ

2−βδ
)ˆ k

0
e−2σξ‖u(k−ξ , ũk)‖2 dξ

−2(δ −σ)

ˆ k

0
e−2σξ‖∇u(k−ξ , ũk)‖2 dξ +4σ

ˆ k

0
e−2σξ

ˆ
Rn
(F(x, u(k−ξ , ũk))+φ3(x))dxdξ

+2
ˆ k

0
e−2σξ

ˆ
Rn

[g(x)v(k−ξ , ṽk)−δ f (x, u(k−ξ , ũk))u(k−ξ , ũk)]dxdξ .

(73)

From (56) and (73) it follows that

limsup
m→∞

Γ(u(tm,u0,m), v(tm,v0,m))

≤e−σk
(

R+1+
1
σ

[
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

])
+

ˆ k

0
e−2σξ G(u(k−ξ , ũk), v(k−ξ , ṽk))dξ

=e−σk
(

R+1+
1
σ

[
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

])
+Γ(ũ, ṽ)− e−2σk

Γ(ũk, ṽk)

≤e−σk
(

R+1+
1
σ

[
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2

β −δ

])
+Γ(ũ, ṽ).

Take limit k→ ∞ of the above inequality to obtain

limsup
m→∞

Γ(u(tm,u0,m),v(tm,v0,m))≤ Γ(ũ, ṽ). (74)

On the other hand, from (53), (67) and (68) we have

lim
m→∞

ˆ
Rn

F(x, u(tm,u0,m))dx =
ˆ
Rn

F(x, ũ)dx, (75)

which along with (74) shows that

limsup
m→∞

(
‖v(tm,v0,m)‖2 +(α +δ

2−βδ )‖u(tm,u0,m)‖2 +‖∇u(tm,u0,m)‖2)
≤ ‖ṽ‖2 +(α +δ

2−βδ )‖ũ‖2 +‖∇ũ‖2.
(76)

STEP 5. Note that the norm of H1(Rn)×L2(Rn) is equivalent to

‖(u,v)‖Π

def
= Γ(u,v)−2

ˆ
Rn
(F(x,u)+φ3(x))dx = ‖v‖2 +(α +δ

2−βδ )‖u‖2 +‖∇u‖2.

Same as the second inequality in (46), from the weak convergence shown by (45), for any sequence {g0,m =
(u0,m,v0,m)}∞

m=1 ⊂ B, we have
liminf

m→∞
‖Φ(tm, g0,m)‖Π ≥ ‖(ũ, ṽ)‖Π.

Meanwhile, (76) implies that
limsup

m→∞

‖Φ(tm, g0,m)‖Π ≤ ‖(ũ, ṽ)‖Π.

Thus we have proved
lim

m→∞
‖Φ(tm, g0,m)‖Π = ‖(ũ, ṽ)‖Π. (77)
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Finally, for the Hilbert space H1(Rn)×L2(Rn), the weak convergence (45) and the norm convergence (77) imply
the strong convergence. Therefore, up to finite steps of subsequence selections (always relabeled as the same),
we reach the conclusion that

lim
m→∞

Φ(tm, g0,m) = (ũ, ṽ) strongly in H1(Rn)×L2(Rn).

Thus the proof is completed.

5 The Existence of Random Attractor

In this section we shall first prove an instrumental convergence theorem in the space Lp(X ,M ,µ) of Vitali
type. It will pave the way to prove asymptotic compactness of the first component of the semiflow Φ in the space
Lp(Rn) for any exponent 1≤ p≤ n+2

n−2 . This is the crucial and final step to accomplish the proof of the existence
of a global attractor for this dynamical system Φ for the nonlinear damped wave equation (1).

Theorem 8. Let (X ,M ,µ) be a σ -finite measure space and assume that a sequence { fm}∞
m=1 ⊂ Lp(X ,M ,µ)

with 1≤ p < ∞ satisfies
lim

m→∞
fm(x) = f (x), a.e. (78)

Then f ∈ Lp(X ,M ,µ) and
lim

m→∞
‖ fm− f‖Lp(X ,M ,µ) = 0 (79)

if and only if the following two conditions are satisfied:
(a) For any given ε > 0, there exists a set Aε ∈M such that µ(Aε)< ∞ and

ˆ
X\Aε

| fm(x)|p dµ < ε, for all m≥ 1. (80)

(b) The absolutely continuous property of the Lp integrals is satisfied uniformly, i.e.

