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Abstract
In this paper we revisit the problem of monotonicity preservation of curves and surfaces and we provide some new proofs
and open problems. In particular, we prove a new formula for the derivation of rational Bézier curves. We also deal with
the rational monotonicity preservation of rational Bézier surfaces and a related conjecture is presented.
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1 Introduction

Recently there have been important advances on the stability and accuracy of algorithms in Computer-Aided
Geometric Design (CAGD), as can be seen in [7,8,10–12]. For the computation of curves and surfaces in CAGD,
another very important topic is shape preservation. One of the simpler shape properties is monotonicity, to which
we devote this paper and for which important problems are still open, as will be shown. These open problem
arise in particular for surface design. In contrast to the variation diminishing properties of Bézier curves, tensor
product Bézier surfaces and Bézier triangles do not satisfy simple extensions of these properties, as shown
in [21]. Several definitions of monotonicity preserving properties for these surfaces were introduced in [16]
and [17], including the simplest of them: axial monotonicity preservation. As for monotonicity preserving
properties for rational Bézier surfaces, it has been proved only the axial monotonicity preservation of surfaces
generated by the tensor product of two univariate rational Bernstein bases (see [5, 6, 16]).
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Monotonicity preservation for curves has been deeply studied and we recall in Section 2 some basic results.
In Section 2, we also include a new formula for the derivation of rational Bézier curves, which has its own
interest and will be used here to give a direct proof of the monotonicity preservation of these curves. Section 3 is
devoted to the monotonicity preservation for surfaces, where there are still open problems, as we had announced
before and we shall comment at the end of the paper. In Subsection 3.1 we consider triangular patches and in
Subsections 3.2 and 3.3 rectangular patches, considering the rational case in Subsection 3.3. In Subsection 3.3
we conjecture that there are no more axially monotonicity preserving surfaces, that is, a rational bilinear patch
is axially monotonicity preserving if and only if it corresponds to the tensor product of two univariate rational
Bernstein bases.

2 Monotonicity preservation of curves

In this section we revisit the main results on the monotonicity preserving representation of curves and we
also include a new formula for the derivation of rational Bézier curves, which has its own interest and further
potential applications in addition to its application in this section.

Let U be a vector space of real functions defined on [a,b] ⊆ R and (u0, . . . ,un) a basis of U . If a control
polygon P0 · · ·Pn is given then we define a parametric curve

γ(t) =
n

∑
i=0

Piui(t), t ∈ [a,b]. (1)

In CAGD the functions u0, . . . ,un are usually nonnegative and ∑
n
i=0 ui(t)= 1 ∀ t ∈ [a,b] (i.e. the system (u0, . . . ,un)

is normalized) and in this case we say that (u0, . . . ,un) is a blending system. The convex hull property is an im-
portant property for curve design: for any control polygon, the curve always lies in the convex hull of the control
polygon. The convex hull property holds if and only if (u0, . . . ,un) is a blending system. In interactive design
we want that the shape of a parametrically defined curve mimics the shape of its control polygon; thus we can
predict or manipulate the shape of the curve by choosing or changing the control polygon suitably. One of the
simplest shape properties is monotonicity, which will be now described.

In the design of curves it is required that the sense of the path tracing of the curve and the polygon agree.
Let us draw the control polygon starting from P0 and finishing in Pn, and the curve γ(t) taking all values of t
starting from a and finishing at b. Let P0, · · · ,Pn be control points in Rk and let γ be the curve defined by (1).
A surjective affine mapping T : Rk → R can be interpreted as the projection of the space onto some line. In
the case that the projection of the control polygon onto this line is increasing, that is, T (P0)≤ ·· · ≤ T (Pn), then
the projection of the corresponding curve γ(t) onto that line T (γ(t)) must also be increasing. So, we see that
this shape preserving property is essentially 1-dimensional. We can see a graphical example of this property in
Figure 1. A system satisfying this property is said to be a monotonicity preserving system. This shape preserving
property can be formalized as follows:

Definition 1. A system of functions (u0, . . . ,un) is monotonicity preserving (resp., strictly monotonicity preserv-
ing) if for any α0 ≤ α1 ≤ . . . ≤ αn (resp., α0 < α1 < .. . < αn) in R, the function ∑

n
i=0 αiui is increasing (resp.,

strictly increasing).

