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Using the phase space approach, we consider the quantum dynamics of a wave packet in an isolated confined system with
three different potential energy profiles. We solve the Moyal equation of motion for the Wigner function with the highly
efficient spectral split-operator method. The main aim of this study is to compare the accuracy of the employed algorithm
through analysis of the total energy expectation value, in terms of deviation from its exact value. This comparison is
performed for the second and fourth order factorizations of the time evolution operator.
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1. Introduction

The theory of quanta revolutionized the way of thinking
about physical phenomena in the microscopic world and
introduced an abstract mathematical formalism based on
some concepts of functional analysis. The structure of
quantum theory is determined by a set of independent
axioms which incorporates the probabilistic aspect of
measurements of dynamical variables. Thereby quantum
theory has a statistical character. Usually, we assume that
states of a physical system are represented by abstract
vectors |ψ(t)〉 in the Hilbert space. Nevertheless, in
some physical situations, the description of the system
states in terms of the abstract vectors is not sufficient
because the states are known only statistically. To
meet these challenges, quantum-statistical theory offers a
more general approach in which the state of a system is
described by the density operator ρ̂(t). Its form, in the
spectral representation, is given by a convex combination
of the rank-one orthogonal projection operators onto the
abstract vectors (Ter Haar, 1961), i.e.,

ρ̂(t) =
∑

n

pn |φn(t)〉 〈φn(t)| , (1)

where pn is the probability of finding the system in a
pure state |φn(t)〉 at time instant t. Time evolution of
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the density operator is governed by the von Neumann
equation,

i�
d

dt
ρ̂(t) =

[
Ĥ(x̂, p̂), ρ̂(t)

]
, (2)

where the symbol [·, ·] stands for the commutator of two
operators, � is the reduced Planck constant, and i is the
imaginary unit.

The above equation of motion describes the
non-dissipative evolution of the density operator for an
isolated (closed) system which is characterized by the
one-particle Hamiltonian in the form

Ĥ(x̂, p̂) =
p̂2

2m
+ U(x̂), (3)

where m is the mass of a particle, while x̂ and p̂
are respectively the noncommuting position and the
momentum operators obeying the following commutation
relation:

[x̂, p̂] = i�1̂, (4)

where the symbol 1̂ denotes the unit operator. Moreover,
U(x̂) is the operator of the potential energy.

The expectation value of any dynamical observable
which is represented by a Hermitian operator Â is
obtained by the formula

〈A(t)〉 = Tr
{
ρ̂(t)Â

}
, (5)
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where the symbolTr{·} indicates the trace of the operator.
Hence it can be concluded that the density operator in
the quantum-statistical description of the system plays a
similar role as the probability distribution function over
the phase space in the statistical description of a classical
system.

The relationship between the density operator and
the function of phase-space variables was established by
Wigner (1932), who applied the Weyl transform (Pool,
1966; Ozorio de Almeida, 1998) to the density operator.
As a result, the following c-number function (Baker, 1958;
Tatarskiı̆, 1983; Hillery et al., 1984; Balazs and Jennings,
1984; Lee, 1995), which depends on the position and
momentum coordinates, is obtained:

�(x, p; t) =
1

2π�

∫
dX

〈
x+

X

2

∣∣∣∣ ρ̂(t)
∣∣∣∣x−

X

2

〉

× exp

[
− ipX

�

]
. (6)

Nowadays this function is known as the Wigner
distribution function (WDF). In fact, it can take negative
values in some regions of the phase space, and therefore
it is regarded as a quasi-probability density in this
space. It is worth mentioning that the negativity
of the WDF exhibits non-classical properties of the
state and can be used as an indicator of quantum
phenomena in the system (Benedict and Czirják, 1999;
Kenfack and Życzkowski, 2004; Sadeghi et al., 2010;
Kenfack, 2016; Khademi et al., 2016). It should
be also emphasized that the WDF plays the role
of a state in the so-called phase-space formulation
of quantum mechanics (Baker, 1958; Curtright and
Zachos, 2012; Błaszak and Domański, 2010), in which
a non-commutative algebra of smooth observables
represented by ordinary c-number functions is generated
by the Groenewold star-product

∗ = exp

[
i�

2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

)]
, (7)

where the arrows indicate in which direction the
derivatives act.

In practice, this product may be evaluated through
translation of the argument of the phase-space function in
the following way:

(f ∗ g)(x, p) = f

(
x+

i�

2

−→
∂p, p−

i�

2

−→
∂x

)
g(x, p). (8)

Hence, one can conclude that the star-product of two such
functions is described by a power series in the form

(f∗g)(x, p) = (fg)(x, p)+
i�

2
{f, g} (x, p)+O(�2), (9)

where the first term in the series is the pointwise product,
and the second term is the Poisson bracket.

