M. DUDEK*, M. MOSIAŁEK**,***, G. MORDARSKI**,***, R.P. SOCHA**, A. RAPACZ-KMITA****

IONIC CONDUCTIVITY OF THE CeO$_2$-Gd$_2$O$_3$-SrO SYSTEM

The Pechini method was used to synthesize nanopowders of CeO$_2$-based solid solutions with the formula Ce$_{0.8-x}$Gd$_{0.2}$Sr$_{0.2}$ for 0<x<0.1. All powders and sinters were found to be ceria-based cubic solid solutions. The electrical properties of the ceria-based solid solutions were studied by the a.c. impedance spectroscopy method within a temperature range of 200-700°C.

It was found that by adding a small amount of cation Sr$^{2+}$ into the solid solution Ce$_{0.8-x}$Gd$_{0.2}$Sr$_{0.2}$, allowed us to slightly improve the ionic conductivity of a Ce$_{0.8}$Gd$_{0.2}$O$_{2.78}$ oxide electrolyte. Selected materials from the Ce$_{0.8}$Gd$_{0.2}$Sr$_{0.2}$ system were tested as oxide electrolytes in the solid oxide fuel cells operating in a temperature range of 600-700°C. Two kinds of cathode oxide materials were used: monophase Sm$_{0.8}$Sr$_{0.2}$Co$_3$O$_7$ and the composite cathode Sm$_{0.5}$Sr$_{0.5}$Co$_3$O$_{2-x}$ wt. Ag. It was found that a solid oxide fuel cell with a Ce$_{0.78}$Gd$_{0.02}$Sr$_{0.02}$O$_{2-x}$ electrolyte exhibited higher power and current densities compared to IT-SOFC involving Ce$_{0.8}$Gd$_{0.2}$O$_{2-x}$ as an oxide electrolyte. The utilization of a Sm$_{0.5}$Sr$_{0.5}$Co$_{3-x}$ wt. composite cathode into IT-SOFC could be an additional factor improving its performance in the temperature range 600-700°C.

Keywords: solid oxide electrolytes, ceria-based solid solutions, co-doping, solid oxide fuel cell

1. Introduction

Until now, solid oxide fuel cell systems have been based mainly on yttria-stabilized zirconia (YSZ) ceramics, because of their nearly pure oxygen conductivity in oxidizing and reducing atmospheres as well as good mechanical properties [1,2]. ZrO$_2$-based electrolytes, however, require high operating temperatures over 900°C in order to maintain high oxygen ionic conductivity. Such high operating temperatures result in large fabrication costs and accelerate the degradation of the fuel cell systems [3].

Ceria – based solid solutions with the formula Ce$_{1-x}$M$_x$O$_{2-x}$, M = Gd, Sm, Y and 0.1<x<0.3 are considered as potential candidates for application as oxide electrolytes for solid oxide fuel cells (SOFCs) operating with in a temperature range of 600-800°C [4]. Materials co-stabilized with Gd$_2$O$_3$ or Sm$_2$O$_3$ and other trivalent cations such as La$^{3+}$, Nd$^{3+}$, Y$^{3+}$, Bi$^{3+}$, Nd$^{3+}$ or divalent cations Ca$^{2+}$, Mg$^{2+}$, Sr$^{2+}$, depending on chemical composition, have generally improved ionic conductivity.
compared to singly doped ceria, although in some cases, deterioration of the ionic conductivity or increased electronic conductivity was observed [5, 6]. The application of co-doped ceria electrolytes into IT-SOFC allowed us to obtain higher power and current densities acquired from this cell compared with the same SOFC utilized as an oxide membrane, single - doped ceria with the formula Ce$_{1-x}$M$_x$O$_2$-δ, M = Gd, Sm, Y and 0.1<x<0.3 [7].

Unfortunately, IT-SOFCs operating with H$_2$ fuel usually experience cell performance losses, mainly arising from the cathode. One of the methods used to improve cathode performance is to modify the oxide electrode with noble metals. Ag metal is a promising electronic material for oxygen reduction reactions.