Some properties and applications of monotonicity preserving systems can be seen in [2–4]. A proof of the
following result, which characterizes monotonicity preserving systems, appears in Proposition 2.3 of [4].

Proposition 1. Let (u0, . . . ,un) be a system of functions defined on an interval [a,b]. Let vi := ∑
n
j=i u j for

i ∈ {0,1, . . . ,n}. Then:

1. (u0, . . . ,un) is monotonicity preserving if and only if v0 is a constant function and the functions vi are
increasing for i = 1, . . . ,n.
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Fig. 1 Monotonicity preservation of a representation of curves

2. (u0, . . . ,un) is strictly monotonicity preserving if and only if (u0, . . . ,un) is monotonicity preserving and
the function ∑

n
j=1 v j is strictly increasing.

2.1 Nonrational curves

Bézier curves provide the most usual representation of curves in CAGD. These curves are represented in
terms of Bernstein polynomials. The Bernstein polynomials of degree n are defined by

bn
i (x) =

(
n
i

)
xi(1− x)n−i, x ∈ [0,1],

for all i = 0,1, . . . ,n. The system (bn
0, . . . ,b

n
n) forms a basis of the space of polynomials of degree at most n,

Πn. For more details in Bernstein polynomials and applications see [13] and [14]. The following result is well
known and an argument for its proof can be found in p. 381 of [4].

Proposition 2. The Bernstein basis (bn
0, . . . ,b

n
n) preserves monotonicity strictly.

Bézier curves are polynomial curves. But when working with polynomials some problems arise. For exam-
ple, polynomial curves have a global behavior, that is, if one modifies, even slightly, one of its control points,
then the modification affects to the whole function. In addition, polynomial curves with high degree can present
big oscillations. Piecewise polynomials are the solution to avoid these poblems in diverse fields of mathematics
including CAGD. In this field, the role played by Bernstein polynomials in Béizer cuves is played by B-splines
in the case of piecewise polyomial curves. Let us consider d ∈N0 and a sequence of nondecreasing real numbers
x = (x j)

n+d+1
j=1 with at least d +2 elements. The j-th B-spline of degree d with nodes x is defined by

N j,d,x(x) =
x− x j

x j+d− x j
N j,d−1,x(x)+

x j+d+1− x
x j+d+1− x j+1

N j+1,d−1,x(x), (2)

for all x ∈ R, with

N j,0,x(x) =

{
1, if x j ≤ x < x j+1,

0, in other case.
(3)

For more details in B-splines and applications see [13] and [20]. The following result is also well known and an
argument for its proof can be found in pp. 381–382 of [4].

Proposition 3. The B-spline basis (Ni,d,x)
n
i=1 associated to a sequence of nodes x = (x j)

n+d+1
j=1 preserves mono-

tonicity.
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2.2 Rational curves

In this subsection, we include a new formula for the derivation of rational Bézier curves, which has its own
interest and will be used here to give a direct proof of the monotonicity preservation of these curves.

In CAGD given a system of functions U = (u0, . . . ,un) defined in [a,b], it is usual to construct a rational
system of functions (r0, . . . ,rn) from a sequence of positive weights (wi)

n
i=0 defined by

ri(t) =
wiui(t)

∑
n
i=0 wiui(t)

, t ∈ [a,b]. (4)

The weights act as shape parameters.
Rational Bernstein bases arise taking U = (bn

0, . . . ,b
n
n) in (4) and the corresponding curve is called rational

Bézier curve. It is known, from the results of [4], that rational bases constructed from the Bernstein basis of Πn

are also monotonicity preserving. Now let us prove this result from a new and different approach. We will use
a new formula for the derivative of a rational Bézier curve presented in the folowing result. This formula is not
only important for proving that rational Bernstein bases are monotonicity preserving, but it can be also useful
for the problems studied in [15, 18, 22, 24].