The aforementioned expression suggests that the
quantum mechanics in the phase space may be regarded
as a deformation theory of classical mechanics (Bayen
et al., 1977; 1978a; 1978b). Presently, this formulation
is exploited in some branches of modern physics and
chemistry, i.e., it is applied in quantum-statistical studies
of transport processes (Xue and Prodan, 2012; Leung
and Prodan, 2013), quantum optics (Isar and Scheid,
2004), or quantum field theory (Lechner, 2011), and it
is also very inspiring for some branches of mathematics
such as deformation of the Lie algebras (Delius and
Hüffmann, 1996), or non-commutative or symplectic
geometry (Castellani, 2000).

The subject of this report is the exploration of
two variants of the spectral split-operator method in
application to the phase-space propagation of the quantum
state in small confined systems. Originally, the
spectral split-operator method was proposed to solve the
Schrödinger equation (Feit et al., 1982). Then this
method was adapted to the solution of the Liouville
equation (Torres-Vega and Frederick, 1982; Dattoli et al.,
1995; Gómez et al., 2014), and it is often used to
simulate the dynamics of states in molecular systems.
We performed comparative studies of this numerical
method in the second and fourth orders. For this
purpose we consider the initially localized WDF and its
dynamics in the harmonic potential and the class of the
power-exponential potentials (Ciurla et al., 2002). These
dynamics are generated by Moyal’s equation of motion.

The paper is organized as follows. In Section 2 we
present the theoretical background of quantum mechanics
in the phase space, i.e., basic concepts and notation for the
Moyal dynamics in the phase space. Then we introduce
some elements of the spectral split-operator method of the
second and fourth order applied to the Moyal equation.
Section 3.1 contains the results of calculations and their
discussion, and conclusions are presented in Section 4.

2. Theory

In the phase-space formulation of quantum mechanics, the
system considered is characterized by the Weyl symbol
of the Hamiltonian, which can be written in the position
representation as follows (Baker, 1958; Tatarskiı̆, 1983):

HW (x, p) =

∫
dX

〈
x+

X

2

∣∣∣∣ Ĥ(x̂, p̂)

∣∣∣∣x−
X

2

〉

× exp

[
− ipX

�

]
, (10)

where Ĥ(x̂, p̂) corresponds to the Hermitian Hamiltonian
in the form given by Eqn. (3). As mentioned at the
beginning, the state of the system in the phase space is
given by the WDF. In turn, its unitary evolution in time
can be described by the equation of motion in the Moyal
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form (Hiley, 2015),

∂�(x, p; t)

∂t
= L̂M�(x, p; t), (11)

where the operator L̂M is given by the Moyal
bracket which is defined, for a given Weyl symbol
of the Hamiltonian, as a skew-symmetric part of the
star-product, i.e.,

L̂M�(x, p; t) =
1

i�
[HW (x, p) ∗ �(x, p; t)

− �(x, p; t) ∗HW (x, p)]

= {HW (x, p), �(x, p; t)}M . (12)

This means that the Moyal bracket emerges as a generator
of quantum dynamics of the state in the phase space.

The Moyal equation (11) with an appropriate
boundary condition generates the continuous dynamical
system (R2, Û(t)), where R

2 is the phase space, and the
evolution operator Û(t) is defined by the relation

�(x, p; t) = Û(t)�(x, p; 0). (13)

The explicit form of the evolution operator Û(t) is given

by the formula Û(t) = exp
[
iL̂M t

]
. This formulation

of the dynamical problem considered seems to be more
adequate for dynamical systems theory regarded as a
branch of mathematics (Luenberger, 1979; Walker, 1980),
which has applications to a wide variety of fields such
as control theory, for example (Berkovitz, 1974; Sontag,
1990; Polderman and Willems, 1998).

An important property of the Moyal bracket is that
it becomes the Poisson bracket in the classical limit
(� → 0). This implies that the Moyal equation becomes
the Liouville equation for the classical phase-space
distribution function. The Moyal equation can be written
in the alternative form as follows (Kubo, 1964):

i�∂t�(x, p; t) =

[
HW

(
x+

i�

2

−→
∂p, p−

i�

2

−→
∂x

)

−HW

(
x− i�

2

−→
∂p, p+

i�

2

−→
∂x

)]

× �(x, p; t), (14)

owing to the ansatz given by Eqn. (8). Just as the
Schrödinger equation, the Moyal equation (14) can be
written in a more abstract form, i.e., independent of a
particular representation. It was shown by Bondar et al.
(2013), who defined the Hilbert phase space in which
every state of the quantum system, which in general can
be mixed, is represented by an abstract vector |ρ(t)〉, and
its time evolution is given by the equation

i�
d

dt
|ρ(t)〉 =

[
�

m
p̂λ̂+ U

(
x̂− �

2
θ̂

)
− U

(
x̂+

�

2
θ̂

)]

× |ρ(t)〉 , (15)

where the operators λ̂, θ̂, p̂, and x̂ belong to a six-operator
algebra with respect to the following commutation
relations:
[
x̂, θ̂

]
= 0̂, [x̂, p̂] = 0̂,

[
x̂, λ̂

]
= i1̂,

[
p̂, θ̂

]
= i1̂,

[
p̂, λ̂

]
= 0̂,

[
λ̂, θ̂

]
= 0̂. (16)

In the 〈xp| representation where

x̂ = x, p̂ = p, λ̂ = −i∂x, θ̂ = −i∂p, (17)

we obtain the WDF as it turns out that 〈xp| ρ(t)〉 =
�(x, p, t) and Eqn. (15) boils down to Eqn. (14).