Sakito, et al. [8] studied the electrochemical properties of a La$_{0.6}$Sr$_{0.4}$CoO$_2$Fe$_{0.8}$O$_{3-\delta}$ Ag composite cathode. They found that the peak power density of the test cell considerably increased to 0.42W/cm2 at 530$^\circ$C by addition of 18 % vol. silver. V.Haanappel, D.Rutenbeck, et al [9] observed that the addition of silver to La$_{0.6}$Sr$_{0.4}$CoO$_3$ and La$_{0.7}$Sr$_{0.3}$MnO$_3$ cathodes resulted in a significant improvement of electronic conductivity and electrocatalytic activity – for oxygen reduction reaction. Studies have also proved that Ag-particles with a relatively small size and homogenous dispersion always produce an enlarged reaction area, which leads to improved catalytic activity [10-12].

The aim of this work was to examine the possibility of improving the ionic conductivity of a solid electrolyte Ce$_{0.8}$Gd$_{0.2}$O$_{2-\delta}$, by partial substitution of Ce$^{4+}$ by Sr$^{2+}$ into the solid solution Ce$_{0.8-x}$Gd$_{0.2}$Sr$_x$O$_{2-\delta}$ and their application in a solid oxide fuel cell operating with Ag-Sm$_{0.5}$Sr$_{0.5}$CoO$_3$ as a composite cathode.

2. Materials preparation

The starting materials were: Ce(NO$_3$)$_3$·6H$_2$O, Gd(NO$_3$)$_3$·6H$_2$O (99.9 %), Sr(NO$_3$)$_2$·4H$_2$O citric acid and ethylene glycol (99.9% Aldrich). The reagents were mixed in distilled water in order to prepare ceria–based solid solutions with the formula Ce$_{0.8-x}$Gd$_{0.2}$Sr$_x$O$_{2-\delta}$, 0<x<0.1. Citric acid and ethylene glycol were added to the respective nitrate solutions. The solutions were then evaporated at 70$^\circ$C to obtain hard gels. They were finally calcined at 900$^\circ$C for 1h and then rotary-vibratory milled with a zirconia grinding media in dry ethanol. The granulated powders were cooled and isostatically pressed under 200 MPa with 5% wax-water emulsion added as a lubricant. The pellets were sintered for 2 h at 1500$^\circ$C. The cathode powder Sm$_{0.5}$Sr$_{0.5}$CoO$_3$ was also prepared by the Pechinni method [13].

2.1. Apparatus and methods investigations of physicochemical and electrochemical properties

The phase composition of all powders and sintered bodies were identified by X-ray diffraction analysis based on the ICDD data base. XRD measurements were done using the Panalytical X’Pert Pro system with monochromatic Cu K$_\alpha$ radiation. Lattice parameters of the identified phases were determined using the Rietveld refinement method. The mean crystalline size (d$_{hkl}$) of the CeO$_2$-based powders was calculated according to the Scherrer formula. Specific surface areas were measured by multipoint nitrogen adsorption at –196°C (Quantachrome Nova 1200). The BET adsorption model was involved to calculate particle sizes. Green samples were characterized by pore size distribution measurements (Quantachrome, PoreMaster). Transmission electron microscopy (AEM CM20 Philips) combined with EDS system was used to characterize the morphology and chemical composition of the Ce$_{1-x}$Gd$_{0.2}$Sr$_x$O$_{2-\delta}$0<x<0.1 solid solutions powders. Scanning electron microscopy (NovaNano SEM) equipped with an EDX analyzing system was used to observe the microstructure of samples sintered. The apparent density of the sintered bodies was measured by the Archimeades method. Ionic conductivity measurements were performed by the a.c impedance spectroscopy method within a temperature range from 200-800°C in static air. The selected ceria–based samples were tested as solid electrolytes in a two-chamber solid oxide fuel cell (SOFC). An anode (50% wt. NiO-20GDC) powder (supplied by Fuel Cell Materials, USA) was mixed with terpineol and ethyl cellulose to form a slurry, subsequently screen-printed on the side of CeO$_2$-based electrolytes as the anode, which was thermally heated at 1200°C for 1h. In the next step, Sm$_{0.5}$Sr$_{0.5}$CoO$_3$ (SSC) was grounded in a rotary-vibratory mill in dry ethylene alcohol using a zirconia grinding media. The SSC grounded powder was mixed with terpineol and ethyl cellulose to form a slurry. The slurry was screen-printed on the surface of CeO$_2$-based electrolytes and was first heated at 400°C for 2h to remove organic binders and then heated at 950°C for 4 h with a heating and cooling rate of 2’/min. For the modification of the SSC cathode with silver, a method of nitrate decomposition was applied In general, a AgNO$_3$ solution with a concentration of 0.05mol-dm$^{-3}$ was dropped by a suction pipette with an accuracy of ±0.01 ml and soaked into the porous SSC cathode layer and then heated over a hotplate to evaporate water, followed by firing at 800°C for 4h.