Proposition 4. Let us consider a rational Bézier curve γ given by

γ(t) =
n

∑
i=0

Pi
wi bn

i (t)
∑

n
i=0 wi bn

i (t)
, t ∈ [0,1],

with (wi)0≤i≤n a sequence of positive weights and P0 · · ·Pn the control polygon. Then we have

γ
′(t) = n

∑
n−1
i=0 ∑

n−1
j=i

( j+1−i)n
( j+1)(n−i)

(
∑

j
k=i(∆Pk)

)
bn−1

i (t)bn−1
j (t)

(∑n
i=0 wi bn

i (t))
2 ,

where ∆Pk := Pk+1−Pk.

Proof. Taking into account that

γ(t) =
N(t)
D(t)

,

where N(t) := ∑
n
i=0 Pi wi bn

i (t) and D(t) := ∑
n
i=0 wi bn

i (t), we deduce

γ
′(t) =

N′(t)D(t)−N(t)D′(t)
(D(t))2 . (5)

Since

N′(t) = n
n−1

∑
i=0

∆(Pi wi)bn−1
i (t),

D′(t) = n
n−1

∑
i=0

(∆wi)bn−1
i (t),

we can write (5) in the following way

γ
′(t) = n

∑
n−1
i=0 ∑

n
j=0 [∆(Pi wi)w j−Pj w j (∆wi)] bn−1

i (t)bn
j(t)

(D(t))2 . (6)
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From the previous formula, since ∆(Pi wi) = wi+1 (∆Pi)+(∆wi)Pi, we deduce

γ
′(t)(D(t))2 = n

n−1

∑
i=0

n

∑
j=0

[wi+1 w j (∆Pi)

+(∆wi)w j Pi− (∆wi)w j Pj] bn−1
i (t)bn

j(t).

Applying the univariate de Casteljau algorithm to the right-hand of the previous formula we derive

γ
′(t) (D(t))2 =

n−1

∑
i=0

n−1

∑
j=0

1

∑
k=0

[
wi+1 w j+k (∆Pi) (7)

+(∆wi)w j+k Pi− (∆wi)w j+k Pj+k
]

bn−1
i (t)bn−1

j (t)b1
k(t).

Now, rearranging the right-hand of the previous formula, we have

γ
′(t) (D(t))2 =

n−1

∑
i=0

i−1

∑
j=0

1

∑
k=0

[
wi+1 w j+k (∆Pi)+(∆wi)w j+k Pi

−(∆wi)w j+k Pj+k
]

bn−1
i (t)bn−1

j (t)b1
k(t)

+
n−1

∑
i=0

1

∑
k=0

[wi+1 wi+k (∆Pi)+(∆wi)wi+k Pi

−(∆wi)wi+k Pi+k] bn−1
i (t)bn−1

i (t)b1
k(t)

+
n−1

∑
i=0

n−1

∑
j=i+1

1

∑
k=0

[
wi+1 w j+k (∆Pi)+(∆wi)w j+k Pi

−(∆wi)w j+k Pj+k
]

bn−1
i (t)bn−1

j (t)b1
k(t).

Then we can deduce that the previous expression can be written as

γ
′(t) (D(t))2 =

n−1

∑
i=0

i−1

∑
j=0

1

∑
k=0

[
wi+1 w j+k

i

∑
l= j+k

(∆Pl)

−wi w j+k

i−1

∑
l= j+k

(∆Pl)

]
bn−1

i (t)bn−1
j (t)b1

k(t)

+
n−1

∑
i=0

1

∑
k=0

wi wi+1 (∆Pi)bn−1
i (t)bn−1

i (t)b1
k(t)

+
n−1

∑
i=0

n−1

∑
j=i+1

1

∑
k=0

[
−wi+1 w j+k

j+k−1

∑
l=i+1

(∆Pl)

+wi w j+k

j+k−1

∑
l=i

(∆Pl)

]
bn−1

i (t)bn−1
j (t)b1

k(t).
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By performing an index change and reordering, we have

γ
′(t) (D(t))2 =

n−1

∑
i=0

n−1

∑
j=i+1

1

∑
k=0

[
w j+1 wi+k

j

∑
l=i+k

(∆Pl)

−w j wi+k

j−1

∑
l=i+k

(∆Pl)

]
bn−1

i (t)bn−1
j (t)b1

k(t)

+
n−1

∑
i=0

1

∑
k=0

wi wi+1 (∆Pi)bn−1
i (t)bn−1

i (t)b1
k(t)

+
n−1

∑
i=0

n−1

∑
j=i+1

1

∑
k=0

[
−wi+1 w j+k

j+k−1

∑
l=i+1

(∆Pl)

+wi w j+k

j+k−1

∑
l=i

(∆Pl)

]
bn−1

i (t)bn−1
j (t)b1

k(t).