Equation (15) has the same form as the well-known
time evolution equation for the abstract state vector in the
Hilbert space,

i� |ψ(t)〉 = Ĥ (x̂, p̂) |ψ(t)〉 , (18)

but in the Hilbert phase space the dynamics are induced
by the operator

ĤHPS

(
x̂, θ̂, p̂, λ̂

)
= Ĥ

(
x̂− �

2
θ̂, p̂+

�

2
λ̂

)

− Ĥ
(
x̂+

�

2
θ̂, p̂− �

2
λ̂

)
, (19)

which we will call the Hilbert phase space (HPS)
Hamiltonian.

Knowing the state at time instant t0, |ρ(t0)〉, the
solution of Eqn. (15) for arbitrary t0 +Δt can be written
in the form |ρ(t0 +Δt)〉 = Û(Δt) |ρ(t0)〉, where

Û(Δt) = exp

{
− i
�

[
�

m
p̂λ̂+ U

(
x̂− �

2
θ̂

)

− U

(
x̂+

�

2
θ̂

)]
Δt

}
(20)

is called the time evolution operator, which can be written
in more concise form as

Û(Δt) = exp

[
− i
�

(
T̂ + Û

)
Δt

]
. (21)

In this notation, the operator

T̂ =
�

m
p̂λ̂ (22)

represents the kinetic part, whereas the operator

Û = U

(
x̂− �θ̂

2

)
− U

(
x̂+

�θ̂

2

)
(23)

represents the potential part. Importantly, these two
operators do not commute.
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It should be noted that in the 〈λp| representation,
where

x̂ = i∂λ, p̂ = p, λ̂ = λ, θ̂ = −i∂p, (24)

operator T̂ is a multiplication operator. Similarly, in the
〈xθ| representation, where

x̂ = x, p̂ = i∂θ, λ̂ = −i∂x, θ̂ = θ, (25)

operator Û is a multiplication operator. Transformations
between different representations of the state vector |ρ(t)〉
are realized by the Fourier transforms, i.e.,

〈xθ| ρ〉 =
∫

dpe−ipθ 〈xp| ρ〉 ,

〈λp| ρ〉 = 1

2π

∫
dxdθei(pθ−λx) 〈xθ| ρ〉 ,

〈xp| ρ〉 = 1

2π

∫
dθeixλ 〈λp| ρ〉 . (26)

The core of the spectral split-operator method is
factorization of the time evolution operator (21) as a
product of operators dependent only on T̂ and only on
Û . Each of them can be easily realized numerically as
a multiplication in an adequate representation, while the
transformations between various representations can be
efficiently realized by the fast Fourier transform.

We consider two factorizations of time evolution
operator (21): the widely used second order factorization,

Û2(Δt) = exp

[
− i

2�
T̂Δt

]
exp

[
− i
�
ÛΔt

]

× exp

[
− i

2�
T̂Δt

]
, (27)

and the fourth-order factorization,

Û4(Δt) = exp

[
− i

6�
ÛΔt

]
exp

[
− i

2�
T̂Δt

]

× exp

[
− 2i

3�
ŴΔt

]
exp

[
− i

2�
T̂Δt

]

× exp

[
− i

6�
ÛΔt

]
, (28)

where
Û(Δt) = Ûk(Δt) +O

(
Δtk+1

)
(29)

for k = 2, 4 and

Ŵ = Û −
[
Û ,

[
T̂ , Û

]] Δt2

48�2
, (30)

which was originally derived by Chin (1997), and then
applied to the Liouville equation. Later this factorization
was also used for the Schrödinger equation (Chin and
Chen, 2002). It can be clearly seen that the latter

factorization requires 5/3 times more operations, both
multiplications and Fourier transforms. It can be shown
that

〈xθ|
[
Û ,

[
T̂ , Û

]]
|ρ(t)〉

=
�
2

m

{[
U ′

(
x− �

2
θ

)]2

−
[
U ′

(
x+

�

2
θ

)]2}
〈xθ| ρ(t)〉 , (31)

where U ′(x) is the first derivative of the potential energy

function U(x), so the operator
[
Û ,

[
T̂ , Û

]]
is just a

multiplication operator in the 〈xθ| representation.
The time shift of the WDF from the time instant t0 to

t0+Δt can be realized in the following steps, respectively
for the second-order factorization (27),

�(x, p, t0 +Δt) ≈ Fλ→x exp

[
− iΔt
2m

T (λ, p)

]
Fθ→p

x→λ

× exp

[
− iΔt

�
U(x, θ)

]
Fλ→x

p→θ

× exp

[
− iΔt
2m

T (λ, p)

]
Fx→λ�(x, p, t0),

(32)

and for the fourth-order factorization (28),

�(x, p, t0 +Δt) ≈ Fθ→p exp

[
− iΔt

6�
U(x, θ)

]
Fλ→x

p→θ

× exp

[
− iΔt
2m

T (λ, p)

]
Fθ→p

x→λ

× exp

[
−2iΔt

3�
W (x, θ)

]
Fλ→x

p→θ

× exp

[
− iΔt
2m

T (λ, p)

]
Fθ→p

x→λ

× exp

[
− iΔt

6�
U(x, θ)

]
Fp→θ�(x, p, t0).