The family of current – voltage (A-E-I) and current-power (I-P) curves of tested solid oxide fuel
Average crystalline sizes of CeO$_2$-powders determined by XRD method and BET specific surface area

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ce${0.8}$Gd${0.2}$O$_2$ (20GDC)</th>
<th>Ce${0.78}$Gd${0.2}$Sr$_{0.02}$O$_2$ (2Sr20GDC)</th>
<th>Ce${0.75}$Gd${0.2}$Sr$_{0.02}$O$_2$ (5Sr20GDC)</th>
<th>Ce${0.7}$Gd${0.2}$Sr$_{0.1}$O$_2$ (10Sr20GDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>crystalline size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{hkl}, nm</td>
<td>19.8</td>
<td>23.4</td>
<td>26.2</td>
<td>28.4</td>
</tr>
<tr>
<td>particle size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{BET}, nm</td>
<td>32.6</td>
<td>40.4</td>
<td>50.2</td>
<td>54.2</td>
</tr>
</tbody>
</table>

3. Results and discussion

XRD diffraction analysis showed that all powders and sinters were found to be cubic ceria-based solid solutions form. The properties of CeO$_2$-based powders synthesized by this method are collected in Table 1. A small increase of crystalline sizes were detected in all investigated ceria-solid solutions compared to pure CeO$_2$. In the case of Ce$_{0.8-x}$Gd$_{0.2}$Sr$_x$O$_2$, where $0 < x < 0.1$, some difference between particle sizes determined by the XRD method d_{hkl} or d_{BET}, which are calculated from surface area measurements, were mentioned. This fact indicates the presence of agglomeration particles in powders, which was previously mentioned during TEM (Fig. 1) observations. All the samples prepared from these powders achieved more than 96% of theoretical density. The typical microstructure of Ce$_{0.78}$Gd$_{0.2}$Sr$_{0.02}$O$_2$ and Ce$_{0.7}$Gd$_{0.2}$Sr$_{0.1}$O$_2$ samples sintered at 1500°C for 2 h are presented in Fig. 2 a-b.

Processing of microstructural analysis allowed us to determine the average grain size distribution for pure CeO$_2$ and Ce$_{0.8-x}$Gd$_{0.2}$Sr$_x$O$_2$ solid solutions sintered samples respectively at 1500°C for 2 h in air. Fig. 3 presents the changes of average grain size vs.
the chemical composition of Ce$_{0.8}$Gd$_{0.2}$Sr$_x$O$_{2-δ}$ sintered samples obtained starting from powders synthesized by the Pechini method. This microstructural analysis showed that the partial substitution of Ce$^{4+}$ by Sr$^{2+}$ into Ce$_{0.8-x}$Gd$_{0.2}$Sr$_x$O$_{2-δ}$ solid solutions led to a small increase of average grain sizes compared to the starting chemical composition of the Ce$_{0.8}$Gd$_{0.2}$O$_{2-δ}$ sample.

The changes of lattice constant a calculated for the obtained Ce$_{0.8-x}$Gd$_{0.2}$Sr$_x$O$_{2-δ}$ solid solutions samples are presented in Fig.4. The lattice constant a of Ce$_{1-x}$Gd$_{0.2}$Sr$_2$O$_{2-δ}$ solid solutions increases linearity with the increase of x content. This is due to the different ionic radii of Ce$^{4+}$ (0.96Å) and Sr$^{2+}$ (1.26Å), which agrees with data existing in literature [14].