Extending the sum on k and operating, we deduce that

γ
′(t) (D(t))2 =

n−1

∑
i=0

n−1

∑
j=i+1

[
wi w j+1

j

∑
l=i

(∆Pl)

−wi+1 w j

j−1

∑
l=i+1

(∆Pl)

]
bn−1

i (t)bn−1
j (t)

+
n−1

∑
i=0

wi wi+1 (∆Pi)bn−1
i (t)bn−1

i (t).

From the previous formula we can derive in a straightforward way

γ
′(t) (D(t))2 =

n−1

∑
i=0

n−1

∑
j=i

[
wi w j+1

j

∑
l=i

(∆Pl)

]
bn−1

i (t)bn−1
j (t)

−
n−1

∑
i=0

n−1

∑
j=i+1

[
wi+1 w j+1

j−1

∑
l=i+1

(∆Pl)

]
bn−1

i (t)bn−1
j (t).

Then, arranging the indexes and operating, we have

γ
′(t) (D(t))2 =

n−1

∑
i=0

n−1

∑
j=i

[
wi w j+1

j

∑
l=i

(∆Pl)

]
(bn−1

i (t)bn−1
j (t)

−bn−1
i−1 (t)bn−1

j+1(t)).

So the result follows from the last expression.
As a consequence of the previous proposition we derive the following result.

Corollary 5. A rational Bézier basis (r0, . . . ,rn) defined by

ri(t) =
wibn

i (t)
∑

n
i=0 wibn

i (t)
,

with (wi)0≤i≤n a sequence of positive weights, is strictly monotonicity preserving.
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Proof. Let us consider the function

γ(t) =
n

∑
i=0

αi
wibn

i (t)
∑

n
i=0 wibn

i (t)

with α0 < α1 < · · ·< αn. Differentiating the previous formula we have

γ
′(t) = n

∑
n−1
i=0 ∑

n−1
j=i

( j+1−i)n
( j+1)(n−i)

(
∑

j
k=i(∆αk)

)
bn−1

i (t)bn−1
j (t)

(∑n
i=0 wi bn

i (t))
2 > 0, t ∈ (0,1),

and so γ is strictly increasing. Therefore, the rational basis is strictly monotonicity preserving.

3 Monotonicity preservation of surfaces

In [16] and [17], some generalizations of the monotonicity preservation of curves have been extended for
surfaces defined on rectangular and triangular patches, respectively. Subsection 3.1 considers triangular patches,
and rectangular patches are analyzed in the remaining subsections. In Subsection 3.3 we present a conjecture on
axially monotonicity preserving rational Bézier surfaces defined on rectangular patches.

3.1 Monotonicity preservation of surfaces defined in triangular patches

Any point τ in a plane can be expressed in terms of its barycentric coordinates with respect to any nonde-
generate triangle T in that plane with vertices T0, T1 and T2:

τ =
2

∑
i=0

τi Ti,
2

∑
i=0

τi = 1.

If τ ∈ T , then τi ≥ 0, i = 0,1,2. Let i = (i0, i1, i2) denote a multi-index where i0, i1, i2 ∈ N0 = {0,1,2, . . .} and
let us denote by |i| the sum i0 + i1 + i2.

Given n ≥ 1, let us consider for each i such that |i| = n a function φi : T → R. We shall refer to them
as a system and write (φi)|i|=n. Then, given (ci)|i|=n a sequence of coefficients in R, we can define a function
F : T → R, as

F(τ) = ∑
|i|=n

ci φi(τ), τ ∈T .

