
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 2, 227–244
DOI: 10.2478/amcs-2019-0017

MULTILAYERED AUTOSCALING PERFORMANCE EVALUATION:
CAN VIRTUAL MACHINES AND CONTAINERS CO–SCALE?

VLADIMIR PODOLSKIY a,∗, ANSHUL JINDAL a, MICHAEL GERNDT a

aChair of Computer Architecture and Parallel Systems
Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
e-mail: {v.podolskiy,anshul.jindal,gerndt}@in.tum.de

The wide adoption of cloud computing by businesses is due to several reasons, among which the elasticity of the cloud
virtual infrastructure is the definite leader. Container technology allows increasing the flexibility of an application by
adding another layer of virtualization. The containers can be dynamically created and terminated, and also moved from
one host to another. A company can achieve a significant cost reduction and increase the manageability of its applications
by allowing the running of containerized microservice applications in the cloud. Scaling for such solutions is conducted
on both the virtual infrastructure layer and the container layer. Scaling on both layers needs to be synchronized so that,
for example, the virtual machine is not terminated with containers still running on it. The synchronization between layers
is enabled by multilayered cooperative scaling, implying that the autoscaling solution of the virtual infrastructure layers
is aware of the decisions of the autoscaling solution on the container layer and vice versa. In this paper, we introduce
the notion of cooperative multilayered scaling and the performance of multilayered autoscaling solutions evaluated using
the approach implemented in ScaleX (previously known as Autoscaling Performance Measurement Tool, APMT). We
provide the results of the experimental evaluation of multilayered autoscaling performance for the combination of virtual
infrastructure autoscaling of AWS, Microsoft Azure and Google Compute Engine with pods horizontal autoscaling of
Kubernetes by using ScaleX with four distinct load patterns. We also discuss the effect of the Docker container image size
and its pulling policy on the scaling performance.

Keywords: cooperative scaling, multilayered autoscaling, autoscaling performance, autoscaling evaluation, ScaleX.

1. Introduction

Cloud computing is based on virtualization. This
technology represents the hardware as a pool of resources
to be sliced and provided to users in the form of virtual
machines (VM): it also helps businesses to scale their
applications. Scalability of cloud applications is one
of the main reasons behind the wide adoption of cloud
computing. Most of IaaS cloud services providers
(CSP) offer autoscaling services to adapt the VMs to the
changing demand.

A new type of virtual entity, the container, allows
the user to design loosely coupled applications consisting
of multiple small building blocks. These building
block (microservices) implement a small set of functions
and communicate with other microservices. The
runtime environment is packed within the container
allowing the execution of the microservice anywhere,

∗Corresponding author

both on bare metal or in a VM. Containerization
extends the cloud computing paradigm from several
viewpoints: finer and more accurate management of
the running application; decoupling of the application
from the underlying resources; self-containment of the
microservices. However, the management of several
virtualization layers can become very challenging.

Additional layers of virtualization introduce a higher
level of flexibility and control. Aside from an obvious
performance loss when introducing additional layers of
virtualization, the absence of the awareness of these
virtualization layers about one another could become
a significant concern. With the lack of coordination
between the multiple layers, one can expect that, e.g., the
termination of the VM due to autoscaling may result in
the termination of the running containers and, potentially,
in unfulfilled requests. By increasing the awareness of the
virtualization layers about their neighbours with multilay-

© 2019 V. Podolskiy et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

v.podolskiy@in.tum.de; anshul.jindal@in.tum.de; gerndt@in.tum.de

228 V. Podolskiy et al.

ered cooperative scaling, flexible multilayered application
deployment may acquire predictable scaling behavior.

With the rich set of metrics and approaches
to evaluate existing autoscaling solutions1 and their
policies,2 it may become difficult to select them for a
particular case. One should always distinguish between
the assessment of the quality of the autoscaling policy and
the evaluation of the autoscaling solution performance.
In this paper, emphasis is put on the evaluation of the
performance of autoscaling solutions with the autoscaling
policy being fixed for all the cases. Particularly, the
performance of multilayered autoscaling is presented for
the combination of infrastructure autoscaling by AWS,
Azure, and GCE with container-level autoscaling based
on Kubernetes.

The key contributions of this paper are the
theoretical framework for cooperative scaling involving
different types of virtual entities (VMs, containers), a
refined approach to QoS-based multilayered autoscaling
performance evaluation based on scaling intervals, an
extended description of the performance evaluation tool
ScaleX and its use, results of cooperative autoscaling
performance evaluation for the public IaaS clouds (AWS,
Azure and GCE), autoscaling solutions combined with
the autoscaling solution of Kubernetes, and results of the
experiment highlighting the impact of the container image
size and pulling policy type on the scaling performance.

The following section introduces the theoretical
framework and the background. Section 3 covers
the multilayered autoscaling performance evaluation
approach. Section 4 focuses on the autoscaling
performance measurement tool ScaleX. Section 5
provides experimental results for evaluating the
performance of multilayered autoscaling and for
estimating the potential impact of the container image
size and pulling policy on the autoscaling performance.
Section 6 discusses the obtained experimental results.
The related works and the position of the paper in the
existing research are summarized in Section 7. Section 8
concludes the paper.

2. Theoretical framework and background

2.1. Scalability and elasticity. “The concept [of scal-
ability] connotes the ability of a system to accommodate
an increasing number of elements or objects, to process
growing volumes of work gracefully, and/or to be suscep-
tible to enlargement” (Bondi, 2000).

The scalability of cloud applications and the
underlying virtual infrastructure means that the number
or the capacity of the virtual entities forming the cloud

1An autoscaling solution is a piece of software that implements au-
toscaling.

2An autoscaling policy is a set of precise rules that determine how
the virtual infrastructure is scaled based on its monitored parameters.

application (containers) and the virtual infrastructure
(virtual machines, VMs) can change dynamically in
response to the changing workload. Often, the scalability
of a cloud is specified by the term “elasticity” (Herbst
et al., 2013). Elasticity differs from scalability in
that the state of the virtual infrastructure and cloud
applications, acquired as a result of the increased demand
for the capacity, lasts only until the amount of requests
and resource utilization starts decreasing. Thus, cloud
applications and the virtual infrastructure can return to the
original state in terms of resources consumed. Elasticity
could be viewed from two viewpoints—of the cloud
services provider and of the cloud user.

The elasticity of the cloud as viewed by the CSP
revolves around the hardware resources provided to the
cloud users. The pool of hardware resources allocated
for the particular user in the form of VMs can arbitrarily
grow and shrink. The CSP provides virtual machines
for the customer. This enables the dynamic change
of the amount of resources, e.g., elasticity on the
infrastructure level. This requires the provisioning of
sufficient hardware as well as the scheduling of VMs.
Cloud scalability on the CSP’s side resides on hardware
virtualization using hypervisors (e.g., Xen, Hyper-V)
and on the hardware resources allocation for the virtual
machines scheduling (Sotomayor et al., 2009a; 2009b).
The society’s concerns about the ecology and the CSPs
concerns about the cost of electricity introduce power
consumption as another parameter to be considered when
scaling (Jakobik et al., 2017).

The elasticity of the cloud as viewed by the cloud
user puts the cloud application in the center. A cloud
application may consist of multiple microservices in
containers. The elasticity from the user’s prospect is in
the opportunity to increase or decrease the number of
microservice instances, thus regulating the capacity of the
application in terms of the processed requests. Elasticity
in that sense might be supported by out-of-the-box CSPs
(e.g., AWS Lambda). The scalability of the application
could be achieved within the IaaS cloud by running the
containers on top of VMs. We assume this scenario
when discussing multilayered scaling spanning several
virtualization layers.

2.2. Changing the cloud capacity through scaling.

2.2.1. Types of scaling. From the point of view of the
cloud user, scaling can be conducted in two ways—either
by increasing the capacity of the existing virtual entities
or by increasing the number of virtual entities.

Vertical scaling allows changing the resource
capacity of a virtual entity. In the case of a virtual
machine, it could be achieved, e.g., by increasing the
amount of allocated memory or the number of virtual CPU

Multilayered autoscaling performance evaluation . . . 229

cores assigned to the VM. Vertical scaling in such a case
could be represented by substituting the VM of the type
with a smaller capacity for the VM of the type with a
larger capacity (scale-up) or vice versa (scale-down). A
container can also be vertically scaled by changing the
maximal amount of resources allocated to it (e.g., the
maximal amount of processor time as millicore parameter
of Kubernetes pods3).