(33)

In Eqns. (32) and (33), Fa→b denotes the ordinary
Fourier transform defined by the relation

Fa→bf(a) =

∫
dae−iabf(a) = f̃(b), (34)

where Fb→a is used for the inverse Fourier transform

Fb→ag(b) =
1

2π

∫
dbeibag(b) = g̃(a), (35)

and Fc→d
a→b is equivalent to the successive application of

ordinary Fourier transforms in one variable and the inverse
Fourier transform in the other variable according to

Fc→d
a→bh(a, c) = Fc→dFa→bh(a, c) = h̃(b, d). (36)
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In numerical calculations we can obtain the WDF
time evolution by successive application of the time
evolution operator (20) with a given time step Δt. We
use the computational box of size [−Lx, Lx]× [−Lp, Lp]
with the Nx × Np grid, and discretize the position and
momentum in the following way:

xm = −Lx +mΔx, pn = −Lp + nΔp, (37)

where Δx = 2Lx/Nx and Δp = 2Lp/Np. For the
variables θ and λ we define

Δλ =
π

Lx
, Δθ =

π

Lp
, Lλ =

NxΔλ

2
, Lθ =

NpΔθ

2
.

(38)
Unlike for x and p, the discretizations of variables θ and
λ have to be shifted due to the properties of the discrete
Fourier transform,

λk

=

{
−Lλ +

(
k + Nx

2

)
Δλ, k = 0, 1, . . . , Nx

2 − 1,

−Lλ +
(
k − Nx

2

)
Δλ, k = Nx

2 , . . . , Nx − 1

(39)

and

θl

=

⎧
⎨

⎩
−Lθ +

(
l+

Np

2

)
Δθ, l = 0, 1, . . . ,

Np

2 − 1,

−Lθ +
(
l− Np

2

)
Δθ, l =

Np

2 , . . . , Np − 1.

(40)

For numerical simulation according to Eqns. (32)
and (33), one has to discretize functions T (λ, p), U(x, θ)
and W (x, θ) on appropriate grids and apply the discrete
Fourier transforms that are defined as usual, respectively
for the ordinary and the inverse transform,

Fk =

N−1∑

n=0

fne
−i2πkn/N , fn =

1

N

N−1∑

n=0

Fke
i2πkn/N ,

(41)
for efficient computations implemented as fast Fourier
transforms.

An interesting observation is that the approximate
time evolution operators given by Eqns. (27) and (28)
for the Moyal equation (14) have the form of the Floquet
operator, which is the time evolution operator over a single
period for a quantum system periodically perturbed by
the delta distribution kicks. It is shown in Section A1 of
Appendix that the second-order factorization of the time
evolution operator (27) has exactly the same form as the
Floquet operator of a periodically kicked system with a
time-dependent Hamiltonian defined as follows:

Ĥ(2) (x̂, p̂; t) =
p̂2

2m
+ U(x̂)Δt

×
∞∑

n=−∞
δ

(
t−

(
n+

1

2

)
Δt

)
. (42)

Similarly, in Section A2 of Appendix it is shown
that the fourth-order factorization of the time evolution
operator (28) has the same form as the Floquet operator
of a periodically kicked system whose time-dependent
Hamiltonian has the following form:

Ĥ(4) (x̂, p̂; t) =
p̂2

2m
+

1

3
U(x̂)Δt

∞∑

n=−∞
δ (t− nΔt)

+
2

3

[
U(x̂)Δt− [U ′(x̂)]2

Δt3

48m

]

×
∞∑

n=−∞
δ

(
t−

(
n+

1

2

)
Δt

)
. (43)

In general, we can say that the spectral split-operator
method approximates a quantum system of particles in a
constant potential with a quantum system of periodically
kicked free particles. As the time step decreases, the kicks
get weaker but more frequent, thus better mimicking the
original constant potential (assuming that the time step is
not too short for the employed arithmetic precision, as this
would lead to accumulation of round-off errors).