The a.c impedance spectroscopy method was applied to determine the electrical properties of single or co-doped ceria-based samples obtained by the Pechini method (A). Grain and grain boundary resistance arcs for the investigated samples are well resolved up to 400°C (Fig.5). In this case, the equivalent circuit (R-CPE)$_b$-(R-CPE)$_{gb}$-(R-CE)$_{el}$ is used to fit the impedance data to calculate bulk (R_b) and grain boundary resistance (R_{gb}). After 400°C the bulk arc is not well resolved due to a decrease in the relaxation time and its shift towards higher frequency regions, exceeding the equipment limit [15]. In this case, a R$_b$(R-CPE)$_{gb}$-(R-CPE)$_{el}$ equivalent circuit is used to fit the data.

The Arrhenius plot, of the bulk conductivity (σ_b) for Ce$_{0.8}$Gd$_{0.2}$O$_{2-δ}$ (20GDC), Ce$_{0.78}$Gd$_{0.2}$Sr$_{0.02}$O$_{2-δ}$ (2Sr20GDC) and Ce$_{0.78}$Gd$_{0.2}$Sr$_{0.05}$O$_{2-δ}$ (5Sr20GDC) is shown (Fig.6.) in log(σT) v.s 1/T coordinated. These results indicate that the co-doped ceria Ce$_{0.78}$Gd$_{0.2}$Sr$_{0.05}$O$_2$ exhibits slightly higher values of bulk conductivity compared to the Ce$_{0.8}$Gd$_{0.2}$O$_{2-δ}$ sample. Temperature dependence σ can be expressed as:

$$\sigma = \sigma_0 \exp \left(\frac{\Delta H_m + \Delta H_a}{kT} \right)$$

where σ_0 (in K Ω$^{-1}$·m$^{-1}$) is a pre-exponential factor, k – is a Boltzman constant and ΔH_m, ΔH_a are the migration enthalpy of the oxygen ion and the associated enthalpy of the defect complex.

Kilner, et al. [16] indicated that the association energy of oxygen vacancies is increased by the ionic – radius mismatch between the dopant cation and the host element. It is inferred that the ionic conductivity in fluorite oxides could be enhanced by a decrease of this ionic – radius mismatch. Thus, to enhance the grain conductivity, minimization of the association of defects is required. As expressed before, this association energy is a function of the coulombic attraction between oxygen vacancies and the elastic strain – present in the lattice [17].
Fig. 6. The log (σT) vs. 1000/T determined for 8% mol Y₂O₃ in ZrO₂ (8YSZ), Ce₀.8Gd₀.2O₂₋δ Ce₀.78Sr₀.02Gd₀.2O₂₋δ (2Sr20GDC) and Ce₀.78Sr₀.05Gd₀.2O₂₋δ (5Sr20GDC) samples.

Fig. 7. Bulk and grain boundary conductivity as a function of composition in Ce₀.8₋ₓGd₀.2SrₓO₂₋δ samples at 600°C.

Fig. 7 shows the bulk or grain boundary conductivity of co-doped ceria with Sr²⁺ and Gd³⁺ as a function of dopant concentration at 600°C. At a lower dopant concentration of Sr²⁺ (up to x = 0.02), the bulk conductivity reaches maximum values and then decreases while increasing the dopant concentration. Analysis of the energy activation (Fig. 8) process is also performed to indicate the minimum correspondence to maximum conductivity. The change of activation energy could be attributed to an order–disorder transition of the oxygen sub-lattice [18, 19]. The decrease in activation energy is due to the presence of attractive interactions between cations and oxygen vacancies. Also, with increasing dopant concentration levels, defects associated with oxygen vacancies and dopant cations can change from dimers to trimers and then defect clusters, consequently resulting in high binding energy, which is responsible for the increase of energy activation. In addition, some microdomains of possible ordered intermediate phases could also form, as compared to samples sintered at 1500°C. The possible formation of SrCeO₃ should be also considered as one of the main reasons of a decrease in conductivity, although X-ray diffraction does not indicate the presence of SrCeO₃ as a second phase [20]. Another problem associated with the final ceramic microstructure is the rather low conductivity of the grain boundary (σgb), when compared to that of the corresponding bulk. This fact is attributed to the presence of impurities located in the grain boundary, which lowers ionic mobility [21].