Horizontal scaling allows changing the capacity of
the pool of virtual entities by introducing new entities or
removing old ones. Horizontal scaling requires load bal-
ancing. Horizontal scaling for large-scale applications is
preferable as it imposes a homogeneity requirement on the
groups of virtual entities and does not require stopping
running the application in order to change the underlying
virtual machine.

2.2.2. Scaling the virtual infrastructure. The virtual
infrastructure is a “software-based IT infrastructure being
hosted on another physical infrastructure and meant to be
distributed as a service as in the cloud computing Infras-
tructure as a Service (IaaS) delivery model”.4

In the case of the IaaS model, the virtual
infrastructure could be represented as one or more VMs
that are allocated on the physical servers in one of the
CSP’s data centers. From the point of view of the CSP,
scaling the virtual infrastructure is always connected to
allocating more or less hardware resources. From the
point of view of the IaaS cloud services’ user, virtual
infrastructure scaling is represented either by a change in
the number of virtual machines (horizontal scaling) or by
a change in the type of virtual machines (vertical scaling).
The IaaS model supports the automation of VM scaling
via automatic scaling (or autoscaling).

A detailed discussion of autoscaling is provided in
Section 2.3.

2.2.3. Scaling containerized applications. An
application container could be defined as “a controlling
element for an application instance that runs within a type
of virtualization scheme called container-based virtual-
ization. [. . .] in container-based virtualization, the in-
dividual instances share an operating system.”5

Each application container can be an enclosed
functional unit of the application that provides services
to other containers. This viewpoint allows considering
a container to be a lightweight entity that includes a
relatively compact code base, though in general several
microservices could be packed in the same container.

3https://kubernetes.io/docs/concepts/configura
tion/manage-compute-resources-container/.

4https://www.techopedia.com/definition/30459/v
irtual-infrastructure.

5https://www.techopedia.com/definition/31114/a
pplication-container.

Although containers support both types of scaling,
the most widely used is horizontal scaling. Container
scaling can be automated by using container orchestration
tools (e.g., DockerSwarm or Kubernetes). Vertical scaling
of a container is not explicitly implemented, although it
could be simulated by increasing or decreasing container
resource limits.6 The automation of container on-the-fly
vertical scaling is being researched (Al-Dhuraibi et al.,
2017). Kubernetes’ abstraction of pods as a group of
containers sharing the network and the storage7 leverages
the opportunity to decrease the degree of container
isolation, allowing access to the shared resources. It
allows scheduling and running application containers on
clusters of physical or virtual machines. The abstraction
of a pod serves as a basis to scale groups of containers.
Automatic horizontal scaling thereof is supported by
out-of-the-box Kubernetes by monitoring CPU utilization
and changing the number of pods in the replication
controller. The vertical autoscaling feature is also being
actively developed.8

By leveraging the ability to scale both the virtual
infrastructure and containers, we may introduce the
notions of multilayered and cooperative scaling.

2.2.4. Multilayered and cooperative scaling.
Simultaneous scaling on several layers of virtualization
introduces additional issues that do not appear when
scaling either the virtual infrastructure or a containerized
application. When putting containers on virtual machines,
it is necessary to ensure that during the scale-out the
necessary amount of resources is available in the form of
VMs. It could also occur that a VM is terminated with
containers running on top of it. In the case of Kubernetes,
accidental termination of the master VM during the
scale-down may yield a fault of the whole deployment.
To avoid such problems, each virtualization layer should
be aware scaling actions happening on the other layer.
Multilayered scaling with enabled awareness of scaling
actions on other layers can be called cooperative scaling.

Cooperative scaling supposes the presence of several
virtualization layers. By putting virtual entities of one
layer on top of virtual entities of the other layer, a
dependency is established. Though the multilayered
structure allows more flexibility, the presence of a
dependency yields scaling challenges. To reduce
damaging effects of scaling on multiple layers, each layer
should receive updates about scaling actions taken on
another one. Allowing scaling solutions on different
layers to communicate, the availability of the application

6https://docs.docker.com/config/containers/res
ource_constraints/.

7https://kubernetes.io/docs/concepts/workloads
/pods/pod/.

8https://github.com/kubernetes/autoscaler/tree
/master/vertical-pod-autoscaler.

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://www.techopedia.com/definition/30459/virtual-infrastructure
https://www.techopedia.com/definition/30459/virtual-infrastructure
https://www.techopedia.com/definition/31114/application-container
https://www.techopedia.com/definition/31114/application-container
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

230 V. Podolskiy et al.

during and after scaling can be ensured.
Cooperative scaling exhibits (a) support for scaling

on multiple layers induced by triggering the same rule of
the scaling policy, (b) coordinated scheduling of scaling
activities on all virtualization layers, (c) the availability of
data about the planned scaling to the scaling solution of
the neighbour layer, (d) scaling flexibility, e.g., the ability
to use different scaling policies/thresholds to conduct
scaling on different virtualization layers.

Currently, production-level cooperative scaling
requires an additional functionality to enable the selection
of scaling policies parameters for each layer.

2.3. Autoscaling.

2.3.1. Reactive autoscaling. Autoscaling (automatic
scaling, auto scaling, auto-scaling) is the technology that
enables automatic provisioning and termination of virtual
entities to adapt the resource capacity to changes in the
demand. The key difference from the previous discussion
of scaling is in the automation of this process. The
automation is achieved by using a monitoring service
to retrieve relevant resource utilization metrics on which
alarms and triggers can be defined.

State-of-the-art autoscaling solutions by public CSPs
are of the reactive type. Reactive autoscaling is the
type of autoscaling that either deploys or terminates the
predefined amount of virtual entities as a response to the
change of some metric. Hence, reactive autoscaling takes
into account only the given parameters, which are either
provided by the cloud administrator or are measured by
the monitoring solution. The amount of change, i.e., the
number of virtual entities to be allocated or terminated, is
encoded as a set of rules. The most severe limitation of
reactive autoscaling is the small amount of time allocated
for the scaling action in the case of an increased workload.
The most recent research tries to overcome it on the CSP’s
side by employing continuous (online) updates of the
optimal autoscaling configuration (Guo et al., 2018).

Each IaaS/PaaS/FaaS CSP provides its own native
reactive autoscaling solution. Following, we will
introduce brief information on autoscaling solutions
of AWS, Microsoft and Google that were used for
conducting the experiments in the paper.

AWS (Amazon Web Services) Auto Scaling9 is a part
of the services offered by Amazon in its IaaS public
cloud. The core concept of AWS Auto Scaling is an
Auto Scaling Group (ASG). An ASG is a set of different
Amazon Elastic Compute Cloud (EC2) instances (VMs)
sharing similar characteristics and being subject to the
same scaling policies. Therefore, every VM in the group
has the same Amazon Machine Image (AMI) and the same

9https://aws.amazon.com/autoscaling/.

hardware characteristics. The load distribution among
the VMs is automated by Elastic Load Balancer (ELB).
Amazon CloudWatch provides the performance data used
in the scaling rules.

Microsoft Azure Autoscale10 comes in two modes:
metric-based and scheduled. The metric-based autoscale
service of Microsoft represents the common way of
autoscaling as in the AWS case. The scheduled mode
allows the user to write a scaling schedule to adjust the
infrastructure according to time markers. Similarly to
AWS, Azure also groups VM instances into a group that
is managed by its autoscaling solution. These groups are
called scaling sets. Despite the fundamental similarity
of scaling sets to auto scaling groups of AWS, they are
slightly different, e.g., the user is not allowed to attach the
shell script to the VM template—the necessary file should
be provided directly in the VM image. Each scaling set
is scaled based on the autoscale settings. They determine
the capacity and the set of scaling rules identifying the
thresholds for different metrics.

Google Compute Engine (GCE) autoscaling11 is based
on a managed instance group. It is a scalable group
of the same virtual machines that behaves as a uniform
entity. Each group contains a load balancer. GCE
autoscaling is based on the metrics provided by Google
Stackdriver.12 Out-of-the-box it supports autoscaling
based solely on the average CPU utilization. Moreover,
Stackdriver introduces additional metrics as well as the
ability to create custom ones.