Let us consider the following points xi =
i0
n T0 +

i1
n T1 +

i2
n T2, with |i|= n. Then we define the control net of F as

the function
p : T → R,

which is linear on each subtriangle of T and satisfies

p(xi) = ci, |i|= n.

The control net is important in interactive design because it is a mesh of points used to control the shape of the
surface. So, in [17] Peña and Floater provided several generalizations of the concept of monotonicity preserva-
tion of curves to surfaces.

Definition 2. A system (φi)|i|=n is axially monotonicity preserving (AMP) if the function F is increasing in the
direction T1−T0, T2−T1 or T0−T2 whenever the control net p is increasing in the same direction.

In [17] it was proved that the Bernstein polynomials of degree n on a triangle, (bn
i )|i|=n defined by

bn
i (τ) =

n!
i0!i1!i2!

τ
i0
0 τ

i1
1 τ

i2
2 , |i|= n,
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are AMP and even satisfy stronger monotonicity preserving properties.
Now let us consider the rational Bernstein basis of order n (φi)|i|=n given by φi =

wi bn
i

∑|i|=n wi bn
i
, where (wi)|i|=n

is a sequence of positive weights. In [6] it was proved that the Bernstein basis on a triangle is the unique rational
Bernstein basis which is AMP.

Theorem 6. (see Theorem 2 of [6]) If a rational Bernstein basis on a triangle with positive weights is AMP,
then wi = wj for all i, j such that |i|= |j|= n.

3.2 Monotonicity preservation of nonrational surfaces defined in rectangular patches

Given a normalized nonnegative system of bivariate functions U = (ui j(x,y))
0≤ j≤n
0≤i≤m defined on [a1,b1]×

[a2,b2] and a sequence of values in R, (ci j)
0≤ j≤n
0≤i≤m, let us consider the corresponding generated bivariate function

F(x,y) =
m

∑
i=0

n

∑
j=0

ci j ui j(x,y), (x,y) ∈ [a1,b1]× [a2,b2]. (8)

Now we shall associate a control net p with the function F . Given two strictly increasing sequences of abscissae

α = (α0,α1, . . . ,αm) and β = (β0,β1, . . . ,βn),

we define the control net
p : [α0,αm]× [β0,βn]→ R

to be the unique function which satisfies the interpolation conditions

p(αi,β j) = ci j for all i = 0,1 . . . ,m and j = 0,1, . . . ,n,

and is bilinear on each rectangle
Ri j = [αi,αi+1]× [β j,β j+1].

As in the triangular case, the control net is used to control the shape of the surface in interactive design. A
bivariate function g is increasing in a direction d = (d1,d2) ∈ R2, if

g(x+λ d1,y+λ d2)≥ g(x,y), λ > 0.

In particular, the control net p can be increasing in a direction d. In [16] Floater and Peña characterized this
situation as follows:

Lemma 7. The control net p is increasing in the direction d = (d1,d2) in R2 if and only if for i = 0,1, . . . ,m−1
and j = 0,1, . . . ,n−1,

d1 ∆1ci, j+l +d2 ∆2ci+k, j ≥ 0, k, l ∈ {0,1},

where ∆1ci j := (ci+1, j− ci j)/(αi+1−αi) and ∆2ci j := (ci, j+1− ci j)/(β j+1−β j).

Given a sequence (ci j)
0≤ j≤n
0≤i≤m, Λ1ci j := ci+1, j − ci j for i = 0,1, . . . ,m− 1 and j = 0,1, . . . ,n, and Λ2ci j :=

ci, j+1− ci j for i = 0,1, . . . ,m and j = 0,1, . . . ,n−1.

Remark 1. As a consequence of Lemma 7 we have that the control net p is increasing in the X-axis direction
d = (1,0) if and only if for i = 0,1, . . . ,m−1 and j = 0,1, . . . ,n−1, Λ1ci j ≥ 0. Analogously, the control net p is
increasing in the Y-axis direction d = (0,1) if and only if for i = 0,1, . . . ,m−1 and j = 0,1, . . . ,n−1, Λ2ci j ≥ 0

In [16] several concepts of monotonicity preservation for rectangular patches were introduced.
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Definition 3.