3. Results and a discussion

3.1. Initial condition and potential energies consid-
ered. The presented algorithm based on the spectral
split-operator method for a given initial WDF at time
instant t = 0 allows one to find the time evolution of
the WDF via successive application of the time evolution
operator. We take the initial condition in the Wigner form
of the Gaussian wave packet centered around some point
(0, p0) in the phase space (Kaczor et al., 2016),

�(x, p; 0) =
1

π�
exp

{
−2δ2x(p− p0)2

�2
− x2

2δ2x

}
, (44)

where δ2x is the initial variance of the wave packet.
Owing to the WDF at successive time instants, we

can determine evolution of some dynamical observables
that are characteristic for the systems considered. In
the general case, the expectation value of any dynamical
variable can be calculated in accordance with the formula

〈A(t)〉 =
∫

dxdp AW (x, p)�(x, p; t), (45)

where AW (x, p) is the Weyl symbol of the
quantum-mechanical operator of a dynamical variable Â
in the position representation,

AW (x, p) =

∫
dX

〈
x+

X

2

∣∣∣∣ Â(x̂, p̂)
∣∣∣∣x−

X

2

〉

× exp

[
− ipX

�

]
. (46)
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From these expressions we can simply derive the
formula for temporary changes of the expectation value
of the total energy associated with the WDF moving in
the potential considered. Inasmuch it can be shown that
for an arbitrary natural value of l, xlW = xl and plW = pl,
that formula can be expressed in the following form:

〈E(t)〉 =
∫

dxdp

[
p2

2m
+ U(x)

]
�(x, p; t). (47)

Because the analyzed systems are closed, the expectation
value of the total energy is constant throughout the
motion, and deviations from this value serve us as a
measure of algorithm precision. For this purpose, we
define the following formulas:

error(E; t,Δt) = Enum(t,Δt)− Eexact, (48)

error(E; Δt) = max
t
|error(E; t,Δt)| , (49)

which will be used in further subsections.
Potential energy profiles that are considered are the

simple harmonic oscillator,

USHO(x) =
1

2
mω2x2, (50)

the Gaussian well,

UG(x) = U0

[
1− exp

(
− x2

2σ2
x

)]
(51)

and the power-exponential well,

UPE(x) = U0

{
1− exp

[
−

(
x√
2σx

)2n
]}

, (52)

which is considered for n = 2. It should be noted
that the potential energy UG(x) is a special case of
the power-exponential function (52) for n = 1. In
Eqns. (50)–(52), m is the mass of the particle, ω is the
angular frequency of the harmonic oscillator, U0 is the
depth of the potential well, and σx is related to the width
of the potential well. Figure 1 shows the potential energy
profiles for the employed values of the parameters that
will be specified in the following subsections.

Given the initial WDF (44) and three above forms of
the potential energy, one can calculate the analytic forms
of the total energy expectation values from Eqn. (47),
namely,

Eexact
SHO =

1

2m

(
�
2

4δ2x
+ p20

)
+
mω2

2
δ2x, (53)

Eexact
G =

1

2m

(
�
2

4δ2x
+ p20

)
+ U0

(
1−

√
σ2
x

σ2
x + δ2x

)
,

(54)

Eexact
PE =

1

2m

(
�
2

4δ2x
+ p20

)
+ U0

[
1− σ2

x

2πδ2x
exp

(
σ4
x

8δ4x

)

× K 1
4

(
σ4
x

8δ4x

)]
, (55)

where Kν(x) is the modified Bessel function of the
second kind. Furthermore, time evolution of the WDF
in the case of the harmonic oscillator can be determined
analytically. In this case we introduce another measure to
monitor deviation of the numerical WDF from the exact
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) 
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Fig. 1. Discussed profiles of the potential energy: harmonic
oscillator (SHO), Gaussian (G), and power-exponential
(PE).
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Fig. 2. Maximum value of the error of total energy during sim-
ulation for various time steps in the case of the second-
and fourth-order algorithms applied to the potential of
the harmonic oscillator.



The phase-space approach to time evolution of quantum states in confined systems . . . 445

one during time evolution, namely,

error(�; Δt) = max
t

{
�

∑

ij

[
�exact
ij (t)

− �num
ij (t; Δt)

]2
ΔxΔp

} 1
2

. (56)

This is the square root of the mean square error of the
WDF and the � constant was introduced to guarantee that
the measure considered is dimensionless.

All calculations were performed in the atomic
units (a.u.), i.e. � = me = 1, where me is the electron
rest mass.

3.2. Harmonic oscillator potential. In all our
calculations we use the potential energy (50) with m =
1 a.u. and ω = 1/

√
5 a.u. The initial WDF (44) assumes

that p0 = 1 a.u. and δ2x = 0.25 a.u. Then the expectation
value of the total energy (53) is Eexact

HO = 1.025 a.u. The
maxima of the total energy error for both factorizations
of the time evolution operator are presented in Fig. 2
as a function of the employed time step Δt. It shows
that for the shortest time step Δt = 0.05 a.u. the
fourth-order method produces an error which is five orders
of magnitude smaller than for the second-order method.
Even at the longest tested Δt = 1.6 a.u. the error of the
fourth-order method is similar to that of the second-order
method with the shortest Δt.

Time dependence of the total energy error for two
sample time steps for each method is shown in Fig. 3.