2.3.2. Scheduled autoscaling. Reactive autoscaling
is appropriate for most practical cases, though the time
between the decision to scale-out and the new instances
being able to serve the requests may impact the quality
of service (QoS). A particular example could be the
Christmas season for a web shop. With the rising number
of customers, the virtual infrastructure may not meet
the demand, and reactive autoscaling tries to adapt the
virtual infrastructure to the growing demand. However,
during the autoscaling process, the web site may not
have enough capacity to serve all the Christmas orders,
which will result in a revenue decrease. On the other
hand, loosening a reactive autoscaling policies could
result in the overprovisioning and increase of the costs.
A partial solution to this problem is provided in the form
of scheduled autoscaling.

The concept of scheduled autoscaling is simple.
Based on the knowledge of load patterns, the cloud
administrator devises a scaling schedule which

10https://docs.microsoft.com/en-us/azure/archi
tecture/best-practices/auto-scaling.

11https://cloud.google.com/compute/docs/autosca
ler/.

12https://cloud.google.com/stackdriver/.

https://aws.amazon.com/autoscaling/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/stackdriver/

Multilayered autoscaling performance evaluation . . . 231

contains the information on how many virtual entities
should be added to or removed from the virtual
infrastructure/containerized application at the specific
time. Most CSPs offer scheduled autoscaling along
with reactive autoscaling. AWS, for example, started to
provide the scheduled autoscaling service for applications
in 2017.13 Kubernetes also supports pods scheduling.14

Scheduled autoscaling could be combined with reactive
autoscaling, both to capture the expected load changes
and to react to spontaneous variations.

2.3.3. Predictive autoscaling. Certain drawbacks of
the widely used types of autoscaling could be avoided
by incorporating a smarter approach to autoscaling that
is able to extract a value from the monitoring data. Pre-
dictive autoscaling (also known as proactive autoscaling)
leverages historical data about the application and the
virtual infrastructure collected by the monitoring solution.
The collected historical data can be in various forms:
application traces, logs, time series, etc. These data are
needed for the derivation of the models used to extrapolate
the future values of the specific metrics. For example, the
collected requests per second time series could be used
to derive a model and forecast (predict, extrapolate) the
request per second value for a specific service at some
moment in the future.

In addition to the forecast, performance models of the
software and the virtual entity as well as a management
component implementing autoscaling are required (Bauer
et al., 2017). With these components, the predictive
autoscaling solution (i) collects monitoring data for the
forecasted parameter, (ii) derives forecasting models, (iii)
derives application and virtual infrastructure performance
models, (iv) derives the scaling policy that ensures the
provision of such an amount of virtual entities that would
be able to serve the forecast workload, (v) executes scaling
actions.

Predicitive autoscaling has to be dynamically
adapted to changes in the application and in user demand
patterns. This includes updating the prediction model, the
performance models and the derived scheduling policy.

Though predictive autoscaling is yet to be provided
by CSPs, various solutions are already widely represented
in the research literature (Roy et al., 2011; Nikravesh
et al., 2015; Moore et al., 2013). Moreover, some
orchestration solutions contain predictive autoscaling as
work-in-progress.15

As unpredictable changes in the load may also

13https://aws.amazon.com/about-aws/whats-new/2
017/11/scheduled-scaling-now-available-for-appl
ication-auto-scaling/.

14https://kubernetes.io/blog/2017/03/advanced-
scheduling-in-kubernetes/.

15https://github.com/mattjmcnaughton/kubernetes
/tree/add-predictive-autoscaling.

happen in such a dynamic environment, predictive and
reactive autoscaling might be combined (Liu et al., 2015).

2.4. Evaluation of autoscaling. The evaluation of
autoscaling could be conducted from different points of
view. First of all, one needs to distinguish between the
evaluation of autoscaling policies and the evaluation of
the autoscaling solution.

The autoscaling policy is a set of rules that governs
the autoscaling process, be it reactive, scheduled,
or predictive. An autoscaling policy evaluation
framework should provide the set of autoscaling
solution implementation-independent metrics that
allow comprehensive evaluation of the quality of the
specific autoscaling policy, e.g., the tendency to over- or
underprovision the resources, the frequency of the scaling
events, and the cost of the scaled virtual infrastructure (?).
Although the evaluation of autoscaling policies with
various metrics provides a useful decision-making
framework allowing selection of the appropriate
autoscaling policy based on multiple criteria, it does
not capture the implementation-specific characteristics of
the autoscaling solution, e.g., its performance.

The performance could be measured by the time to
take a scaling decision and the time for starting additional
virtual entities. Another approach could be based on
user-level performance metrics, e.g., the number of QoS
violations for the application (Jindal et al., 2017). The
evaluation of autoscaling solution performance using both
techniques is discussed further in the paper.

3. Approach to evaluate autoscaling
performance

3.1. Single-layered autoscaling performance evalu-
ation. The main purpose of reactive autoscaling is to
react to a change in the application/virtual infrastructure
load. The reaction time or autoscaling latency is the
time between the decision of the autoscaler and the final
adaptation of the resources (Jindal et al., 2017). For
application level metrics, the fraction of the autoscaler
latency where QoS requirements were violated is an
important metric.

The autoscaling latency can be defined based on
Current Amount of Instances (CAI) and Desired Amount
of Instances (DAI). Each autoscaling solution contains
autoscaling rules that determine conditions triggering
autoscaling actions (scale-in or scale-out in the horizontal
scaling case). As the deployment of the virtual entity takes
time for resource allocation, booting and configuring,
DAI will differ from CAI during some time. When
autoscaling is completed, CAI and DAI will be equal.
Thus, we consider the described time interval to be the
autoscaling latency. If tstart is the start time and tend is

https://aws.amazon.com/about-aws/whats-new/2017/11/scheduled-scaling-now-available-for-application-auto-scaling/
https://aws.amazon.com/about-aws/whats-new/2017/11/scheduled-scaling-now-available-for-application-auto-scaling/
https://aws.amazon.com/about-aws/whats-new/2017/11/scheduled-scaling-now-available-for-application-auto-scaling/
https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes/
https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes/
https://github.com/mattjmcnaughton/kubernetes/tree/add-predictive-autoscaling
https://github.com/mattjmcnaughton/kubernetes/tree/add-predictive-autoscaling

232 V. Podolskiy et al.

the end time of autoscaling then the autoscaling inter-
val Tautoscale = [tstart, tend] is an interval such that ∀t ∈
Tautoscale : CAI(t) �= DAI(t). If ∀t ∈ Tautoscale :
CAI(t) < DAI(t), then Tautoscale is a scale-out interval.
If ∀t ∈ Tautoscale : CAI(t) > DAI(t), then Tautoscale is
a scale-in interval. The autoscaling latency is defined as
tend − tstart.

Other performance measures for autoscaling
solutions are based on the notion of the quality of service
for the cloud application. For autoscaling solution
performance evaluation, two user-level quality metrics
were chosen: the cloud application response time and
the maximal failure rate. They are directly influenced
by the quality of the corresponding autoscaling solution
services. These metrics have the corresponding QoS
limitations which may be imposed by cloud application
users:

• required response time (RRT),

• required maximal failure rate (RMFR).

To measure the performance of the autoscaling
solution, we now define the following two metrics:
response time violation and maximal failure rate violation.
Both are the fraction of the autoscaling interval where the
corresponding QoS requirement was violated.

As the performance metric for autoscaling is based
on the cloud application response time, we identify such a
metric as the fraction of the autoscaling interval Tautoscale

with the service response time (RT) above the threshold.
So, if Tautoscale = [ta, tb] and Thigh RT = [tc, td], where
ta ≤ tc ≤ td ≤ tb, then the autoscaling solution
performance metric can be computed as (Jindal et al.,
2017)

RTV(Tautoscale) =
td − tc
tb − ta

, (1)

where RTV(Tautoscale) is the fraction of the autoscaling
latency where the response time requirement is violated.
In more complex cases, Thigh RT could be a set of intervals,

e.g., Thigh RT = {T (1)
high RT, T

(2)
high RT, . . . , T

(p)
high RT}.

Similarly to RTV(Tautoscale), we compute the fraction
of the autoscaling interval with the maximal failure rate
(MFR) higher than a predefined threshold. If Tautoscale =
[ta, tb] and Thigh MFR = [te, tf], where ta ≤ te ≤ tf ≤
tb, then ∀t ∈ Thigh MFR and the performance metric is
computed as in (Jindal et al., 2017)

MFRV(Tautoscale) =
tf − te
tb − ta

. (2)

The presented autoscaling performance metrics (1)
and (2) allow us to evaluate the performance of the
autoscaling solution directly without considering the
particular autoscaling policy implemented by the solution.