• The system U preserves monotonicity with respect to the abscissae α and β if when the control net p of
the function F in (8) is increasing in any direction d in R2 then so is F .

• The system U preserves axial monotonicity if, for any abscissae α and β , when p is increasing in the
direction d = (1,0) or d = (0,1) then so is F .

Now let us consider the particular case of tensor product surfaces. So let us consider two systems of univari-
ate functions U1 = (u1

0,u
1
1, . . . ,u

1
m) and U2 = (u2

0,u
2
1, . . . ,u

2
n) defined on [a1,b1] and [a2,b2], respectively. Then

we consider the system of tensor-product functions

U =U1⊗U2 = (u1
i ·u2

j)
j=0,1,...,n
i=0,1,...,m (9)

defined on the rectangle [a1,b1]× [a2,b2]. If the systems U1 and U2 are blending then the system U is also
blending. Given ci j ∈ R and taking ui j = u1

i · u2
j in (8), i ∈ {0,1, . . . ,m} and j ∈ {0,1, . . . ,n}, the system U

generates the following parametric function:

F(x,y) =
m

∑
i=0

n

∑
j=0

ci ju1
i (x)u

2
j(y), (x,y) ∈ [a1,b1]× [a2,b2].

The next result characterizes axial monotonicity preservation:

Proposition 8. (Proposition 2.3 of [16]) The blending system U in (9) preserves axial monotonicity if and only
if the functions

v1
i :=

m

∑
k=i

u1
k , i = 1, . . . ,m, and v2

j :=
n

∑
k= j

u2
k , j = 1, . . . ,n,

are increasing.

As a consequence, we can derive the following result.

Corollary 9. If the blending univariate systems U1 and U2 are monotonicity preserving, then the blending
bivariate system U preserves axial monotonicity.

Taking into account that systems of Bernstein polynomials and of B-splines are monotonicity preserving its
corresponding tensor products are axially monotonicity preserving.

Proposition 10.

• The tensor product of Bernstein bases

(bm
i (x) ·bn

j(y))
0≤ j≤n
0≤i≤m

preserves monotonicity axially.

• Given two sequence of nodes x = (xi)
m+d1+1
i=1 and y = (y j)

n+d2+1
j=1 , the tensor product of the corresponding

B-spline bases
(Ni,d1,x(x) ·N j,d2,y(y))

1≤ j≤n
1≤i≤m

preserves monotonicity axially.
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3.3 Monotonicity preservation of rational Bézier surfaces defined in rectangular patches.

Let F be a rational Bézier surface defined as

F(x,y) =
m

∑
i=0

n

∑
j=0

ci j
wi jbm

i (x)b
n
j(y)

∑
m
i=0 ∑

n
j=0 wi jbm

i (x)b
n
j(y)

, (x,y) ∈ [0,1]× [0,1], (10)

where (wi j)
0≤ j≤n
0≤i≤m is a sequence of positive weights and bk

i (t), i = 0,1, . . . ,k, are the Bernstein polynomials
of degree k. In [6] it was proved that rational Bézier surfaces are not, in general, even axially monotonicity
preserving. In addition, in that paper a particular case of rational Bézier surfaces was considered, the surfaces

F(x,y) =
m

∑
i=0

n

∑
j=0

ci j
wibm

i (x)
∑

m
i=0 wibm

i (x)

w jbn
j(y)

∑
n
j=0 w jbn

j(y)
, (x,y) ∈ [0,1]× [0,1], (11)

generated by the bases formed by the tensor product of univariate rational Bernstein bases(
wibm

i (x)
∑

m
i=0 wibm

i (x)

)m

i=0
⊗

(
w jbn

j(y)

∑
n
j=0 w jbn

j(y)

)n

j=0

, (12)

where (wi)
m
i=0 and (w j)

n
j=0 are two sequences of strictly positive weights. Let us observe that taking wi j = wi w j,

i = 0,1 . . . ,m and j = 0,1 . . . ,n, in (10) we obtain the surface in (11). By Corollary 9 and Corollary 5 these
rational bases preserve monotonicity axially as it was pointed in [5]. We conjecture that the converse also holds.
A particular case of this problem has been considered in [9]. Let us consider the system

B =

(
wi jbm

i (x)b
n
j(y)

∑
m
i=0 ∑

n
j=0 wi jbm

i x)bn
j(y)

)0≤ j≤n

0≤i≤m

(13)

Now we present our conjecture:

Conjecture 11. The system B of (13) is axially monotonicity preserving if and only if it corresponds to the
tensor product of two univariate rational Bernstein systems.