The only visible difference between the plots for both
time steps is scaling, but the shape is virtually the same.
The same is true for all other time steps considered.

In the case of the harmonic oscillator potential
the Moyal equation can be solved analytically and the
solution is

�(x, p, t)

= �
(
x cosωt− p

mω
sinωt, p cosωt+mωx sinωt

)
.

(57)

For the initial WDF in the form given by Eqn. (44)
the above formula leads to the following time evolution of
the WDF:

�SHO(x, p, t) =
1

π�
exp

[
−

(
x cosωt− p

mω sinωt
)2

2δ2x

− 2δ2x(p cosωt+mωx sinωt− p0)2
�2

]
.

(58)

The maxima of the WDF error for both factorizations
of the time evolution operator are presented in Fig. 4 as

a function of the employed time step Δt. This shows
that for the shortest time step Δt = 0.05 a.u. the
fourth-order method produces an error which is five orders
of magnitude smaller than for the second-order method.
Even at the longest tested Δt = 1.6 a.u. the error of
the fourth-order method is similar of the second-order
method with the shortest Δt. The error of the WDF
behaves just like that of total energy in Fig. 2, apart from a
little deviation from linear dependence in the log-log scale
for the longest time step in the case of the second-order
factorization.
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Fig. 3. Total energy error time dependence for time steps: Δt =
0.05 a.u. (solid line) and Δt = 0.1 a.u. (dash-dotted
line) for the second-order algorithm (a) and the fourth-
order algorithm (b), both for the harmonic oscillator po-
tential.
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Fig. 4. Maximum value of the error of the WDF during simula-
tion for various time steps in the case of the second- and
fourth-order algorithms applied to the harmonic oscilla-
tor potential.
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3.3. Gaussian potential. In our calculations we use
the potential energy (51) with U0 = 8 a.u. and σ2

x =
40 a.u. The initial WDF (44) assumes the following
parameters: p0 = 1 a.u. and δ2x = 0.25 a.u. Then
the expectation value of the total energy (54) is Eexact

G =
1.024883 a.u. The maxima of the total energy error
for both factorizations of the time evolution operator
presented in Fig. 5 turn out to be pretty similar to the
results obtained previously for the harmonic oscillator
potential. Analogically, for the time step Δt = 0.05 a.u.
the fourth-order method produces an error which is five
orders of magnitude smaller than the error of the second
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Fig. 5. Maximum value of the error of total energy during sim-
ulation for various time steps in the case of the second-
and fourth-order algorithms applied to the Gaussian po-
tential.
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Fig. 6. Total energy error time dependence for time steps: Δt =
0.05 a.u. (solid line) and Δt = 0.1 a.u. (dash-dotted
line) for the second-order algorithm (a) and the fourth-
order algorithm (b) in the Gaussian well case.

order method. Also for the longest tested Δt = 1.6 a.u.
the error of the fourth order method is comparable to that
of the second-order method for the shortest Δt = 0.5 a.u.

Time dependence of the total energy error (Fig. 6)
differs from the case of the harmonic oscillator (Fig. 3),
since the amplitude of oscillations is decreasing.

3.4. Power-exponential potential. In our calculations
we use the potential energy (52) with U0 = 8 a.u. and
σ2
x = 40 a.u. The initial WDF (44) is taken with p0 =

1 a.u. and δ2x = 0.25 a.u. The expectation value of the
total energy (55) is Eexact

PE = 1.000234 a.u. The maxima
of the total energy error for both factorizations of the
time evolution operator presented in Fig. 7 exhibit very
similar behavior to the results presented in Figs. 2 and
5 for the harmonic oscillator potential and the Gaussian
well potential, respectively, and the time dependence
of the total energy error (Fig. 8) exhibits an analogous
characteristic as for the Gaussian potential (Fig. 6).

4. Conclusions

We studied the phase space dynamics of a quantum
particle in three different confined systems according
to the Moyal equation determining the time evolution
of the Wigner function. We analyzed the precision
of the algorithm based on the spectral split-operator
method for various time steps and for the second- and
fourth-order factorizations of the time evolution operator.
The fourth-order factorization was used for the first time
for Wigner function dynamics in the quantum phase
space. The influence of the boundaries on the dynamics
of the Wigner function was neglected because the extents
of the computational box were suitably adjusted to avoid
this effect. Also the employed grid size 1024 × 1024
was large enough to keep errors related to the phase space
discretization much smaller than those resulting from the
analyzed lengths of the time step.

As a measure of precision, we used the deviation
of the total energy from its exact value. For every
profile of the potential energy we have obtained similar
dependencies of the total energy error as a function
of the time step length. These dependencies are very
close to linear in the log-log scale, which means that
they are power relations. More precisely, regardless
of the potential energy form, the total energy error is
approximately proportional to some power of the time
step, which turned out to be equal to the order of the used
factorization method.