3.2. Performance evaluation of multilayered
autoscaling. The general idea behind multilayered
autoscaling performance evaluation is to measure it
as a fraction of autoscaling time with violated QoS
requirements spanning multiple layers of virtualization.
Figure 1 illustrates the concept of a multilayered
autoscaling interval and the multilayered autoscaling
performance measurement.

���������	�
������

�

�����������������

�

�

�

���� ��������	
���
���
����������
����������

�����
��������������

�
�

������	
�����
��
��������
�����

������
�����
��
��������
�����

!����"��#
��#���
����������$��	�%
�������������
&��

��

� �����
����'���
���������

�

�

�

������	
�����
��
��������
�����

������
�����
��
��������
�����
!

(

���	������������)*�+����
��,

�

�

�

!
���
�����������
��
��
����
���

�

-��.��/01

-��������%�2��
&��

��
�����2��
&���3��#�*�+�
����
�����
�#���3�
��������

�

��
�

�

Fig. 1. Abstract example of a response time-based multilayered
autoscaling performance metric.

The multilayered autoscaling interval is a set of time
intervals on different layers of virtualization covering the
whole autoscaling event. The first two graphs in Fig. 1
show how CPU utilization changes in response to change
in the amount of requests. The two following graphs
highlight change in the number of VMs and pods in
response to increased CPU utilization (the rule was set
to increase the number of pods and VMs by one after
reaching a 10% CPU utilization and sustaining it for 30
seconds). If we assume the QoS requirement of the
response time is 3 seconds as shown in the last graph,
then we can identify the fraction of the autoscaling time
interval during which the requirement on the response
time was not met. The approach for multilayered
autoscaling performance evaluation closely follows this

Multilayered autoscaling performance evaluation . . . 233

example.
The main research problem in multilayered

autoscaling performance evaluation is to identify a
set of autoscaling events on different virtualization layers
to be considered as a single autoscaling event spanning
multiple layers. In the methodology defined by Jindal
et al. (2017), this challenge is resolved using the notion
of time locality, i.e., the scaling events on multiple layers
of virtualization are considered to be part of the same
multilayered autoscaling event if autoscaling events on
the previous virtualization layer and on the next one
have the same direction of scaling (scale-in or scale-out)
and the event of the dependent virtualization layer (e.g.,
containerized application) follows the scaling event on
the lower layer (e.g., virtual infrastructure).

T
(1)
as = {T (1)

1 , T
(2)
1 , . . . , T

(n)
1 } is a set of autoscaling

intervals, with T
(1)
i being an autoscaling interval on the

virtualization layer that is closest to the hardware (e.g.,
native CSP’s autoscalers are on this level); superscripts
denote the layers, subscripts signify that an interval in
the set belongs to the particular multilayered autoscaling
interval, i.e., T

(1)
as . In turn, each element of the set

could also be a set of intervals on the corresponding
layer of virtualization. The intervals of time between
the autoscaling intervals are not taken into account
when computing multilayered autoscaling duration in
order to reduce the effect of the performance of the
underlying hardware, though, depending on the goals
of performance evaluation, one might attribute these
intervals to autoscaling duration.

In general, a single-layer autoscaling interval T (i)
1 is

considered an element of the set of autoscaling intervals
for a single case of multilayered autoscaling if and only if
∀j : j > i and we have the following conditions fulfilled:

T
(i)
1 ≺ T

(i)
2 , (3)

T
(i)
1 � T

(j)
1 , (4)

CAI(tj)−DAI(tj)

|CAI(tj)−DAI(tj)| ·
CAI(ti)−DAI(ti)

|CAI(ti)−DAI(ti)| = 1, (5)

with ∀tj ∈ T
(j)
2 and ∀ti ∈ T

(i)
1 . Thus, in order to

be considered a part of a single multilayered autoscaling
event, autoscaling on level i should (i) occur when all
previous layers have entered a stable state, i.e., CAI =
DAI , after the corresponding previous j-th autoscaling
has already occurred, and (ii) be of the same direction
(scale-in or scale-out) as each of the autoscalings on
previous layers.

Example CAI/DAI plots for the two-layered
autoscaling case are presented in Fig. 2.

If A = {a1, a2, . . . , am} is a set of indices that
enumerates all the members of Tas, then the duration

�

�

�

�

����

����������

�

(

�

4
�
)�, 4

�
) ,

+����5���������)�5���
�����%,

+����5�������)3��#����
���������%
�6,

-��������%����
&�������#��������6�

-��������%����
&�������#�� ����6�

7-2

�-2

Fig. 2. Example of multilayered autoscaling event identification
for two-layered virtualization (virtual infrastructure and
containerized application).

of multilayered autoscaling can be determined with the
following formula:

ΔTas = |T (a1)
1 |+

m∑

i=1

(|T (ai+1)
1 |−|T (ai+1)

1 ∩T (ai)
1 |). (6)

The formula (6) takes into account a possible
intersection of the autoscaling intervals on different layers
by adding a delta of the interval further in time (if a pair
of consecutive intervals overlaps) or the whole interval
(if a pair of consecutive intervals does not overlap, i.e.,
T

(ai+1)
1 ∩ T

(ai)
1 = ∅). The formula (6) with respect to

constraints (3)–(5) gives us an estimate for the duration
of a single autoscaling event for an arbitrary multilayered
cloud application. In the simplest case of two layers, the
formula becomes

ΔTas = |T (1)
1 |+ (|T (2)

1 | − |T (2)
1 ∩ T

(1)
1 |). (7)

With respect to metrics, the previously introduced
formulas (1) and (2) are still in use, but the notion of
the autoscaling interval on which they are computed is
changed:

Tautoscale =

m⋃

i=1

T
(ai)
1 . (8)

The presented multilayered autoscaling performance
measurement approach is implemented in the autoscaling
performance measurement tool ScaleX, which is
discussed in the following section.

Comparison with the existing evaluation schemes.
The presented user-side autoscaling performance
evaluation approach and metrics should be considered
complimentary to the existing approaches and
metrics (Ilyushkin et al., 2017; Evangelidis et al., 2017).

234 V. Podolskiy et al.

It is not designed to be the only one used when evaluating
the performance of autoscaling solutions. Such metrics
as the overprovisioning, underprovisioning, instability,
or cost of the overprovisioned virtual infrastructure
should also be measured and calculated when evaluating
an autoscaling solution. The proposed metrics and
approach are different from the existing in that (i) several
virtualization levels are considered when evaluating
the performance, and (ii) the metrics are designed to
capture the user-side performance, i.e., what the user
will encounter during the autoscaling process. Thus, the
approach and metrics are necessary for comprehensive
evaluation of the autoscaling solution’s performance.

4. ScaleX: An autoscaling performance
measurement tool

4.1. ScaleX overview. ScaleX is a user-friendly web
service-based horizontal single-layered and multi-layered
autoscaling performance measurement tool designed and
implemented by the authors (Jindal et al., 2017). The tool
is implemented in Node.js. The architecture of ScaleX
and the communications between its modules in a typical
use case are shown in Fig. 3.

ScaleX is composed of multiple modules, overall
matching the microservice architecture. Each module
consists of components for handling a particular task.

Load Generator &
Monitoring

Autoscaler
Deployment

in Cloud

DB

Metrics Visualization

Lo
ad

 G
en

er
at

io
n

&

M
et

ric
s c

ol
le

ct
io

n

User
Selection

Metrics Store

GCE

Single-Layered Autoscaler

AWS

Azure

GCE
Kubernetes

AWS
Kubernetes

Azure
Kubernetes

Cooperative AutoscalerUser Interface
Application

Type
Configuration

Param
eters

Load Pattern

Autoscaler
Selection

Visualization

Selected
Autoscaler

deployment

Fig. 3. High-level architecture of ScaleX.

Apart from measuring the performance of the
deployed autoscaling solution, ScaleX allows cloud
application deployment for multiple CSP native
autoscalers with a single command. With the same
command, the user may configure autoscaling parameters.
The following subsections present the modules of ScaleX.

4.2. User interface. The user interface (UI) module
of ScaleX interacts with the user and provides him or

her with an opportunity to select or configure different
tool parameters. It comprises five components, which are
discussed in the following paragraphs.

