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It is well known that convolutional codes are linear systems when they are defined over a finite field. A fundamental issue
in the implementation of convolutional codes is to obtain a minimal state representation of the code. Compared with the
literature on one-dimensional (1D) time-invariant convolutional codes, there exist relatively few results on the realization
problem for time-varying 1D convolutional codes and even fewer if the convolutional codes are two-dimensional (2D). In
this paper we consider 2D periodic convolutional codes and address the minimal state space realization problem for this
class of codes. This is, in general, a highly nontrivial problem. Here, we focus on separable Roesser models and show
that in this case it is possible to derive, under weak conditions, concrete formulas for obtaining a 2D Roesser state space
representation. Moreover, we study minimality and present necessary conditions for these representations to be minimal.
Our results immediately lead to constructive algorithms to build these representations.
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1. Introduction

Since the 1960s it has been widely known that
convolutional codes and linear systems which are defined
over a finite field are mathematically identical (Rosenthal,
2001). In the last decades there has been a new and
increased interest in this connection, and many advances
have been made using the system-theoretical framework
when dealing with convolutional codes. This approach
has led to significant progress in fundamental issues in the
area (Gluesing-Luerssen and Schneider, 2007; Rosenthal
and York, 1999; Rosenthal, 2001; Kuijper and Polderman,
2004).

Multi-dimensional convolutional codes (nD
convolutional codes, where n stands for the dimension)
are a natural generalization of one-dimensional (1D)
convolutional codes. Standard 1D convolutional codes
deal with the transmission and storage of data that evolve
over time. Instead, nD convolutional codes are suited for
dealing with n dimensional data, e.g., pictures, storage
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media, etc. (see Basu and Swamy, 2002). However,
while the 1D convolutional codes have been thoroughly
understood, little research has been done in the area of
nD convolutional codes and much more needs to be done
to make it attractive for applications.

The literature on nD convolutional codes is limited,
but some important fundamental results have already
been obtained. The algebraic theory of 2D and nD
convolutional codes has been laid out by Valcher and
Fornasini (1994), Fornasini and Valcher (1998; 1994),
Gluesing-Luersen et al. (2000), Lobo et al. (2012) and
Weiner (1998); see also the references therein. They
introduced the general theory for the study of nD
convolutional codes constituted by sequences indexed
on Z

n or N
n, and discussed issues such as the

characterization of such codes in terms of their internal
properties and input-output representations.

A fundamental issue that arises in this context
is the so-called minimal realization problem: How to
derive a state-space representation of the code with the
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minimal dimension (properly defined below) (see Napp
et al., 2010; Fornasini and Pinto, 2004; Jangisarakul
and Charoenlarpnopparut, 2011; Charoenlarpnopparut
and Bose, 2001). This representation is essential as
it represents a blueprint for an actual physical device,
typically built from shift registers. These representations
are also of paramount importance for deriving efficient
decoding algorithms using trellis diagrams, e.g., the
Viterbi decoding algorithm.

The minimal state space realization problem plays
a particularly important role in the analysis and design
of multi-dimensional convolutional codes because of
the large amount of data involved. However, the
general problem of a minimal state space realization of
multidimensional systems has not been solved even for
2-dimensional systems. Nevertheless, for some special
cases, minimal state space realization methods have been
derived; see the works of Zerz (2000), Pinho et al. (2014),
Pinho (2016), Napp et al. (2010), Galkowski (1996; 2001)
and the references therein.

The state space formulation of convolutional codes
can easily be extended to the time-varying case. The
system matrices describing the convolutional code are
typically regarded to be constant over time. However,
one can also consider time-varying linear systems in
which the matrices representing the code also depend
on time. The idea of considering 1D time-varying
and, in particular, periodically time-varying convolutional
codes has attracted considerable attention of many
researchers. After Costello (1974) conjectured that
time-varying convolutional codes can achieve better
properties than time-invariant ones, many researchers
have investigated such codes. The research in this
area has focused on finding concrete encoders that yield
1D periodic convolutional codes with good distance
properties (Mooser, 1983; Palazzo, 1993; Felstrom and
Zigangirov, 1999; Guardia, 2019) and on state space
representations of time-varying systems (Napp et al.,
2019; Climent et al., 2009; Aleixo et al., 2011; Kuijper
and Willems, 1997).

In this paper we continue this thread of research
by considering periodic 2D convolutional codes and the
corresponding minimal state space realization problem.
Although some results have been obtained in the
context of time-invariant 2D convolutional codes (Pinho
et al., 2014; Fornasini et al., 2015) and 1D periodic
convolutional codes (Climent et al., 2009), this problem
remains unexplored in the context of periodic 2D
convolutional codes. Here we aim at deriving state
Roesser 2D state space representations (Aleixo and
Rocha, 2017; Kaczorek, 2001) from a (2,2)-periodic
two-dimensional generator matrix. This is, in general,
a highly nontrivial problem and one needs to assume
additional conditions to be able to build minimal state
space representations. In this work we study the case

of separable (2,2)-periodic two-dimensional generator
matrices, i.e., the encoders G(z1, z2) that can be
decomposed as G(z1, z2) = V (z2)H(z1), where V (z2)
and H(z1) are polynomial matrices with periodically
time-varying coefficients of period 2. Specifically,
both V (z2) and H(z1) are constructed based on two
alternating invariant encoders V0(z2) and V1(z2), and
H0(z1) and H1(z1), respectively. We first show that
one cannot expect to obtain a realization of the periodic
2D convolutional code by realizing independently the
time-invariant encoders on which V (z2) and H(z1) are
based. However, we provide certain conditions that
allow obtaining a minimal state Roesser 2D state space
representation. Moreover, our results are constructive
in the sense that we provide explicit formulas for the
realization and a concrete methodology for obtaining such
representations.

2. Prelimiaries

2.1. Time-invariant convolutional codes. Let F be
a finite field and F[z] the polynomial ring. In a module
theoretic point of view, we define a convolutional code as
follows.