lim
µ(Y )→0

ˆ
Y
| fm(x)|p dµ = 0, uniformly for all m≥ 1. (81)

Proof. First we prove the necessity.
Statement (a): Under the condition (79), for an arbitrarily given ε > 0 there exists an integer N = N(ε)≥ 1

such that
‖ fm− f‖p

Lp(X ,M ,µ) <
ε

2p , for all m > N. (82)

Since f ∈ Lp(X ,M ,µ), there exist measurable sets Bε and Sε both of finite measure, such that
ˆ

X\Bε

| f (x)|p dµ <
ε

2p and
ˆ

X\Sε

| fm(x)|p dµ < ε, for m = 1, · · · , N. (83)

Put Aε = Bε ∪Sε . Then µ(Aε)< ∞ and we have
ˆ

X\Aε

| fm(x)|p dµ =

ˆ
X\Aε

(| fm(x)− f (x)|+ | f (x)|)p dµ

≤2p−1
(ˆ

X
| fm(x)− f (x)|p dµ +

ˆ
X\Bε

| f (x)|p dµ

)
<

ε

2
+

ε

2
= ε, for m > N.

Besides, from the second inequality in (83) it follows thatˆ
X\Aε

| fm(x)|p dµ ≤
ˆ

X\Sε

| fm(x)|p dµ < ε, for m = 1, · · · , N.
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Therefore, the statement (a) is valid.
Statement (b): By the absolutely continuous property of Lebesgue integral on a σ -finite measure space, for

any given ε > 0, there exists δ0 = δ0(ε)> 0 such that whenever µ(Y )< δ0 one hasˆ
Y
| f (x)|p dµ <

ε

2p and
ˆ

Y
| fm(x)|p dµ < ε, for m = 1, · · · , N, (84)

where N = N(ε) is the same integer in (82). Then for any measurable set Y ⊂ X with µ(Y )< δ0 one also hasˆ
Y
| fm(x)|p dµ ≤ 2p−1

(ˆ
X
| fm(x)− f (x)|p dµ +

ˆ
Y
| f (x)|p dµ

)
< ε, for m > N.

Thus the statement (b) is valid.
Next we prove the sufficiency. Suppose the two conditions (a) and (b) are satisfied. First of all, by the

condition (a) and Fatou’s Lemma, for an arbitrarily given ε > 0 there exists a set Aε of finite measure with

sup
m≥1

ˆ
X\Aε

| fm(x)|p dµ < ε,

which implies that the limit function f in the assumption (78) satisfiesˆ
X\Aε

| f (x)|p dµ ≤ liminf
m→∞

ˆ
X\Aε

| fm(x)|p dµ < ε. (85)

Hence it follows that

f ∈ Lp(X\Aε) and ‖ fm− f‖Lp(X\Aε ) < 2ε
1/p, for all m≥ 1. (86)

Therefore, the proof of f ∈ Lp(X ,M ,µ) and (79) is reduced to proving that

f ∈ Lp(Y ) and lim
m→∞
‖ fm− f‖Lp(Y ) = 0, (87)

for any given measurable set Y ⊂ X with µ(Y )< ∞.
By the condition (b), for any given ε > 0, there exists δ1 = δ1(ε)> 0 such that for any S⊂ X with µ(S)< δ1

one has ˆ
S
| fm(x)|p dµ < ε

p, uniformly in m≥ 1. (88)

Consequently, by Fatou’s lemma,ˆ
S
| f (x)|p dµ ≤ liminf

m→∞

ˆ
S
| fm(x)|p dµ < ε

p. (89)

By Egorov’s theorem on Lebesgue integral over such a set Y of finite measure in the space (X ,M ,µ), there
exists a measurable subset B⊂ Y with µ(Y\B)< δ1 such that

lim
m→∞

fm(x) = f (x), uniformly a.e. on B,

so that there exists an integer m0 = m0(ε)≥ 1 such that

‖ fm− f‖Lp(B) < ε, for all m > m0. (90)

Combining (88), (89) and (90), we get

‖ fm− f‖Lp(Y ) ≤ ‖ fm‖Lp(Y\B)+‖ f‖Lp(Y\B)+‖ fm− f‖Lp(B) < 3ε, for m > m0.

Therefore, (87) is proved. The proof is completed.