Application Type Setting Component enables the selection
of an application to be deployed for testing from a list of
predefined applications.16

The user can select an application from any of
these categories to conduct the tests of the autoscaling
solution(s) on it using a particular autoscaling decision
metric. At the moment, ScaleX supports only CPU
utilization as an autoscaling metric.

Configuration Parameters Component provides the user
with the autoscaling solution configuration functionality.
This component configures the chosen autoscaling
solution using parameter values specified by the user.
Each autoscaling solution supported by ScaleX provides
all important autoscaling configuration parameters.

Single-Layered Autoscaler Configuration Component
allows configuring horizontal scaling of the virtual
infrastructure based on a numbers of parameters: the type
of instance, minimal and maximal number of instances, a
scaling decision metric and its threshold, or an autoscaling
policy.

Multilayered Autoscaler Configuration Component allows
configuring horizontal scaling for both the virtual
infrastructure and the containerized application.17 The
configuration parameters for both virtualization layers are
configured by this component:

1. CSPs IaaS Autoscaler: all the parameters as listed for
the Single-Layered Autoscaler Component.

2. Kubernetes Horizontal Pod Autoscaler (HPA): the
minimal and maximal numbers of pods and the pod
scaling decision metric with its threshold. As of now,
only CPU utilization is supported as the autoscaling
decision metric in Kubernetes.

Load Pattern Configuration Component provides an
interface to the workload request generator integrated in
the ScaleX. It allows the user to select a preconfigured
load pattern in order to test the performance of the
autoscaling solution. At the moment, four load patterns
are supported by ScaleX:

• Linear Increase Load Pattern corresponds to the
linearly increasing number of requests per second
during the test time.

• Linear Increase and Constant Load Pattern
corresponds to the number of requests per second
pattern that linearly increases during the first half of

16This component also supports arbitrary application.
17The autoscaling of the containerized application is enabled via the

Kubernetes orchestration tool.

Multilayered autoscaling performance evaluation . . . 235

the test time and then stabilizes for the rest of the
test.

• Random Load Pattern corresponds to the randomly
increasing and decreasing number of requests per
second during the test time.

• Triangle Load Pattern corresponds to the number of
requests per second pattern that linearly increases
during the first half of the test time and then
decreases with the same slope during the rest of the
test.

The user can configure the following parameters
of the load pattern selected: the number of concurrent
clients, the maximal number of requests, the maximal
duration of a test, the request timeout, the HTTP request
method, the request body, the content type, and the
number of requests per second.

Autoscaler Selection Component allows the user to pick
a supported autoscaling solution from the list. A
single-click functionality to deploy and undeploy an
autoscaling solution is also provided.

Visualization Component shows plots and tables for all the
performance metrics. The user can use these plots and
tables to compare the autoscaling solutions.

4.3. Single-layered autoscaler interface. ScaleX
comprises interfaces to single-layered CSP native IaaS
autoscaling solutions. This module supports the
deployment process for different CSP native autoscaling
solutions. The purpose of this module is to combine
configuration parameters with the selected application and
to deploy it using the chosen autoscaler. Currently, 3 CSP
native autoscaling solutions are supported by ScaleX:
GCE, AWS, and Azure. The following highlights the
deployment procedure of these CSPs native autoscaling
solutions.

GCE Autoscaler. A common VM instance template
is created with a start script to deploy the application on
a VM start. This template is used as a basis to form the
managed instance group. The GCE autoscaling solution
is configured using the parameters provided by the user.
Following, a load balancer is created to direct the load
to the managed instance group. Stackdriver logging and
GCE monitoring are used to collect the metrics data for
this group.

AWS Autoscaler. At the starting point, an instance
launch configuration is created with the same start script
that is used with the GCE autoscaler to deploy the
application on a VM start. The launch configuration is
used to form an Auto Scaling Group (ASG) in AWS Cloud
using the user parameters. The scaling parameters and
policies are added to the ASG in the next step. To direct

the load to this ASG, an Elastic Load Balancer (ELB)
is added. It serves as a single endpoint for the load
generation workload—internally the load is distributed
among the ASG instances. AWS Cloud Watch is used to
collect the metrics data for the whole ASG as well as for
the individual EC2 instances.

Azure Autoscaler. At the beginning, a customized
VM image is created with a start script to deploy the
application when the VM finishes booting. This image is
then used in the VM scale set for replication along with the
user-defined autoscaling configuration parameters. The
VM scale set serves the same purpose as the managed
instance group in GCE or an ASG in the AWS virtual
infrastructure. The load balancer is also added. Azure
monitoring APIs are used to collect the metrics for the
VM scale set.

Figure 4 shows the deployment to test the
single-layered virtual infrastructure autoscaling solution
provided by IaaS CSP.

Load
Balancer

Instance 1

Instance 2

Instance N

.

.

.

CSP’s Monitoring
Service

CSP’s Scaling Group

Fig. 4. Deployment to test single-layered virtual infrastructure
autoscaling.

4.4. Multilayered autoscaler interface. In the scope
of this module, ScaleX combines CSP native IaaS
autoscaling solutions with the Kubernetes horizontal pod
autoscaler to form a two-layered autoscaling solution.
Additionally, the module combines configuration
parameters with the selected application and deploys
in the selected IaaS cloud as a Kubernetes cluster. A
monitoring service is attached as part of the deployment
to collect the performance metrics and store these data in
a database.

A multilayered autoscaler needs to enable
synchronization between autoscaling solutions on
different virtualization layers. A sequence of actions
is undertaken by the module in order to enable the
synchronization. A separate VM instance is created for
the Kubernetes master before starting the nodes (formerly

236 V. Podolskiy et al.

known as minions) as part of a managed instance group
in GCE, an ASG in AWS or a VM scale set in Azure.
Such a configuration allows scaling the nodes based
on the observed workload. ScaleX employs kubeadm18

to deploy the Kubernetes cluster. Kubeadm is used to
initialize the master. Once the master becomes ready, the
nodes can join it by running a specific command. A start
script is added as part of the each CSP IaaS autoscaling
solution. This start script is modified to include all
the configurations and commands required by the VM
instance to join the Kubernetes cluster. Hence, when a
new instance is created in a managed instance group in
GCE, an ASG in AWS or a VM scale set in Azure, it
automatically joins the Kubernetes cluster. During the
scale-in, a VM instance to be terminated is removed
safely by the master from the Kubernetes cluster so that
no further pods are scheduled to run there, whereas the
pods that already run there are rescheduled to run on other
nodes. This mechanism adds the awareness of the virtual
infrastructure about containerized virtualization with
pods, therefore synchronization between layers hinders
premature termination of the VM with running pods by
the native autoscaling solution of the IaaS CSP.

The user parameters are used to configure the
Kubernetes cluster along with the scaling parameters
and policies in the CSPs IaaS autoscaler. The master
IP-address is used as a single endpoint for the generated
workload and internally the master distributes the load
among Kubernetes cluster nodes. For the collection
of the metrics from the Kubernetes cluster, ScaleX
uses Heapster19 coupled with the InfluxDB.20 Both are
deployed in the cluster with the chosen application.
Metrics data are continuously fetched by ScaleX from
both Heapster (data about the Kubernetes cluster) and the
native CSPs monitoring service (data for CSPs instances
and the autoscaling group), and stored in the database for
visualization and analysis. Figure 5 shows the deployment
to test the multilayered autoscaling solution.

4.5. Load generator and monitoring. This module
generates the workload of the desired pattern and
directs it to the IP address of the deployed application.
ScaleX employs the customized version of Node.js-based
Loadtest21 for load generation. The number of clients
that generate the load and the load generation time
are configured for the selected load pattern. To
prevent a single load generation node from becoming
the bottleneck, the module implements the master-slave
architecture—the generation of the requests is distributed

18https://kubernetes.io/docs/setup/independent/
create-cluster-kubeadm/.

19https://github.com/kubernetes/heapster.
20https://www.influxdata.com/time-series-platf

orm/influxdb/.
21https://www.npmjs.com/package/loadtest.

Load
Balancer

CSP’s Scaling Group

Instance 1

Pod 1 Pod 2

Instance 2

Pod 3

HPA

CSP’s Monitoring Service

Kube Cluster Monitoring
Heapster

Fig. 5. Deployment to test multilayered autoscaling.