Definition 1. Let F be a finite field and n, k positive
integers with k < n. A time-invariant convolutional code
C of rate k/n is a submodule Fn[z] described as

C = {w(z) ∈ F
n[z] : w(z) = G(z)u(z), u(z) ∈ F

k[z]},
where G(z) ∈ F

n×k[z] is a full column rank n × k
polynomial matrix over F, called the encoder, u(z) taking
values in F

k[z] is the information vector and w(z) is the
codeword.

The encoders of a code C are not unique; however,
they only differ by right multiplication by unimodular
matrices over F[z]. An encoder G(z) is called column re-
duced if the sum of its column degrees attains the minimal
possible value among all the encoders of the same code.
If G(z) ∈ F

n×k[z] has column degrees ν1, . . . , νk, it can
be written as

G(z) = Ghc

⎡
⎣

zν1

zν2

. . .
zνk

⎤
⎦+Grem(z),

where Grem(z) is a polynomial matrix such that the degree
of column i is less than νi, i = 1, . . . , k, and Ghc ∈ F

n×k

is a matrix whose i-th column contains the coefficients of
zνi in the i-th column of G(z). Ghc is called the leading
column coefficient matrix and G(z) is column reduced if
and only if Ghc is full column rank.

We define the degree δ of a convolutional code as the
sum of the column degrees of one (and hence any) column
reduced encoder. Note that the list of column degrees (also
known as Forney indices) of a column reduced encoder is
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unique up to a permutation. A code C of rate k/n and
degree δ is said to be an (n, k, δ) code.

2.2. Periodically time-varying 1D convolutional
codes. In this section we consider 1D convolutional
codes C with 2-periodic encoders. The definition of such
encoders (or encoding maps) is introduced next, together
with the definition of the corresponding 2-periodic
(time-varying) convolutional codes see (Costello, 1974;
Palazzo, 1993).

Definition 2. Given two polynomial matrices G0(z),
G1(z) ∈ F

n×k[z], the periodic encoding map induced by
G0 and G1 is defined as

ΦG0,G1 :

{
F
k[z] −→ F

n[z],

u(z) �−→ w(z),

where w(z) =
∑+∞

i=0 wiz
i with the abbreviated notation

w2�+t =
(
Gt(z)u(z)

)
2�+t

, t = 0, 1, � ∈ N0. Here(
Gt(z)u(z)

)
2�+t

represents the (2�+ t)-coefficient of the
polynomial Gt(z)u(z).

The corresponding periodic convolutional code Cp is

Cp = {w(z) ∈ F
n[z] : w(z) = ΦG0,G1(u(z)),

u(z) ∈ F
k[z]}. (1)

Such codes will be called 2-periodic convolutional codes.

2.3. State-space realizations. In systems theory,
input-state-output models are mainly used to describe
the time evolution of the system signals, which, in the
discrete-time case, are time sequences. Therefore, in
the sequel, we sometimes identify an element a(z) =∑N

i=0 aiz
i ∈ F[z] with the finite support sequence a0 =

(a(z))0, a1 = (a(z))1, . . . , aN = (a(z))N formed by its
coefficients, and also use the notation a(�) to write a� =
(a(z))�. The same applies to vectors with components in
F[z].

A state-space system
{

x(� + 1) = Ax(�) +Bu(�),

w(�) = Cx(�) +Du(�),

� ∈ N0, denoted by (A,B,C,D), where A ∈ F
δ×δ, B ∈

F
δ×k, C ∈ F

n×δ and D ∈ F
n×k, is said to be

a state-space realization of the time-invariant (n, k, δ)
convolutional code C if C is the set of codewords w(z) ∈
F
n[z] identified with the finite support output sequences

w corresponding to finite support input sequences u (i.e.,
to information sequences u(z) ∈ F

k[z]) and zero initial
conditions, i.e., x(0) = 0.

If G(z) ∈ F
n×k[z] is an encoder of C, (A,B,C,D)

is a state-space realization of G(z) if

G(z) = C(I −Az)−1Bz +D.

If G(z) =
∑

i∈N
Giz

i, with Gi ∈ F
n×k, then

G0 = D, Gi = CAi−1B, i ≥ 1. (2)

Note that G(z) admits many realizations. It is well
known that a state-space realization (A,B,C,D) of
G(z) is minimal, i.e., has a minimal dimension among
all the realizations of G(z), if (A,B) is controllable
and (A,C) is observable, i.e., the polynomial matrices[
z−1I −A | B

]
and [ z

−1I−A
C

] have, respectively,
right and left polynomial inverses (in z−1). The minimal
dimension of a state-space realization of G(z) is called
the McMillan degree (Kailath, 1980) of G(z) and it is
represented as μ(G).

The next proposition, adapted from the works of
Fornasini and Pinto (2004) or Gluesing-Luerssen and
Schneider (2007), provides a state-space realization
for a given (not necessarily column reduced) encoder.
Moreover, it states that state-space realizations of a code
can be obtained from minimal realizations of column
reduced encoders.

Proposition 1. Let G(z) ∈ F
n×k[z] be a polynomial

matrix with rank k and column degrees ν1, . . . , νk. Con-
sider δ̄ =

∑k
i=1 νi. Let G(z) have columns gi(z) =∑νi

�=0 g�,iz
�, i = 1, . . . , k where g�,i ∈ F

n. For i =
1, . . . , k define the matrices

Ai =

⎡
⎢⎢⎣

0 · · · · · · 0

1
...

. . .
...

1 0

⎤
⎥⎥⎦ ∈ F

νi×νi , Bi =

⎡
⎢⎢⎣
1
0
...
0

⎤
⎥⎥⎦ ∈ F

νi ,

Ci =
[
g1,i · · · gνi,i

] ∈ F
n×νi .

Then a state-space realization of G is given by the matrix
quadruple (A,B,C,D) ∈ F

δ̄×δ̄ ×F
δ̄×k ×F

n×δ̄ ×F
n×k,

where

A =

⎡
⎣A1

. . .
Ak

⎤
⎦ ,

B =

⎡
⎣B1

. . .
Bk

⎤
⎦ ,

C =
[
C1 · · · Ck

]
,

D =
[
g0,1 · · · g0,k

]
= G(0).