For a given time evolution operator factorization and
a given potential energy profile, the error is a function
displaying a very similar shape regardless of the time
step used, but it is scaled approximately by the ratio
of two time steps considered raised to the power of
the factorization order of the time evolution operator.
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Additionally, in the case of the harmonic oscillator we
also analyzed the square root of the mean squared error
of the numerical WDF in relation to the analytical one.
The behavior and scaling of that parameter closely mimic
the results obtained for the total energy error.

After running all of the calculations we can
undoubtedly state that the fourth-order factorization
scheme of the time evolution operator is far superior to
the second-order one. It requires only 5/3 times more
calculations for a single time step but provides results
several orders of magnitude more precise for the same
time step length. Additionally, we showed that applying
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Fig. 7. Maximum value of the error of total energy during
simulation for various time steps in the case of the
second- and fourth-order algorithms applied to the
power-exponential potential.
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Fig. 8. Total energy error time dependence for time steps: Δt =
0.05 a.u. (solid line) and Δt = 0.1 a.u. (dash-dotted
line) for the second-order algorithm (a) and the fourth-
order algorithm (b) in the power-exponential well case.

the split-operator method to the quantum dynamics
induced by the time-independent Hamiltonian effectively
means that the system considered is replaced by a free
particle periodically perturbed by delta distribution kicks
and the period is equal to the time step length.

Acknowledgment

This work was partially supported under the Faculty
of Physics and Applied Computer Science AGH UST
statutory tasks within a subsidy of the Ministry of Science
and Higher Education. Damian Kołaczek was partly
supported by the EU project POWR.03.02.00-00-I004/16.
The primary version of this paper was presented at the 3rd
Conference on Information Technology, Systems Research
and Computational Physics, Cracow, Poland, 2018.

References

Baker, G.A. (1958). Formulation of quantum mechanics
based on the quasi-probability distribution induced on
phase space, Physical Review 109(6): 2198–2206, DOI:
10.1103/PhysRev.109.2198.

Balazs, N.L. and Jennings, B.K. (1984). Wigner’s
function and other distribution functions on Mock
phase spaces, Physics Reports 104(6): 347–391, DOI:
10.1016/0370-1573(84)90151-0.

Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and
Sternheimer, D. (1977). Quantum mechanics as a
deformation of classical mechanics, Letters in Mathemati-
cal Physics 1(6): 521–530, DOI: 10.1007/BF00399745.

Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A.
and Sternheimer, D. (1978a). Deformation theory
and quantization. I: Deformation of symplectic
structures, Annals of Physics 111(1): 61–110, DOI:
10.1016/0003-4916(78)90224-5.

Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and
Sternheimer, D. (1978b). Deformation theory and
quantization. II: Physical applications, Annals of Physics
111(1): 111–151, DOI: 10.1016/0003-4916(78)90225-7.

Benedict, M.G. and Czirják, A. (1999). Wigner functions,
squeezing properties, and slow decoherence of
a mesoscopic superposition of two-level atoms,
Physical Review A 60(5): 4034–4044, DOI:
10.1103/PhysRevA.60.4034.

Berkovitz, L.D. (1974). Optimal Control Theory,
Springer-Verlag, New York, NY.
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Appendix

Floquet operators for periodically kicked
quantum systems

It will be shown that approximate time evolution operators
for time-independent systems, obtained by the spectral
split-operator method of the second and fourth orders,
are equivalent to the exact Floquet operators of relevant
periodically kicked systems. In the case of the

time-dependent HPS Hamiltonian, the time evolution
operator, which evolves the state from time instant t1 to
t2, has the following form:

Û (t2, t1) = T̂ exp

[
− i
�

∫ t2

t1

ĤHPS (t)) dt

]
, (A1)

where T̂ is the time-ordering operator. The time evolution
operator obeys the following composition rule:

Û (t3, t1) = Û (t3, t2) Û (t2, t1) , (A2)

where t3 > t2 > t1.

A1. Second order factorization

The HPS Hamiltonian corresponding to the
Hamiltonian (42) can be written as follows:

Ĥ
(2)
HPS(t) = T̂ + ÛΔt

∞∑

n=−∞
δ
(
t− tn+ 1

2

)
, (A3)

where the notation tn ≡ nΔt is used. The corresponding
Floquet operator (time evolution operator over a single
period), according to the composition rule (A2), can be
factorized to

Û (2) (tn+1, tn) = T̂ exp

⎡

⎣− i
�

∫ tn+1

t
n+1

2
+ε

ĤHPS (t) dt

⎤

⎦

× exp

⎡

⎣− i
�

∫ t
n+1

2
+ε

t
n+1

2
−ε

ĤHPS (t)) dt

⎤

⎦

× exp

[
− i
�

∫ t
n+1

2
−ε

tn

ĤHPS (t)) dt

]
,

(A4)

where 0 < ε < Δt/2 is an arbitrary constant. Using
Eqn. (A3), we get

Û (2) (tn+1, tn) = exp

⎡

⎣− i
�
T̂

∫ tn+1

t
n+1

2
+ε

dt

⎤

⎦

× exp

⎡

⎣− i
�
T̂

∫ t
n+1

2
+ε

t
n+1

2
−ε

dt

+ ÛΔt

∫ t
n+1

2
+ε

t
n+1

2
−ε

δ(t− tn+ 1
2
) dt

⎤

⎦



450 D. Kołaczek et al.

× exp

[
− i
�
T̂

∫ t
n+1

2
−ε

tn

dt

]