Master Load
Generator

Slave Load
Generator

Slave Load
Generator

Slave Load
Generator

Autoscaler
Deployment in

Cloud

DB

Fig. 6. Load generator architecture.

among the slave nodes. After completion of each request,
the performance results are sent back to the master node
and stored in the database. The monitoring part of the
component periodically fetches the data from different
monitoring services deployed as part of the autoscaling
solutions and stores them in the database for further
performance analysis. Figure 6 depicts the architecture
of the ScaleX load generator module.

4.6. Database. ScaleX uses MongoDB to store the
performance data. The reason to choose MongoDB
as the storage for the performance data and generated
workload parameters is the support for high insert
rates. The drawback, however, is the missing transaction
safety, which in principle is not relevant for ScaleX.
An additional advantage of this NoSQL database is
that it supports storing measurements with varying data
schema as the monitoring solutions used to collect the
performance and requests data employ different data
schemes.

https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://github.com/kubernetes/heapster
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/influxdb/
https://www.npmjs.com/package/loadtest

Multilayered autoscaling performance evaluation . . . 237

5. Multilayered autoscaling performance
evaluation

5.1. Experimental setting. In our experiments, we
used all workload patterns supported by ScaleX. The
total time for each test was 20 minutes; the request
timeout was 6.5 seconds. The number of simulated
concurrent clients for each load generation was 50;
they were deployed on a single VM instance not
participating in the experiment. For each pattern except
for random, the start value of the request rate was 1
request per second, whereas the increase/decrease was
set to 3. The random load pattern starts at 50 requests
per second and increases/decreases randomly. Load
generation is distributed among the concurrent clients.
The computer-intensive test application computes the
sum of prime numbers between 1 and 1000000 when
called. Executing this computation from multiple clients
increases CPU utilization. Hence we can observe the
autoscaling solution effect on the deployment.

The VM configuration for experiments on different
clouds is provided in Table 1. The image of the operating
system used in every configuration was Ubuntu 16.04
LTS.

Table 2 highlights the configuration of Kubernetes
autoscaling. The target number of pods in a deployment
or replication controller is automatically adjusted based
on the formula

Ntgt.pods =

⌈∑
pods Ucur.CPU

Utgt.CPU

⌉
, (9)

where
∑

pods Ucur.CPU is the overall current pod CPU
utilization and Utgt.CPU is a target CPU utilization.
Table 3 contains the configuration settings for CSP native
autoscalers.

The experiment was conducted several times for
each combination of autoscaling solutions using the
Multiple Consecutive Trials (MCT) methodology. As
the results demonstrated relative stability in performance
and in scaling patterns, and we wanted to highlight
autoscaling behavioral features that might be lost by
averaging, we chose to show in the paper the results
of a single experiment. In the future, ScaleX will
be extended to support the more accurate Randomized
Multiple Interleaved Trials (RMITs) methodology (Abedi
and Brecht, 2017).

5.2. Experimental results.

5.2.1. Evaluating the performance of multilayered
autoscaling.
AWS Auto Scaling + Kubernetes. The data collected in
the scope of AWS Auto Scaling/Kubernetes, experiment
demonstrate that the scale-out action conducted by the

Table 1. Experimental VM configuration.
CSP Instance type Memory vCPUs

GCE – 2 GB 1 vCPU
AWS t2.small 2 GB 1 vCPU
Azure A1 V2 Standard 2 GB 1 vCPU

Table 2. Experimental configuration: Kubernetes autoscaling
solution.

Instances Min. Max. Scaling Threshold
pods pods metric

1(master) 1 10 CPU 20 %
3(nodes) Utilization

Table 3. Experimental configuration: CSP autoscaling solution.
Min. Max. Scaling Threshold

instances instances metric

1 3 CPU 20 %
Utilization

native AWS autoscaling solution lags the scale-out action
by Kubernetes which results in the deployment of new
pods on a single VM (see rows B and C in Fig. 7).
This behavior indicates coordination problems between
multiple virtualization layers. The lack of coordination
leads to the deployment of new pods on the old VM
instances whereas the newly added VM could only have
a single pod (in particular, rows B and C in Fig. 7
show that all the pods were started when the number
of running VMs was 1). Such a disproportion leads to
load balancing issues and results in a latency increase, as
shown in row D. The scale-in times for AWS Auto Scaling
are larger than the scale-out times which is indicated
by row C. A possible explanation is that AWS Auto
Scaling conducts more time-consuming actions during the
termination of the VM. In B-1 and B-3 the current number
of pods is reduced, although Kubernetes did not request
this. The reason is that infrastructure scaling decided
to decommission VMs although pods were still running
there.

Microsoft Azure Autoscale + Kubernetes. Microsoft
Azure Autoscale demonstrates the slowest autoscaling
behavior (see row C in Fig. 8). Both scale-out and scale-in
times are significantly larger than for GCE and AWS.
Based on plots in rows D and E, we can conclude that
the overall performance of a single Azure VM instance
is better than that of the competitors since with the
later scale-out (compared with AWS and GCE) Azure
is still able to keep the performance on par with other
tested configurations. The most probable cause could be
the newer hardware used to host the VMs at Microsoft
datacenters. It is possible to notice in the Azure graphs
in rows B–E for all tested patterns that the performance

238 V. Podolskiy et al.

0

500

1000

1500

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

R
eq

ue
st

s
(s

en
t)

0

1

2

3

4

5

6

7

8

9

10

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

N
um

be
r

of
 K

ub
er

ne
te

s
P

od
 R

ep
lic

as Type of replicas count

Current replicas

Desired replicas

0

1

2

3

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

N
um

be
r

of
 V

M
 in

st
an

ce
s

Type of nodes count

Current instances

Desired instances

0

2500

5000

7500

10000

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

La
te

nc
y,

 m
s

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

23:40 23:45 23:50 23:55 00:00 00:05 00:10 00:15 00:20

E
rr

or
s

A
B

C
D

E

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

1500

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

1500

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

1500

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

Fig. 7. Graphical representation of the AWS/Kubernetes multilayered autoscaling solution. Columns (load patterns): (first) linearly
increasing, (second) linearly increasing and constant, (third) random, (fourth) triangle. Rows: (A) total number of requests
sent, (B) DAI and CAI of Kubernetes pods, (C) DAI and CAI of AWS VM instances, (D) response time, (E) requests failure
rate.

mostly depends on the underlying hardware and on the
scaling of Kubernetes pods, and not on the actual number
of VMs.

Google Compute Engine (GCE) autoscaling + Kuber-
netes. Based on rows D and E in Fig. 9, we can conclude
that the GCE/Kubernetes deployment exhibits the best
performance. Looking deeper at row C, we can see a
cause for such behavior—most part of the experiment
interval is covered by scaled-out VM instances. If pod
replicas are distributed over more VMs, they can take a
higher load. However, there is always a tradeoff between
the size of VMs, their number and the number of pod
replicas. For example, an early VM scale-out will result
in a cost increase. The experiments also show that
GCE autoscaling is faster at making scaling decisions and
providing VM instances than AWS and Azure in the scope
of the evaluated case. Additional VMs are added early
and thus the new pods are better distributed, which is
illustrated by rows B and C.
Discussion. The comparison of the AWS, Azure, and
GCE deployments for the tested case is conducted using
two metrics: (i) the amount of QoS violations, (ii)
the fraction of the autoscaling interval where the QoS

requirements were violated. In Tables 4 and 5 we
summarize the number of QoS violations by a load
pattern. A response time QoS requirement violation is
identified by the mean response time being higher than
6.5 s. The maximal failure rate QoS violation is arbitrarily
indicated by the amount of errors higher than 10. Table 6
goes into more details on the multilayered autoscaling
performance of the studied deployments.

The results in Tables 4 and 5 show that the
GCE/Kubernetes deployment in the tested case
outperforms both AWS and Azure. The initial cause
for this is the fast decision-making process for VMs
instances scale-out that allows distributing the new
pods more or less evenly. However, with respect to the
amount of requests ending up in an error, the results
show no clear leader. For example, the GCE/Kubernetes
deployment shows problems handling the Linear Increase
and Random Load patterns in the tested case. If we refer
to the error plot E-2 in Fig. 9, we might notice really
small intervals with a high amount of errors.