In the case where νi = 0, the i-th blocks of A and C are
void and in B a zero column occurs.

In this realization, (A,B) is controllable and, if G(z)
is a column reduced encoder, (A,C) is observable and
therefore the realization of G(z) is minimal. Thus, the
McMillan degree of a column reduced encoder is equal to
the sum of its column degrees.
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2.4. State-space realizations of 1D periodic convolu-
tional codes.

Definition 3. Let Σi = (Ai, Bi, Ci, Di), i = 0, 1, be two
state-space systems with the same dimension. We define
a periodic state-space system Σp as

{
x(� + 1) = A(�)x(�) +B(�)u(�),

w(�) = C(�)x(�) +D(�)u(�),
(3)

� ∈ N0, where A(·), B(·), C(·), D(·) are periodic
functions with period 2, such that
(
A(2j), B(2j), C(2j), D(2j)

)
= (A0, B0, C0, D0)

and
(
A(2j + 1), B(2j + 1), C(2j + 1), D(2j + 1)

)

= (A1, B1, C1, D1), j ∈ N0.

The dimension of Σp is defined as that of the state vector
x. In this case we say that Σp is obtained from Σ0 and Σ1.

Moreover, Σp is a realization of a periodic encoding
map ΦG0,G1 if the output of Σp that corresponds to an
input u(z) is equal to ΦG0,G1(u(z)), for all u(z) ∈ F

k[z].
Let Σ0 and Σ1 be two state-space realizations (of the

same dimension) of two encoders G0(z) and G1(z). It is
possible to show that the 2-periodic system Σp obtained
from Σ0 and Σ1 is not always a state-space realization of
ΦG0,G1 .

However, in the next theorem (Napp et al., 2019) we
provide a sufficient condition for a periodic state-space
system to be a realization of a periodic encoding map.

Theorem 1. Consider two encoders G0(z) ∈ F
n×k[z]

and G1(z) ∈ F
n×k[z] with the same column degrees, and

let Σi be the realizations of Gi(z), i = 0, 1, obtained by
Proposition 1. Then the periodic state-space system Σp

obtained from Σ0 and Σ1 is a realization of the periodic
encoding map ΦG0,G1 .

When the encoders given in the previous theorem are
column reduced, then the realization of the corresponding
encoding map is minimal, as stated next (Napp et al.,
2019).

Theorem 2. Let G0(z), G1(z) ∈ F
n×k[z] be two col-

umn reduced encoders with the same column degrees, and
let Σi be the realizations of Gi(z), i = 0, 1, obtained by
Proposition 1. Then the 2-periodic state-space realization
of the periodic encoding map ΦG0,G1 obtained from Σ0

and Σ1 is minimal.

3. 2D (2,2)-periodic convolutional codes

In this paper we consider 2D convolutional codes C with
(2,2)-periodic encoders. Analogously to the 1D case, we
introduce the definition of a periodic encoding map.

Definition 4. Given four 2D polynomial matrices
G00(z1, z2), G10(z1, z2), G01(z1, z2), G11(z1, z2) ∈
F
n×k[z1, z2], the (2,2)-periodic encoding map induced by

G00, G10, G01 and G11 is defined as

ΦG00,G10,G01,G11 :

{
F
k[z1, z2] −→ F

n[z1, z2],

u(z1, z2) �−→ (z1, z2),

where w(z1, z2) =
∑

(i,j)∈N2 wi,jz
i
1z

j
2 and

w2�+i,2m+j =
(
Gij(z1, z2)u(z1, z2)

)
2�+i,2m+j

,

i, j = 0, 1, �,m ∈ N0,

the quantity
(
Gij(z1, z2)u(z1, z2)

)
2�+i,2m+j

represents
the (2� + i, 2m + j)-coefficient of the polynomial
Gij(z1, z2)u(z1, z2).

The corresponding 2D (2,2)-periodic convolutional
code Cp is

Cp = {w(z1, z2) ∈ F
n[z1, z2] :

∃u(z1, z2) ∈ F
k[z1, z2] such that (4) holds},

w(z1, z2) = ΦG00,G10,G01,G11(u(z1, z2)). (4)

Such codes will be called 2D (2,2)-periodic convolutional
codes.

We consider a special class of 2D polynomial
matrices Gij(z1, z2) that can be factored as

Gij(z1, z2) = V j(z2)H
i(z1),

where Hi(z1) ∈ F
q×k[z1] and V j(z2) ∈ F

n×q[z2] are 1D
polynomial matrices, i = 0, 1.

Therefore, the previous 2D (2,2)-periodic
convolutional code Cp can be defined as

Cp = {w(z1, z2) ∈ F
n[z1, z2] :

∃u(z1, z2) ∈ F
k[z1, z2] such that (5) holds},

w(z1, z2) = ΦV 0H0,V 0H1,V 1H0,V 1H1(u(z1, z2)). (5)

4. 2D state space realizations

Here we focus on the state space realizations of the special
class of 2D periodic convolutional codes introduced in
the previous section by means of 2D periodic Roesser
models. In general, this is a nontrivial matter, mainly
due to the fact that a 2D periodic state space realization
cannot be obtained by independently realizing each of
the invariant polynomial operators Gij = V jHi (Aleixo
and Rocha, 2017). However, in this paper we show
that under certain conditions this problem does not arise,
i.e., combining independent realizations of the invariant
operators Gij does yield a 2D periodic realization of the
corresponding 2D periodic convolutional code. Before
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presenting our result, we first consider the invariant 2D
case.

As in Section 2.3, we sometimes identify an element

a(z1, z2) =

N1∑
i=0

N2∑
j=0

ai,jz
i
1z

j
2 ∈ F[z1, z2]

with the finite support sequence a0,0 = (a(z1, z2))0,0,
a1,0 = (a(z1, z2))1,0, . . . , aN1,N2 = (a(z1, z2))N1,N2

formed by its coefficients, and also write a(�,m) to denote
a�,m = (a(z1, z2))�,m. The same applies to vectors with
components in F[z1, z2].