Finally we present and prove the main result of this work on the existence of a global attractor for this
semiflow Φ generated by the nonlinear damped wave equation (1) on the product Banach space with critical
exponent and arbitrary space dimension.
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Theorem 9. Under the Standing Assumption, the semiflow Φ generated by the nonlinear damped wave equation
(1) in the converted problem (4) on the space E = (H1(Rn)∩Lp(Rn))×L2(Rn) has a global attractor A in E.

Proof. Lemma 3 shows that there exists an absorbing set, the K = BE(0,R) in the space E for the semiflow Φ. It
suffices to prove that the semiflow Φ is asymptotically compact in E.

(1) Theorem 7 shows that for any given bounded set B ⊂ E and any sequences tm → ∞ and {g0,m =
(u0,m,v0,m)} ⊂ B, the sequence {Φ(tm,g0,m)}∞

m=1 has a convergent subsequence, which is relabeled by the same,
such that

Φ(tm, g0,m)−→ (ũ, ṽ) strongly in H1(Rn)×L2(Rn), (91)

and consequently
Pu Φ(tm, g0,m)−→ ũ strongly in L2(Rn). (92)

Here Pu : (u,v) 7→ u is the component projection.
(2) Applying the first item in Lemma 5 to the space L2(Rn), it follows from (91) that there exists a subse-

quence {Φ(tmk , g0,mk)}∞
k=1 of {Φ(tm, g0,m)}∞

m=1 such that

lim
k→∞

Φ(tmk , g0,mk)(x) = (ũ(x), ṽ(x)), a.e. in Rn. (93)

Hence we have
lim
k→∞

PuΦ(tmk , g0,mk)(x) = ũ(x), a.e. in Rn. (94)

Therefore, the assumption (78) in Theorem 8 is satisfied by the sequence of functions {PuΦ(tmk , g0,mk)(x)}∞
k=1

in Lp(Rn).
(3) By Lemma 4, for any ε > 0, there exists an integer k0 = k0(B,ε)> 0 and V =V (ε)≥ 1 such that for all

k > k0 one has ˆ
Rn\BV

|PuΦ(tmk , g0,mk)(x)|
p dx≤ ‖Φ(tmk , g0,mk)‖

p
E(Rn\BV )

< ε, (95)

for any g0,mk ∈B, where BV is the ball centered at the origin with radius V in Rn. Then there exists V0 =V0(ε)> 0
such that ˆ

Rn\BV0

|PuΦ(tmk , g0,mk)(x)|
p dx < ε, for k = 1, · · · ,k0. (96)

Thus (95) and (96) confirm that with Aε = Bmax{V,V0} the condition (a) in Theorem 8 is satisfied by the sequence
of functions {PuΦ(tmk ,g0,mk)(x)}∞

k=1 in Lp(Rn).
(4) Finally we prove that the uniform absolutely continuous condition (b) of Theorem 8 is also satisfied by

the sequence of functions {PuΦ(tmk ,g0,mk)(x)}∞
k=1 in Lp(Rn).

According to the Standing Assumption, for any measurable set Y ⊂ Rn, we have

C3

ˆ
Y
|u|p dx≤

ˆ
Y
(F(x,u)+φ3(x))dx≤ ΓY (u,v), for (u,v) ∈ E,

where ΓY (u,v) is analogous to (40) and defined by

ΓY (u,v) = ‖v‖2
L2(Y )+

(
α +δ

2−βδ
)
‖u‖2

L2(Y )+‖∇u‖2
L2(Y )+2

ˆ
Y
(F(x,u)+φ3(x))dx. (97)

We can integrate the inequality (14) over the time interval [0, tm] to get

ΓY (u(tm,u0,m), v(tm,v0,m))

≤e−σtm ΓY (u0,m,v0,m)+

ˆ tm

0
e−σt

(
2δ (C2‖φ3‖L1 +‖φ2‖L1)+

‖g‖2
L2(Y )

β −δ

)
dt.

(98)
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Substitute the expression of ΓY (u0,m,v0,m) with (u0,m,v0,m) ∈ B into the inequality (98). Since (5)-(6) yield
ˆ

Y
(F(x,u)+φ3(x))dx≤ 1

C2

[
C1‖u‖p

Lp(Y )+‖u‖
2
L2(Y )+‖φ1‖2

L2(Y )+‖φ2‖L1(Y )

]
,

for any g0,m = (u0,m,v0,m) ∈ B, we get

C3

ˆ
Y
|u(tm,u0,m)|p dx≤ ΓY (u(tm,u0,m),v(tm,v0,m))

≤e−σtm
[
‖v0,m‖2

L2(Y )+(α +δ
2−βδ )‖u0,m‖2

L2(Y )+‖∇u0,m‖2
L2(Y )

]
+ e−σtm 1

C2

[
C1‖u0,m‖p

Lp(Y )+‖u0,m‖2
L2(Y )+‖φ1‖2

L2(Y )+‖φ2‖L1(Y )

]
+2δC2

ˆ tm

0
e−σt

(
‖φ1‖2

L2(Y )+‖φ3‖L1(Y )

)
dt +
ˆ tm

0

e−σt

β −δ
‖g‖2

L2(Y ) dt.