The conclusion of the comparison might be
formulated in such a way that the GCE/Kubernetes
deployment provides the best autoscaling performance

Multilayered autoscaling performance evaluation . . . 239

0

500

1000

1500

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

R
eq

ue
st

s
(s

en
t)

0

1

2

3

4

5

6

7

8

9

10

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

N
um

be
r

of
 K

ub
er

ne
te

s
P

od
 R

ep
lic

as Type of replicas count

Current replicas

Desired replicas

0

1

2

3

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

N
um

be
r

of
 V

M
 in

st
an

ce
s

Type of nodes count

Current instances

Desired instances

0

2500

5000

7500

10000

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

La
te

nc
y,

 m
s

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

07:05 07:10 07:15 07:20 07:25 07:30 07:35 07:40

E
rr

or
s

A
B

C
D

E

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

06:15 06:20 06:25 06:30 06:35 06:40 06:45 06:50 06:55

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:30 05:35 05:40 05:45 05:50 05:55 06:00

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

500

1000

01:10 01:15 01:20 01:25 01:30 01:35 01:40

01:10 01:15 01:20 01:25 01:30 01:35 01:40

01:10 01:15 01:20 01:25 01:30 01:35 01:40

01:10 01:15 01:20 01:25 01:30 01:35 01:40

01:10 01:15 01:20 01:25 01:30 01:35 01:40

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

Fig. 8. Graphical representation of the Azure/Kubernetes multilayered autoscaling solution. Columns (load patterns): (first) linearly
increasing, (second) linearly increasing and constant, (third) random, (fourth) triangle. Rows: (A) total number of requests
sent, (B) DAI and CAI of Kubernetes pods, (C) DAI and CAI of Azure VM instances, (D) response time, (E) requests failure
rate.

Table 4. Performance comparison based on the amount of re-
sponse time requirement QoS violations.

Load Amount of RT requirement violations
Pattern AWS Azure GCE

Linear
Increase

0 0 0

Linear
and
Con-
stant

17962 40934 250

Random 1545 2570 1127
Triangle 6418 15222 76

for the experimental case without careful selection of
the parameters for autoscaling policy (e.g., the CPU
threshold).

Table 6 summarizes parameters of all CSP layer
scale-out intervals. The column RTV represents a fraction
of the autoscaling interval with the violated response time
requirement, whereas MFRV represents the same for the
requirement on the maximal failure rate. Since not all
the deployments have exposed the clear synchronized

Table 5. Performance comparison based on the amount of max-
imal failure rate QoS violations.

Load Amount of MFR requirement violations
Pattern AWS Azure GCE

Linear
Increase

0 0 382

Linear
and
Con-
stant

25707 42725 1251

Random 1720 2570 1835
Triangle 9954 16368 845

multilayered behavior, the autoscaling performance was
evaluated only during the scaling of VM instance groups.

We can observe a clear autoscaling performance
problem for Azure. It is not only the slowest, but also
exhibits more performance problems during the scaling
time. Scale-out times of other deployments for all the
patterns are mostly in the 5—30 second interval, which
could be considered appropriate, although even these
times can exhibit performance problems (refer to high

240 V. Podolskiy et al.

0

500

1000

1500

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

R
eq

ue
st

s
(s

en
t)

0

1

2

3

4

5

6

7

8

9

10

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

N
um

be
r

of
 K

ub
er

ne
te

s
P

od
 R

ep
lic

as Type of replicas count

Current replicas

Desired replicas

0

1

2

3

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

N
um

be
r

of
 V

M
 in

st
an

ce
s

Type of nodes count

Current instances

Desired instances

0

2500

5000

7500

10000

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

La
te

nc
y,

 m
s

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

100

200

21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00 22:05

E
rr

or
s

A
B

C
D

E

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

100

200

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

05:15 05:20 05:25 05:30 05:35 05:40 05:45 05:50 05:55 06:00

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

100

200

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

01:25 01:30 01:35 01:40 01:45 01:50 01:55 02:00 02:05 02:10

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

0

500

1000

1500

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

0

2500

5000

7500

10000

0

100

200

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

23:50 23:55 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

Type of replicas count

Current replicas

Desired replicas

Type of nodes count

Current instances

Desired instances

Type of latency

Maximal Latency

Mean Latency

Minimal Latency

Fig. 9. Graphical representation of the GCE/Kubernetes multilayered autoscaling solution. Columns (load patterns): (first) linearly
increasing, (second) linearly increasing and constant, (third) random, (fourth) triangle. Rows: (A) total number of requests
sent, (B) DAI and CAI of Kubernetes pods, (C) DAI and CAI of GCE VM instances, (D) response time, (E) requests failure
rate.

values of RTV and MFRV for the 2nd AWS scale-out
interval for Linear Increase and Constant).

The results shown in Table 6 indicate that the
performance issues in the autoscaling solutions can be the
reason for QoS violations. Making autoscaling intervals
smaller and loosening thresholds in the autoscaling rules
do not necessarily help to increase the performance of
the solution during autoscaling as the old infrastructure
remains exposed to the arriving requests. Moreover, the
time necessary for the application services to become
available for the requests was not taken into account.

5.2.2. Evaluating the effect of the container image
size and pulling policy on the scaling performance.
Creation and termination of microservice replicas is a
mechanism that enables scaling on the containerized
application virtualization layer. With the differences in
the types of software used inside the containers, the actual
scaling time in the multilayered autoscaling case may
differ as the additional time is required to receive the
image that is used to create the container. This difference
could be attributed to the size of the image as well as
its actual location. For example, many users prefer to
use the centralized DockerHub repository of images. It

contains a vast number of container images with different
software combinations. Therefore, one needs to take into
account the time that will be required to get the container
image over the network considering the latency. This
issue is usually resolved by adding a local repository with
the Docker container images. In this subsection of the
paper we tried to make a point that the parameters of
container images and pulling policies can be responsible
for the changes in the scaling time of the containerized
applications.

In order to prove the hypothesis that the pulling
policy and the container image size should be considered
when studying the scaling of the containerized
application, a small-scale experiment was conducted
on 11 container images taken from Docker Hub.
During the experiment, the time between scheduling the
container and its start was measured. The measurements
were conducted multiple times for the Always Pull and If
Not Present policies for container images supported by
Kubernetes. The averaged results are provided in Table 7.

The pulling time in the conducted experiment does
not give a clear indication of the connection between the
pulling time when the image resides on Docker Hub and
its size, though, for example, the average pulling time for

Multilayered autoscaling performance evaluation . . . 241

Table 6. Performance of the AWS, Azure, and GCE autoscaling
solutions for scale-out events.

Load
Pattern

CSP Scale
-out

Scale
-out
time [s]

RTV MFRV

Linear AWS 1st 28.06 0.00 0.00
Increase 2nd 9.03 0.00 0.00

Azure 1st 128.00 0.00 0.00
2nd 126.00 0.00 0.00

GCE 1st 8.01 0.00 0.00
2nd 12.01 0.00 0.00

Linear AWS 1st 17.03 0.00 0.00
Increase 2nd 28.08 0.73 0.88
and Azure 1st 128.00 0.85 0.92
Constant 2nd 123.00 0.92 0.94

GCE 1st 26.02 0.00 0.00
2nd 11.95 0.02 0.02

Random AWS 1st 33.08 0.00 0.00
2nd 15.01 0.00 0.00

Azure 1st 131.00 0.00 0.00
2nd 117.00 0.00 0.00

GCE 1st 11.01 0.00 1.00
2nd 7.99 0.00 0.00

Triangle AWS 1st 6.01 0.00 0.00
2nd 18.02 0.00 0.00

Azure 1st 155.00 0.86 0.91
2nd 128.00 0.00 0.00

GCE 1st 7.98 0.00 0.00
2nd 8.01 0.00 0.00

six smallest images is more than twice larger than the
average pulling time for five largest images. The outlier
pulling times for the hello-world, python-alpine and java
images may be caused by the popularity of these images
and the limited capacity of Docker Hub. Though such
a small experiment does not provide a clear support for
the initial hypothesis, it highlights the fluctuations in the
pulling time, which could be a reason for the slowdown
on the containerized application virtualization layer. As
expected, in case of the locally present image, the pulling
time is significantly lower, staying in the interval between
12 and 14 seconds for the tested cases. A local container
images repository may increase the performance of the
multilayered scaling though the additional resources will
be required to establish such a configuration.