4.1. Invariant 2D case. As is well known, in the 2D
invariant case, a separable Roesser model realization for a
code

C={w(z1, z2) ∈ F
n[z1, z2] :

w(z1, z2)=G(z1, z2)u(z1, z2), u(z1, z2) ∈ F
k[z1, z2]},

where
G(z1, z2) = V (z2)H(z1),

can be obtained as the series connection of the
1D state space realizations of H and V . Indeed,
if (Ah, Bh, C̃h, Dh) and (Av, B̃v, Cv, Dv) are
respectively state space realizations of H (z1)
and V (z2), then the separable Roesser model
Σ = (Ah, Av, Avh, Bh, Bv, Ch, Cv, D):

⎧⎪⎨
⎪⎩

xh(i + 1, j)=Ahxh(i, j) +Bhu(i, j),

xv(i, j + 1)=Avhxh(i, j) +Avxv(i, j) +Bvu(i, j),

w(i, j)=Chxh(i, j) + Cvxv(i, j) +Du(i, j),
(6)

with Avh = B̃vC̃h, Bv = B̃vDh, Ch = DvC̃h and D =
DvDh, is a realization of C in the sense that the codewords
w in C coincide with the outputs of (6) produced by the
same input u with zero initial conditions, i.e., xh(0, j) =
0 and xv(i, 0) = 0, i, j ∈ N0. Moreover, we assume
that the dimensions of the horizontal and vertical states,
xh(i, j) and xv(i, j), are δh and δv, respectively.

In the sequel the minimality of separable Roesser
models will be studied. We start with some preliminary
definitions and results.

Definition 5. The horizontal and vertical controllability
matrices of the separable Roesser model (6) are defined
respectively as

Ch =
[
Bh AhBh · · · (

Ah
)δh−1

Bh
]

∈ F
δh×kδh ,

(7)

Cv =
[
Bδh AvBδh · · · (Av)

δv−1
Bδh

]

∈ F
δv×δvk(δh+1),

(8)

with Bδh =
[
Bv AvhCh

] ∈ F
δv×k(δh+1).

Definition 6. The vertical and horizontal observability
matrices of the separable Roesser model (6) are defined
respectively as

Ov

=
[
(Cv)

�
(CvAv)

� · · · (
Cv (Av)

δv−1 )� ]�

∈ F
nδv×δv ,

(9)

Oh

=

[
(Cδv )

� (
CδvA

h
)� · · ·

(
Cδv

(
Ah
)δh−1

)� ]�

∈F
δhn(δv+1)×δh ,

(10)

with

Cδv =

[
Ch

OvA
vh

]
∈ F

n(δv+1)×δh .

The following proposition is well known.1

Proposition 2.

1. The pair (Ah, Bh) is controllable if and only if
rankCh = δh.

2. The pair (Av, Bδh) is controllable if and only if
rankCv = δv .

3. The pair (Av, Cv) is observable if and only if
rankOv = δv .

4. The pair (Ah, Cδv ) is observable if and only if
rankOh = δh.

For separable Roesser models, separable
controllability and separable observability are defined as
follows.

Definition 7. The 2D separable Roesser model (6) is said
to be

1. separately locally controllable if (Ah, Bh) and
(Av, Bδh) are controllable;

2. separately locally observable if (Av, Cv) and
(Ah, Cδv ) are observable.

Hinamoto (1980) presented a necessary and
sufficient condition for the minimality of a separable
Roesser model, which we state in the next result using the
language of codes.

Theorem 3. Let G(z1, z2) ∈ F
n×k[z1, z2] be an en-

coder of a convolutional code C. Then the separable
Roesser model Σ = (Ah, Av, Avh, Bh, Bv, Ch, Cv, D)
given by (6) is a minimal realization of the encoder
G(z1, z2) if and only if is separately locally controllable
and separately locally observable.

1Note that previously (before stating Proposition 1) we gave an alter-
native definition of a controllable and observable pair.
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In the next theorem we provide a simpler
characterization for the minimality of a separable
Roesser model.

Theorem 4. Let G(z1, z2) ∈ F
n×k[z1, z2] be an en-

coder of a convolutional code C. Then the separable
Roesser model Σ = (Ah, Av, Avh, Bh, Bv, Ch, Cv, D)
given by (6) is a minimal realization of the encoder
G(z1, z2) if and only if the following conditions hold:

1. (Ah, Bh) and
(
Av,
[
Bv Avh

])
are controllable.

2. (Av, Cv) and

(
Ah,

[
Ch

Avh

])
are observable.

The next two auxiliary lemmas immediately prove
the previous theorem.

Lemma 1. The 2D separable Roesser model (6) is sep-
arately locally controllable if and only if (Ah, Bh) and(
Av,
[
Bv Avh

])
are controllable.

Proof.
(Necessity) By definition of separately locally
controllable, we have that the matrices Ch and Cv

have full row rank. Defining the matrices

M =
[
Bv Avh

]
, Ch =

[
Iδv 0
0 Ch

]
,

Ch =

⎡
⎢⎣

Ch 0
. . .

0 Ch

⎤
⎥⎦ ,

we have that

Bδh =
[
Bv AvhCh

]
= MCh

and, in turn,

Cv =
[
Bδh AvBδh · · · (Av)δv−1 Bδh

]
= Cv Ch,

with

Cv =
[
M AvM · · · (Av)δv−1 M

]
.

Since Ch has full row rank, clearly both matrices

Ch and Ch also have full row rank. Moreover, by
hypothesis, Cv has full row rank, which implies that
Cv must also have full row rank. This means that
(Av,M) =

(
Av,
[
Bv Avh

])
is controllable.

(Sufficiency) Assuming the hypothesis, it suffices to prove
that the pair (Av, Bδh) is controllable, i.e., that the matrix
Cv has full row rank. Adopting the notation of the
necessity part, we have that

Cv = Cv Ch.

Since
(
Av,
[
Bv Avh

])
is controllable, Cv has full

row rank. Furthermore, Ch has full row rank because
Ch also does so by the hypothesis of controllability of
(Ah, Bh), and the result follows. �

Lemma 2. The 2D separable Roesser model (6) is
separately locally observable if and only if (Av, Cv) and(
Ah,

[
Ch

Avh

])
are observable.