(99)

Due to the absolute continuity of the respective Lebesgue integrals of the functions φ1(x),φ2(x),φ3(x) and g
involved in the above inequality (99), for an arbitrarily given η > 0, there exists µ0 = µ0(η) > 0 such that for
any measurable set Y ⊂ Rn with µ(Y )< µ0 one has

e−σtm 1
C2

(
‖φ1‖2

L2(Y )+‖φ2‖L1(Y )

)
+2δC2

ˆ tm

0
e−σt

(
‖φ1‖2

L2(Y )+‖φ3‖L1(Y )

)
dt +
ˆ tm

0

e−σt

β −δ
‖g‖2

L2(Y ) dt

≤ 1
C2

(
‖φ1‖2

L2(Y )+‖φ2‖L1(Y )

)
+

2δ

σ
C2

(
‖φ1‖2

L2(Y )+‖φ3‖L1(Y )

)
+

1
σ(β −δ )

‖g‖2
L2(Y ) <

η

2
.

(100)

Moreover, since B⊂ E is a bounded set, there exists a constant Ĉ > 0 such that

e−σtm
[
‖v0,m‖2

L2(Y )+(α +δ
2−βδ )‖u0,m‖2

L2(Y )+‖∇u0,m‖2
L2(Y )

]
+

1
C2

e−σtm
[
C1‖u0,m‖p

Lp(Y )+‖u0,m‖2
L2(Y )

]
≤ e−σtmĈ

(
‖B‖2

E(Y )+‖B‖
p
E(Y )

)
,

where ‖B‖E(Y ) = maxg0∈B(θ−tm ω) ‖g0 ζY‖E with ζY being the characteristic function for the set Y . Clearly,

lim
t→∞

e−σt‖B‖E = 0.

For the aforementioned arbitrary η > 0, there exists an integer m0 = m0(B,η)≥ 1 such that

e−σtmĈ
(
‖B‖2

E(Y )+‖B‖
p
E(Y )

)
≤ e−σtmĈ

(
‖B‖2

E +‖B‖p
E

)
<

η

2
(101)

for all m > m0. Then there esists µ1 = µ1(B,m0,η)> 0 such that for any set Y with µ(Y )< µ1 one has

e−σt j Ĉ
(
‖B‖2

E(Y )+‖B‖
p
E(Y )

)
<

η

2
, j = 1, · · · ,m0. (102)

Put together (100), (101) and (102) with (99). It shows that

C3

ˆ
Y
|u(tm, u0,m)|p dx≤ η

2
+

η

2
= η , for all m≥ 1, (103)

whenever a measurable set Y ⊂ Rn satisfies µ(Y )< min{µ0,µ1}. Therefore,

lim
µ(Y )→0

ˆ
Y
|PuΦ(tmk , g0,m)(x)|p dx = 0 uniformly for all k ≥ 1, (104)
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so that the condition (b) of Theorem 8 is also satisfied by the sequence of functions {PuΦ(tmk , g0,mk)(x)}∞
k=1 in

Lp(Rn).
As checked by the above steps (2), (3) and (4) in this proof, all the conditions in Theorem 8 are satisfied by

the sequence of functions {PuΦ(tmk , g0,mk)(x)}∞
k=1 in Lp(Rn). Then we apply Theorem 8 to obtain

lim
k→∞

PuΦ(tmk , g0,mk) = ũ strongly in Lp(Rn). (105)

Finally, combination of (91) and (105) shows that there exists a convergent subsequence {Φ(tmk ,g0,mk)}∞
k=1

of the sequence {Φ(tm,g0,m)}∞
m=1 in the space E = (H1(Rn)∩Lp(Rn))×L2(Rn). Therefore, the semiflow Φ on

the Banach space E is asymptotically compact.
According to Theorem 1, we conclude that there exists a global attractor A in E for this semiflow Φ gener-

ated by the original nonlinear damped wave equation (1). The proof is completed.
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