The Ce₀.8Gd₀.2O₂₋δ and Ce₀.78Gd₀.2Sr₀.02O₂₋δ samples were chosen for further investigations as components for solid oxide fuel cells operated with hydrogen as a fuel.

Fig. 8. Activation energy of bulk and grain boundary conductivity of Ce₀.8₋ₓGd₀.2SrₓO₂₋δ samples.

Fig. 9 shows the performance of SOFC with 20GDC (a) and 2Sr20GDC as electrolytes within a temperature range of 600-700°C. The power (P) density, as well as the current (I) density of SOFC with the Ce₀.78Gd₀.2Sr₀.02O₂₋δ electrolyte, reached higher values than the same SOFC involving the Ce₀.8Gd₀.2O₂₋δ elec-
trolyte. This fact could be attributed to a decrease of the resistance of the cell. As can be seen, the utilization of the solid oxide electrolyte with higher ionic conductivity allowed us to reduce ohmic losses during IT-SOFC performance.

Fig. 10. The SEM microphotograph of the Sm0.5Sr0.5CoO3-5%wt.Ag composite cathode

![Fig. 10. The SEM microphotograph of the Sm0.5Sr0.5CoO3-5%wt.Ag composite cathode](image)

Fig. 11. The family of P-I curves recorded for IT-SOFC with Ce0.78Sr0.2Gd0.2O2 as a solid electrolyte with monophase cathode Sm0.5Sr0.5CoO3 (SSC) or Sm0.5Sr0.5CoO3+5%wt.Ag at temperature 700°C

![Fig. 11. The family of P-I curves recorded for IT-SOFC with Ce0.78Sr0.2Gd0.2O2 as a solid electrolyte with monophase cathode Sm0.5Sr0.5CoO3 (SSC) or Sm0.5Sr0.5CoO3+5%wt.Ag at temperature 700°C](image)

The second idea of improving the power and current densities acquired from IT-SOFC with Ce0.78Sr0.2Gd0.2O2 could be through the utilization of SSC-Ag as a composite cathode. Fig. 10. presents the SEM microphotograph of the Ag-Sm0.5Sr0.5CoO3 obtained composite cathode. As can be seen, the Ag-SSC cathode is porous, and Ag particles about 0.4 to 2µm are randomly distributed on the surface of SSC cathode materials. Fig. 11. presents the family of curves (ΔE-I and P-I) recorded for IT-SOFC with a 2Sr20GDC electrolyte and a SSC or SSC-Ag cathode within a temperature range of 600-700°C. As can be seen, an increase of power (P) and current density (I) was observed for IT-SOFC with 2Sr20GDC with a SSC-Ag composite cathode compared to the same IT-SOFC involving only monophase SSC material.

4. Conclusions

Single-doped ceria, or co-doped ceria CeO2-Gd2O3-SrO materials, were successfully prepared from powders both obtained by the Pechini method. It has been stated that the introduction of strontium into Ce1-xGdxSr2O2 solid solutions leads to ionic conductivity enhancement compared with only gadolina – doped ceria. The application of composite cathode oxide materials involving Sm0.5Sr0.5CoO3-Ag also improves the performance of IT-SOFC operating with a co-doped ceria electrolyte.

Acknowledgements

This work was sponsored by the Ministry of Science and Higher education No. 6166/B/T02/2010/38.

REFERENCES

[7] S. Ramesh, V. Kumar, P. Kistaih, C. Reddy, Preparation and characterization and thermoelectric properties of co-doped Ce0.8-xSm0.2Ca0.2-d materials Solid State Ionics 181, 86-91 (2010).