Proof. The proof is analogous to the one of the previous
lemma. �

4.2. Periodic 2D case. Analogously to the invariant
2D case, under certain conditions, in the 2D periodic
case, a periodic separable Roesser model realization can
be obtained as a series connection of two 1D periodic state
space realizations of periodic operators H2k+i ≡ Hi and
V 2�+j ≡ V j , i, j = 0, 1, k, l ∈ Z.

Consider the (2,2)-periodic encoding map

ΦV 0H0,V 0H1,V 1H0,V 1H1 ,

and let further Σh
i = (Ah

i , B
h
i , C̃

h
i , D

h
i ) and Σv

j =

(Av
j , B̃

v
j , C

v
j , D

v
j ) be state space realizations of the

invariant operators Hi and V j , i, j = 0, 1, respectively.
Assume that Σh

0 and Σh
1 have the same state dimensions

and that the same happens for Σv
0 and Σv

1. Combining
these realizations yields the following (2,2)-periodic 2D
separable Roesser state space system Σ2D

p :

[
xh(2�+ i+ 1, 2m+ j)

xv(2�+ i, 2m+ j + 1)

]

=

⎡
⎣Ah

i 0

Avh
ij Av

j

⎤
⎦
[
xh(2�+ i, 2m+ j)

xv(2�+ i, 2m+ j)

]

+

⎡
⎣B

h
i

Bv
ij

⎤
⎦u(2�+ i, 2m+ j),

w(2�+ i, 2m+ j)

=
[
Ch

ij Cv
j

]
[
xh(2�+ i, 2m+ j)

xv(2�+ i, 2m+ j)

]

+Diju(2�+ i, 2m+ j),

(11)

with Avh
ij = B̃v

j C̃
h
i , Bv

ij = B̃v
jD

h
i , Ch

ij = Dv
j C̃

h
i , and

Dij = Dv
jD

h
i .
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Note that for each pair of fixed values of i and j
this periodic 2D system is an invariant separable 2D state
space system

Σ(i,j) =
(
Ah

i , A
v
j , A

vh
ij , B

h
i , B

V
ij , C

h
ij , C

v
j , Dij

)
.

Similar to what happens in the 1D case, we say that Σ2D
p

is obtained from Σ(0,0), Σ(1,0), Σ(0,1), and we Σ(1,1) and
write Σ2D

p =
(
Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)

)
.

As shown in the following example, the
2D (2,2)-periodic Roesser state space system
Σ2D

p =
(
Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)

)
is not necessarily a

realization of the (2,2)-periodic encoding map

ΦV 0H0,V 0H1,V 1H0,V 1H1 .

Example 1. Consider the (2,2)-periodic encoding map

ΦV 0H0,V 0H1,V 1H0,V 1H1 ,

with

H0 (z1) = H0
0 +H0

1z1 +H0
2z

2
1

=

⎡
⎢⎢⎣
1 + z21 1 0
z21 1 + z1 1

1 + z1 1 1
1 1 1 + z1

⎤
⎥⎥⎦ ,

H1 (z1) = H1
0 +H1

1z1 +H1
2z

2
1

=

⎡
⎢⎢⎣
1 + z1 1 0
1 + z21 1 + z1 1

1 1 + z21 1
0 1 1

⎤
⎥⎥⎦ ,

V 0 (z2) = (1 + z2) I4 V 1 (z2) = (1 + 2z2) I4.

Realizing H0 (z1) as in Proposition 1 we obtain the
state-space realization Σh

0 = (Ah
0 , B

h
0 , C̃

h
0 , D

h
0 ) with

Ah
0 =

⎡
⎢⎢⎣
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, Bh

0 =

⎡
⎢⎢⎣
1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦,

C̃h
0 =

⎡
⎢⎢⎣
0 1 0 0
0 1 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦, Dh

0 =

⎡
⎢⎢⎣
1 1 0
0 1 1
1 1 1
1 1 1

⎤
⎥⎥⎦.

Proceeding in the same way, we obtain a state-space
realization Σh

1 = (Ah
1 , B

h
1 , C̃

h
1 , D

h
1 ) for H1 (z1) with

Ah
1 =

⎡
⎢⎢⎣
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦, Bh

1 =

⎡
⎢⎢⎣
1 0 0
0 0 0
0 1 0
0 0 0

⎤
⎥⎥⎦,

C̃h
1 =

⎡
⎢⎢⎣
1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦, Dh

1 =

⎡
⎢⎢⎣
1 1 0
1 1 1
1 1 1
0 1 1

⎤
⎥⎥⎦.

As for V 0 (z2) and V 1 (z2), it is easily seen that they
can be realized by Σv

0 = (Av
0 , B̃

v
0 , C

v
0 , D

v
0) and Σv

1 =
(Av

1 , B̃
v
1 , C

v
1 , D

v
1) with

Av
0 = 04, B̃v

0 = Cv
0 = Dv

0 = I4

and

Av
1 = 04, B̃v

0 = Dv
0 = I4, Cv

0 = 2I4,

where 04 denotes the 4× 4 zero matrix.

For every t2 ∈ N0, consider

u(0, t2) =

⎡
⎣
0
0
1

⎤
⎦, u(1, t2) =

⎡
⎣
0
0
0

⎤
⎦

u(t1, t2) = 0, t1 ≥ 2.

From (5) it follows that, for m ∈ N0, j = 0, 1,

w(1, 2m+j)=
(
V j(z2)H

1(z1)u(z1, z2)
)
(1, 2m+j)

=
(
V j(z2)ū(z1, z2)

)
(1, 2m+j),

where

ū(1, 2m+ j)

= H1
0u(1, 2m+ j) +H1

1u(0, 2m+ j)

=

⎡
⎢⎢⎣
1 1 0
1 1 1
1 1 1
0 1 1

⎤
⎥⎥⎦

⎡
⎣
0
0
0

⎤
⎦+

⎡
⎢⎢⎣
1 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥⎦

⎡
⎣
0
0
1

⎤
⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦.