If m= n= 1, the surface (10) is called a rational bilinear patch (see [23]) and we shall see that the conjecture
holds in this case. Rational bilinear patches have been considered recently in [19] and in [23]. The quotient

W :=
w00w11

w01w10
(14)

is called in [23] shape parameter of the rational bilinear patch. In general, it is desirable that W to be sufficiently
close to 1, as remarked in page 3 of [23]. If W = 1, it corresponds to the case when the patch exhibits minimal
curvature along a diagonal of the control net.

Now we characterize in several ways for the case m = n = 1 the rational bases preserving the axial mono-
tonicity.

Theorem 12. Let us consider the system

B =

(
wi jb1

i (x)b
1
j(y)

∑
1
i=0 ∑

1
j=0 wi jb1

i (x)b
1
j(y)

)0≤ j≤1

0≤i≤1

(15)

and the rational bilinear patch given by (10) with m = n = 1. Then the following properties are equivalent:

(i) B is axially monotonicity preserving.
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(ii) The optimal shape parameter W of (14) is 1.

(iii) B can be expressed as in (12) for m = n = 1.

Proof. Let us consider a rational Bézier surface (10) with m = n = 1.
(i)⇔ (ii). Differentiating the surface respect to x we obtain

∂F(x,y)
∂x

=
F1(y)+F2(y)(

∑
1
i=0 ∑

1
j=0 wi jb1

i (x)b
1
j(y)
)2 ,

where

F1(y) = w00w10(Λ1c00)b2
0(y)

+
1
2
[w00w11(Λ1c01)+w01w10(Λ1c00)]b2

1(y)

+w01w11(Λ1c01)b2
2(y),

F2(y) = (w00w11−w01w10)(Λ2c00)b2
1(y).

By Remark 1, a control net p is increasing in the X-axis direction (1,0) if and only if Λ1ci j ≥ 0 for i =
0,1, . . . ,m−1 and j = 0,1, . . . ,n−1. Taking c00 = c10 = c 6= 0 and c01 = c11 = 2c we have that Λ1c00 =Λ1c01 = 0
and so the control net is increasing in the X-axis direction. With the previous choice of the coefficients we have

that F1(y) = 0 and F2(y) = c(w00w11−w01w10)b1
1(y). Taking into account that

(
∑

1
i=0 ∑

1
j=0 wi jb1

i (x)b
1
j(y)
)2

> 0,

F is increasing in the X-axis direction if and only if F2(y) = c(w00w11−w01w10)b1
1(y)≥ 0 for all (x,y) ∈ [0,1]2.

Since c can be any real number F2(y)≥ 0 if and only if w00w11−w01w10 = 0, which is equivalent to

rank
(

w00 w01
w10 w11

)
= 1. (16)

Analogously, it can be proved that monotonicity preservation in the Y-axis direction is also equivalent to (16).
Finally, (16) is clearly equivalent to (ii).

(ii)⇔ (iii). Since (ii) is clearly equivalent to (16), it is sufficient to observe that a rank one positive matrix
can be written as the product of a positive column vector and a positive row vector:(

w00 w01
w10 w11

)
=

(
w0
w1

)(
w0 w1

)
The following corollary is a reformulation of the equivalence of (i) and (iii) in the previous theorem.

Corollary 13. The system B of (15) is axially monotonicity preserving if and only if it corresponds to the tensor
product of two univariate rational Bernstein systems, that is, if and only if B =U⊗U, where

U =

(
w0b1

0(x)

∑
1
i=0 wib1

i (x)
,

w1b1
1(x)

∑
1
i=0 wib1

i (x)

)
and U =

(
w0b1

0(y)

∑
1
i=0 wib1

i (y)
,

w1b1
1(y)

∑
1
i=0 wib1

i (y)

)
.
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