= exp

[
− i
�

(
Δt

2
− ε

)
T̂

]

× exp

[
− i
�

(
2εT̂ + ÛΔt

)]

× exp

[
− i
�

(
Δt

2
− ε

)
T̂

]
. (A5)

Letting ε→ 0+, we finally get

Û2
(2)

(Δt) = exp

[
− i

2�
T̂Δt

]
exp

[
− i
�
ÛΔt

]

× exp

[
− i

2�
T̂Δt

]
, (A6)

so Eqn. (27) is recovered.

A2. Fourth-order factorization

The HPS Hamiltonian corresponding to the
Hamiltonian (43) is

Ĥ
(4)
HPS(t) = T̂ +

1

3
ÛΔt

∞∑

n=−∞
δ (t− tn)

+
2

3
ŴΔt

∞∑

n=−∞
δ
(
t− tn+ 1

2

)
, (A7)

where the previously introduced notation tn ≡ nΔt is
used.

In this case, kicks of the strength ÛΔt/3 occur
right at the border of two neighbouring time steps. To
overcome this difficulty, we start with considering the
shifted Floquet operator Û (4)(tn+1 + μ, tn + μ), where
0 < μ < Δt/2. Introducing another constant 0 < ε <
Δt/4, obeying also ε+μ < Δt/2, and ε < μ, the Floquet
operator can be factorized according to the composition
rule (A2) in the following way:

Û (4)(tn+1 + μ, tn + μ)

= T̂ exp

[
− i
�

∫ tn+1+μ

tn+1+ε

ĤHPS (t) dt

]

× exp

[
− i
�

∫ tn+1+ε

tn+1−ε

ĤHPS (t) dt

]

× exp

⎡

⎣− i
�

∫ tn+1−ε

t
n+1

2
+ε

ĤHPS (t) dt

⎤

⎦

× exp

⎡

⎣− i
�

∫ t
n+1

2
+ε

t
n+1

2
−ε

ĤHPS (t) dt

⎤

⎦

× exp

[
− i
�

∫ t
n+1

2
−ε

tn+μ

ĤHPS (t) dt

]
. (A8)

Using Eqn. (A7), we get

Û (4) (tn+1 + μ, tn + μ)

= exp

[
− i
�
T̂

∫ tn+1+μ

tn+1+ε

dt

]

× exp

[
− i
�

(
T̂

∫ tn+1+ε

tn+1−ε

dt

+
1

3
ÛΔt

∫ tn+1+ε

tn+1−ε

δ(t− tn+1) dt

)]

× exp

⎡

⎣− i
�
T̂

∫ tn+1−ε

t
n+1

2
+ε

dt

⎤

⎦

× exp

⎡

⎣− i
�

(
T̂

∫ t
n+1

2
+ε

t
n+1

2
−ε

dt

+
2

3
ŴΔt

∫ t
n+1

2
+ε

t
n+1

2
−ε

δ
(
t− tn+ 1

2

)
dt

)⎤

⎦

× exp

[
− i
�
T̂

∫ t
n+1

2
−ε

tn+μ

dt

]
. (A9)

Calculating the integrals leads to

Û (4) (tn+1 + μ, tn + μ)

= exp

[
− i
�
(μ− ε) T̂

]

× exp

[
− i
�

(
2εT̂ +

1

3
ÛΔt

)]

× exp

[
− i
�

(
Δt

2
− ε

)
T̂

]

× exp

[
− i
�

(
2εT̂ +

2

3
ŴΔt

)]

× exp

[
− i
�

(
Δt

2
− μ− ε

)
T̂

]
. (A10)

Letting ε, μ→ 0+, we get

Û (4)
(
tn+1 + 0+, tn + 0+

)

= exp

[
− i

3�
ÛΔt

]
exp

[
− i

2�
T̂Δt

]

× exp

[
− 2i

3�
ŴΔt

]
exp

[
− i

2�
T̂Δt

]
. (A11)

The notation tn+0+ means that it is the time instant right
after the delta kick that happened at time instant tn. If we
assume that time instant tn is right in the middle of the

kick, we have to split the operator exp
[
−iÛΔt/ (3�)

]
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into two halves, which finally leads to

Û (4) (tn+1, tn) = exp

[
− i

6�
ÛΔt

]
exp

[
− i

2�
T̂Δt

]

× exp

[
− 2i

3�
ŴΔt

]
exp

[
− i

2�
T̂Δt

]

× exp

[
− i

6�
ÛΔt

]
, (A12)

so that Eqn. (28) is recovered.
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