Thus

w(1, 2m+ j) =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦, m ∈ N0, j = 0, 1

or simply

w(1, t2) =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ for t2 ∈ N0.

On the other hand, using (11), we have

w(1, 0) =
[
Ch

10 Cv
0

]
[
xh(1, 0)

xv(1, 0)

]
+D10u(1, 0).
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Note that, since the initial conditions must be zero
(according to our definition of realization), xv(1, 0) = 0
and xh(0, 0) = 0. Moreover,

xh(1, 0) = Ah
0x

h(0, 0) +Bh
0u(0, 0)

=

⎡
⎢⎢⎣
1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦

⎡
⎣
0
0
1

⎤
⎦ =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦.

Hence

w(1, 0) = Ch
10x

h(1, 0)

= Dv
0 C̃

h
1 x

h(1, 0)

= I4

⎡
⎢⎢⎣
1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦,

i.e., the output w of the 2D (2,2)-periodic Roesser state
space system Σ2D

p corresponding to v is different from
the trajectory w corresponding to u according to (5). �

However, the next theorem shows that it is possible to
obtain periodic 2D separable Roesser model realizations
for 2D periodic encoding maps (5) by independently
realizing the operators V 0, V 1, and H0, H1, provided that
V 0 and V 1 have the same column degrees and the same
happens for H0 and H1.

Theorem 5. Consider the polynomial matrices
H0 (z1) , H

1 (z1) ∈ F
q×k [z1], and assume that they have

the same column degrees. Let Σh
i be the realizations

of Hi (z1) , i = 0, 1, obtained by Proposition 1. Con-
sider further the polynomial matrices V 0 (z2) , V

1 (z2) ∈
F
q×n [z2], and assume that they have the same column de-

grees. Let Σv
j be the realizations of V j (z2) , j = 0, 1, ob-

tained by Proposition 1. Define the 2D periodic Roesser
separable model Σ2D

p obtained from Σh
i andΣv

j as in (11).
Then Σ2D

p is a state space realization of the 2D periodic
encoding map given by (5).

Proof. Note that, since H0(z1) and H1(z1) have the
same column degrees, it follows that the corresponding
realizations Σh

i = (Ah
i , B

h
i , C̃

h
i , D

h
i ), i = 0, 1, are such

that Ah
0 = Ah

1 and Bh
0 = Bh

1 . Let us consider Ah :=
Ah

0 = Ah
1 and Bh := Bh

0 = Bh
1 . For the same reason the

realizations Σv
j = (Av

j , B̃
v
j , C

v
j , D

v
j ), j = 0, 1, are such

that Av
0 = Av

1 and B̃v
0 = B̃v

1 . Let Av := Av
0 = Av

1 and
B̃v := B̃v

0 = B̃v
1 .

Then, after simple, but cumbersome computations,
one concludes that the output w of Σ2D

p =
(Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)), with

Σ(i,j) =
(
Ah, Av, Avh

ij = B̃vC̃h
i , B

h, Bv
ij = B̃vDh

i ,

Ch
ij = Dv

j C̃
h
i , C

v
j , Dij

)
,

which corresponds to the input u and zero initial
conditions

(
xh(0, t2) = 0, xv(t1, 0) = 0

)
, is such that, for

�,m ∈ N0, i, j = 0, 1,

w(2� + i, 2m+ j)

= Dv
jD

h
i v(2�+ i, 2m+ j)

+
∑
t1≥1

Ch
ij(A

h)t1−1Bhu(2�+ i− t1, 2m+ j)

+
∑
t2≥1

Cv
j (A

v)t2−1Bv
ijv(2�+ i, 2m+ j − t2)

+
∑

t1,t2≥1

Cv
j (A

v)t2−1Avh
ij (A

h)t1−1

×Bhv(2�+ i− t1, 2m+ j − t2).

Let us now show that the codeword

w̃ =
(
V j(z2)H

i(z1)
)
u

equals w. For that purpose, note that, since Σh
0 =

(Ah, Bh, C̃h
0 , D

h
0 ) is a realization of H0, we have that

H0(z1) = Dh
0 +

∑
t1≥1

C̃h
0 (A

h)t1−1Bhzt11 .

In the same way,

H1(z1) = Dh
1 +

∑
t1≥1

C̃h
1 (A

h)t1−1Bhzt11 ,

V 0(z2) = Dv
0 +

∑
t2≥1

Cv
0 (A

v)t2−1B̃vzt22 .

and

V 1(z2) = Dv
1 +

∑
t2≥1

Cv
1 (A

v)t2−1B̃vzt22 .

Thus

w̃(2�+ i, 2m+ j)

=
∑

0≤t1≤2k+i
0≤t2≤2l+j

G(i, j)u(2�+ i− t1, 2m+ j − t2),

where G(i, j) is the coefficient of zi1z
j
2 of the polynomial

matrix in z1 and z2, V j(z2)H
i(z1).

It is not difficult to check that

V j(z2)H
i(z1)

= Dv
jD

h
i +

∑
t1≥1

Dv
j C̃

h
i (A

h)t1−1Bhzt11

+
∑
t2≥1

Cv
j (A

v)t2−1B̃vDh
i z

t2
2

+
∑

t1,t2≥1

Cv
j (A

v)t2−1B̃vC̃h
i (A

h)t1−1Bhzt11 zt22 .
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Taking into account that Ch
ij = Dv

j C̃
h
i , Bv

ij = B̃vDh
i and

Avh
ij = B̃vC̃h

i , this allows us to conclude that w̃ = w.
�

In order to study the minimality of the 2D state space
realization (11), we start by defining its lifted version.

4.3. Lifted 2D realization. Following the ideas
of Aleixo and Rocha (2017; 2018), consider the
(2,2)-periodic 2D separable Roesser state space system
Σ2D

p given by (11) and define the lifted versions of the
horizontal and vertical states as

Xh(�,m) =

[
xh(2�, 2m)

xh(2�, 2m+ 1)

]

and

Xv(�,m) =

[
xv(2�, 2m)

xv(2�+ 1, 2m)

]
,

respectively; define also the lifted versions of the input
and the output respectively as

uL(�,m) =

⎡
⎢⎢⎣

u(2�, 2m)
u(2�+ 1, 2m)
u(2�, 2m+ 1)

u(2�+ 1, 2m+ 1)

⎤
⎥⎥⎦

and

wL(�,m) =

⎡
⎢⎢⎣

w(2�, 2m)
w(2� + 1, 2m)
w(2�, 2m+ 1)

w(2�+ 1, 2m+ 1)

⎤
⎥⎥⎦ .

This yields the following 2D invariant separable Roesser
model:

[
Xh(�+ 1,m)

Xv(�,m+ 1)

]
= P

[
Xh(�,m)

Xv(�,m)

]
+QuL(�,m),

wL(�,m) = R

[
Xh(�,m)

Xv(�,m)

]
+ SuL(�,m),

(12)

where the matrices P,Q,R and S are constant and can be
decomposed as follows:

P =

[
P h 0

P vh P v

]
, Q =

[
Qh

Qv

]
, R =

[
Rh Rv

]
,

(13)

with the dimensions of the blocks determined by the
dimensions of Xh and Xv and, moreover, where

P h =

[
Ah

1A
h
0 0

0 Ah
1A

h
0

]
, P v =

[
Av

1A
v
0 0

0 Av
1A

v
0

]
,

P vh =

[
Av

1B̃
v
0 C̃

h
0 B̃v

1 C̃
h
0

Av
1B̃

v
0 C̃

h
1A

h
0 B̃v

1 C̃
h
1A

h
0

]
,

(14)

Qh =

[
Ah

1B
h
0 Bh

1 0 0

0 0 Ah
1B

h
0 Bh

1

]
,

Qv =

[
Av

1B̃
v
0D

h
0 0 B̃v

1D
h
0 0

Av
1B̃

v
0 C̃

h
1B

h
0 Av

1B̃
v
0D

h
1 B̃v

1 C̃
h
1B

h
0 B̃v

1D
h
1

]
,

(15)

Rh =

⎡
⎢⎢⎢⎢⎣

Dv
0 C̃

h
0 0

Dv
0 C̃

h
1A

h
0 0

Cv
1 B̃

v
0 C̃

h
0 Dv

1C̃
h
0

Cv
1 B̃

v
0 C̃

h
1A

h
0 Dv

1C̃
h
1A

h
0

⎤
⎥⎥⎥⎥⎦
,

Rv =

⎡
⎢⎢⎢⎢⎣

Cv
0 0

0 Cv
0

Cv
1A

v
0 0

0 Cv
1A

v
0

⎤
⎥⎥⎥⎥⎦
, (16)

S =

⎡
⎢⎢⎢⎢⎣

Dv
0D

h
0 0 0 0

Dv
0 C̃

h
1B

h
0 Dv

0D
h
1 0 0

Cv
1 B̃

v
0D

h
0 0 Dv

1D
h
0 0

Cv
1 B̃

v
0 C̃

h
1B

h
0 Cv

1 B̃
v
0D

h
1 Dv

1C̃
h
1B

h
0 Dv

1D
h
1

⎤
⎥⎥⎥⎥⎦
.

(17)
We denote this 2D invariant lifted model by
ΣL = (P,Q,R, S).

5. Minimality

Theorem 6. Let H0 (z1) , H
1 (z1) ∈ F

q×k [z1] be
two column reduced encoders with the same column de-
grees, and let V 0 (z2) , V

1 (z2) ∈ F
q×n [z2] be also

two column reduced encoders with the same column de-
grees. Let further Σh

i = (Ah, Bh, C̃h
i , D

h
i ) and Σv

j =
(Av, Bv, Cv

j , D
v
j ) be respectively 1D state space realiza-

tions of Hi (of dimension δh) and V j (of dimension δv),
i, j = 0, 1, obtained as in Proposition 1. Define the 2D
periodic Roesser separable model Σ2D

p obtained from Σh
i

and Σv
j as in (11). If the matrix

M =

[
C̃h

0 Dh
0 0

C̃h
1A

h C̃h
1B

h Dh
1

]
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rank
[ [

AhBh Bh
] [(

Ah
)3

Bh
(
Ah
)2

Bh
]

· · ·
[(
Ah
)4δh−1

Bh
(
Ah
)4δh−2

Bh
] ]

= δh (18)

has full row rank and the matrix

N =

⎡
⎣

Dv
0 0

Cv
1B

v Dv
1

AvBv Bv

⎤
⎦

has full column rank, then Σ2D
p is a minimal state

space realization of the 2D periodic encoding map
ΦV 0H0,V 0H1,V 1H0,V 1H1 given by (5).

Proof. The proof of this theorem is a direct consequence
of the next four lemmas. �

The next lemma follows immediately from the
definition of the lifted system.

Lemma 3. Σ2D
p is a minimal state space realization if

and only if ΣL is minimal.

As a consequence of the previous lemma, to prove
Theorem 6 we just need to prove that the lifted realization
ΣL = (P,Q,R, S) given by (12) is separately locally
controllable and separately locally observable. We start
with the proof of the separate local controllability of ΣL.

Lemma 4. In the conditions of Theorem 6, the realiza-
tion ΣL = (P,Q,R, S) given by (12) is separately locally
controllable.

Proof. By Lemma 1, we just have to prove
that the matrices (P h, Qh) and

(
P v,
[
Qv P vh

])
are

controllable, where the involved matrices are defined
by (14) and (15) with Ah

1 = Ah
0 = Ah, Av

1 = Av
0 = Av ,

Bh
1 = Bh

0 = Bh and Bv
1 = B̃v

0 = B̃v.

By Proposition 2, we have that (P h, Qh) is
controllable if and only if

rank
[
Qh P hQh · · · (

P h
)2δh−1

Qh
]
= 2δh,

which is equivalent to (18), and this last equality is true
because (Ah, Bh) is controllable by Proposition 1 (note
that the matrix in the expression contains all the column
blocks of the controllability matrix Ch of (Ah, Bh)).

In order to prove the controllability of(
P v,
[
Qv P vh

])
, note that P v , P vh and Qv are

given by

P v =

[
(Av)2 0

0 (Av)
2

]
,

P vh =

[
AvBvC̃h

0 BvC̃h
0

AvBvC̃h
1A

h BvC̃h
1A

h

]
,

Qv =

[
AvBvDh

0 0 BvDh
0 0

AvBvC̃h
1B

h AvBvDh
1 BvC̃h

1B
h BvDh

1

]
.

Applying block column permutations and defining the
matrix

M =

[
C̃h

0 Dh
0 0

C̃h
1A

h C̃h
1B

h Dh
1

]
,

the pair
(
P v,
[
Qv P vh

])
becomes

([
(Av)2 0

0 (Av)
2

]
,

[ [
Bv 0

0 Bv

]
M

[
AvBv 0

0 AvBv

]
M

])
.

(19)

Therefore, by Proposition 2 we have that(
P v,
[
Qv P vh

])
is controllable if and only if

(20), holds or, equivalently, (21) which is clearly true
since the matrix M has full row rank and (Av, Bv) is
controllable by Proposition 1. �

To prove that the realization ΣL = (P,Q,R, S)
given by (12) is separately locally observable, we will first
prove the next auxiliary lemma.

Lemma 5. Let ν1, ν2, . . . , νk be nonnegative integers and
define the matrix A = diag(A1, A2, . . . , Ak), where

Ai =

⎡
⎢⎢⎢⎣

0 · · · · · · 0

1
...

. . .
...

1 0

⎤
⎥⎥⎥⎦ ∈ F

νi×νi .

In the case where νi = 0 the i-th block of A is void.

Consider two matrices C0, C1 ∈ F
n×νk , with

νj =
∑j

i=1 νi, j = 1, . . . , k, such that [C0]ν1,ν2,...,νk

and [C1]ν1,ν2,...,νk
have full column rank, where

[Ci]ν1,ν2,...,νk
represents the submatrix of Ci, i = 0, 1,

with columns ν1, ν2, . . . , νk.

Then the matrix
⎡
⎢⎢⎢⎢⎢⎣

C0

C1A
C0A

2

...
CrA

ν−1

⎤
⎥⎥⎥⎥⎥⎦
,

where ν = max νi, i = 1, . . . , k and r = (ν − 1)mod 2,
has full column rank.

Proof. Define ν
(n)
j = νj − n if νj − n ≥ 0 (otherwise

ν
(n)
j is not defined). By assumption, [C0]ν1,ν2,...,νk

has
full column rank. Note that the columns ν1, ν2, . . . , νk of
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rank

[ [
Bv 0

0 Bv

]
M

[
AvBv 0

0 AvBv

]
M

[
(Av)2 Bv 0

0 (Av)
2
Bv

]
M

[
(Av)3 Bv 0

0 (Av)
3
Bv

]
M · · ·

]

= 2δv (20)

rank

[[ [
Bv 0

0 Bv

] [
AvBv 0

0 AvBv

] [
(Av)

2
Bv 0

0 (Av)
2
Bv

] [
(Av)

3
Bv 0

0 (Av)
3
Bv

]
· · ·
]
diag(M)

]

= 2δv, (21)

A are zero, which implies that the columns of the same
index of ⎡

⎢⎢⎢⎣

C1A
C0A

2

C1A
3

...

⎤
⎥⎥⎥⎦

are also zero. Moreover,

[C1A]ν(1)
1 ,ν

(1)
2 ,...,ν

(1)
k

= [C1]ν1,ν2,...,νk

has full column rank.

In the same way, the columns
ν1, ν

(1)
1 ν2, ν

(1)
2 . . . , νk, ν

(1)
k of A2 are also zero and

therefore the columns of the same index of
⎡
⎢⎣

C0A
2

C1A
3

...

⎤
⎥⎦

are also zero, and
[
C0A

2
]
ν
(2)
1 ,ν

(2)
2 ,...,ν

(2)
k

= [C0]ν1,ν2,...,νk

has full column rank.

Proceeding analogously, it is easy to check that

⎡
⎢⎢⎢⎢⎢⎣

C0

C1A
C0A

2

...
CrA

ν−1

⎤
⎥⎥⎥⎥⎥⎦

has full column rank. �

Lemma 6. In the conditions of Theorem 6, the realiza-
tion ΣL = (P,Q,R, S) given by (12) is separately locally
observable.

Proof. By Lemma 2, it is sufficient to prove that

the matrices (P v, Rv) and
(
P h,
[

Rh

Pvh

])
are observable,

where the involved matrices are defined by (14) and (16)

with Ah
1 = Ah

0 = Ah, Av
1 = Av

0 = Av , Bh
1 = Bh

0 = Bh

and Bv
1 = B̃v

0 = B̃v .
The observability of (P v, Rv) follows immediately

by Proposition 2 and Lemma 5.

In order to prove the observability of
(
P h,
[

Rh

Pvh

])

note that this pair is equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[(
Ah
)2

0

0
(
Ah
)2
]
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dv
0 C̃

h
0 0

Dv
0C̃

h
1A

h 0

Cv
1B

vC̃h
0 Dv

1C̃
h
0

Cv
1B

vC̃h
1A

h Dv
1 C̃

h
1A

h

AvBvC̃h
0 BvC̃h

0

AvBvC̃h
1A

h BvC̃h
1A

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)
Applying block row permutations and defining the matrix

N =

⎡
⎣

Dv
0 0

Cv
1B

v Dv
1

AvBv Bv

⎤
⎦

that has full column rank, by assumption, the pair (22) can
be written as
⎛
⎜⎜⎜⎜⎜⎜⎝

[(
Ah
)2

0

0
(
Ah
)2
]
,

⎡
⎢⎢⎢⎢⎢⎢⎣

N

[
C̃h

0 0

0 C̃h
0

]

N

[
C̃h

1A
h 0

0 C̃h
1A

h

]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(23)
The rest of the proof is analogous to the final part of the
proof of Lemma 4 taking in account Lemma 5. �
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