6. Related works

Fundamental principles of the autoscaling policies
performance evaluation were introduced by
Papadopoulos et al. (2016). The researchers describe
an autoscaling policy performance evaluation approach

Table 7. Docker image pulling time for different pulling poli-
cies: image present and image on Docker Hub.

Image Size [Mb] Pulling Pulling
time [s] time [s]
(present) (Docker Hub)

hello-world 0.00185 13 101
redis 27.8 12 66
nodejs-alpine 69.7 13 78
python-alpine 89.9 13 234
mongodb 368 13 98
mysql 445 12 55
java 584 14 300
nodejs 674 14 181
r 701 14 191
golang 715 14 272
python 912 14 183

based on a chance constrained optimization problem
solved using scenario theory. The approach was
implemented in Performance Evaluation Framework
for Auto-Scaling (PEAS) and tested on several existing
autoscaling policies using 796 real workload traces. The
paper also introduced several distinct metrics to evaluate
the autoscaling performance with the core metrics of the
average number of under- and over-provisioned resources.

The major contribution of the study by Ilyushkin
et al. (2017) is a set of performance metrics to
estimate an autoscaling policy. The set includes under-
and over-provisioning accuracy, wrong-provisioning
timeshare, instability, as well as other user-oriented
metrics, e.g., wait time, response time, elastic slowdown,
average number of resources, or average task throughput.
Upon the listed metrics, the authors have built
an approach to compare autoscalers using pairwise
comparison, fractional difference comparison, and
aggregated elasticity, as well as some user metrics. The
developed approach and the metrics were applied to
selected existing autoscaling policies. Although the
presented approach and metrics allow comparing different
autoscaling policies, even the authors admit that the type
of performance considered also heavily relies on the type
of application under consideration.

The technical report by Versluis (2017) highlights
fundamental research questions regarding the
performance of different autoscaling policies. This
paper may be viewed as a comprehensive extension
of the one by Ilyushkin et al. (2017). Using four
different workloads from scientific, industrial, and
engineering domains, the authors were able to prove that
the application domain actually heavily influences the
quality of the autoscaling results.

The performance estimation approach presented
by Evangelidis et al. (2017) is based on probabilistic

242 V. Podolskiy et al.

discrete-time Markov chain model checking. The
checking is conducted using the PRISM tool, which is
a probabilistic model checker for the formal modeling
and analysis of systems with random or probabilistic
behavior. Each policy is encoded in the PRISM tool
with a set of user-defined model parameters. By
specifying the auto-scaling policy, the model parameters,
and running PRISM, the user would be able to obtain
the estimates of the probability that various estimated
performance parameters are lying in specified intervals for
different values of model parameters. The identified most
appropriate values of model parameters could be used to
adjust the autoscaling policy. The authors also conducted
the validation of the study by using the AWS public cloud
testbed and ROC analysis.

Hwang et al. (2016) outlined the generic
performance model for clouds of any type. It
encompasses a total of 19 metrics divided into 3
abstraction levels: basic performance metrics, cloud
capabilities, cloud productivity. Multiple metrics were
applied to comprehensively estimate the performance of
scale-out, scale-up, and mixed scaling modes on some
real-world benchmarks and on the public cloud providers.

The presented works concentrate on the evaluation of
autoscaling on the level of virtual machines. These works
also consider the evaluation of policies and not of the
implementation of autoscaling in commercial clouds. Our
approach extends the works towards multiple autoscaling
layers and investigates the important aspect of overheads
of real implementations.

7. Conclusion and future work

In this paper we tried to summarize our theoretical
understanding of the autoscaling area and shed the light
on performance evaluation for multilayered autoscaling
solutions. The paper incorporates the methodology
and tools originally presented by Jindal et al. (2017).
The multilayered autoscaling performance evaluation
methodology and ScaleX were applied in the scope of the
paper to enable the comparison of several multilayered
autoscaling solutions based on the virtual infrastructure
provided by public CSPs.

The results of the conducted comparison show that
for multilayered autoscaling the performance is not only
determined by the time taken for autoscaling but rather
also by the time that the decision to scale takes, by the
real hardware underlying VM instances, and by the degree
of synchronization between autoscaling on different
virtualization layers. With the unadjusted autoscaling
policies, the GCE/Kubernetes solution showed the best
overall performance on the tested case which could
mostly be attributed to the overprovisioning of VMs.
Additionally, with another small experiment, the influence
of the container image pulling time on the autoscaling

quality was highlighted in the paper.
The study indicated several future work directions.

The addition of support for the Randomized Multiple
Interleaved Trials (RMITs) testing methodology (Abedi
and Brecht, 2017) to ScaleX will increase the accuracy
of the evaluations made using the tool. The support
for automated autoscaling policies testing with the
specialized metrics given by ScaleX (?) will extend
the evaluation capabilities of the tool allowing evaluation
of both autoscaling solutions and policies. By making
load generation in ScaleX more flexible (generating
the load based on data from logs and traces), the
behaviour of autoscaling solutions could be studied in
conditions close to industrial cases. Yet another necessary
step would be the extension of ScaleX’s functionality
to support the evaluation of vertical autoscaling and
autoscaling in hybrid cloud environments. With all these
possible extensions, ScaleX may find use even in business
environments willing to test scaling capabilities of the
virtual infrastructure and the containerized application
to find out the scaling bottlenecks and get rid of them.
Addition of the recommending service to the evaluation
tool may allow the user to receive insights from ScaleX
on how autoscaling solutions should be set or which
autoscaling policy should be selected.

By implementing these extensions in ScaleX and
further polishing the evaluation methodology, we aim to
continue testing autoscaling capabilities of the existing
solutions in different settings. Such tests will enable
us to better understand the complex area of elastic
cloud applications. Nevertheless, the provided approach
may become inappropriate for the serverless paradigm.
Function-as-a-Service (FaaS) tries to hide the elasticity
of the virtual infrastructure from the user highlighting
only scaling on the application level by changing the
number of function instances backed with the change in
the number of running containers (Lloyd et al., 2018).
Adapting the autoscaling solution performance evaluation
methodology to this paradigm may become another
challenging research direction.

The next important step is to identify the
infrastructure and application parameters that influence
the quality of scaling. Yet another barely covered research
problem is the influence of the application structure on the
actual scaling capabilities of the application. The research
in this area may uncover the particular microservice
application structures that have a bigger scaling potential
than the other applications.

8. Availability

The source code of ScaleX and the video manual are
available in the Git repository at https://github.c
om/ansjin/ScaleX.

https://github.com/ansjin/ScaleX
https://github.com/ansjin/ScaleX

Multilayered autoscaling performance evaluation . . . 243

Acknowledgment

The authors would like to express their gratitude to the
anonymous reviewers of the paper, who provided their
valuable comments to improve the contribution. This
work was supported by the German Research Foundation
(DFG) and the Technical University of Munich within the
funding programme Open Access Publishing.

References
Abedi, A. and Brecht, T. (2017). Conducting repeatable

experiments in highly variable cloud computing
environments, Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering,
ICPE’17, L’Aquila, Italy, pp. 287–292.

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N. and Merle, P. (2017).
Autonomic vertical elasticity of docker containers with
elasticdocker, 2017 IEEE 10th International Conference
on Cloud Computing (CLOUD), Honolulu, HI, USA,
pp. 472–479.

Bauer, A., Herbst, N. and Kounev, S. (2017). Design and
evaluation of a proactive, application-aware auto-scaler:
Tutorial paper, Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering,
ICPE’17, L’Aquila, Italy, pp. 425–428.

Bondi, A.B. (2000). Characteristics of scalability and their
impact on performance, Proceedings of the 2nd Interna-
tional Workshop on Software and Performance, WOSP’00,
Ottawa, Canada, pp. 195–203.

Evangelidis, A., Parker, D. and Bahsoon, R. (2017).
Performance modelling and verification of cloud-based
auto-scaling policies, Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting, CCGrid’17, Madrid, Spain, pp. 355–364.

Guo, Y., Stolyar, A. and Walid, A. (2018). Online VM
auto-scaling algorithms for application hosting in a cloud,
IEEE Transactions on Cloud Computing, pp. 1–1, (early
access), https://ieeexplore.ieee.org/docum
ent/8351912.

Herbst, N.R., Kounev, S. and Reussner, R. (2013). Elasticity in
cloud computing: What it is, and what it is not, Proceed-
ings of the 10th International Conference on Autonomic
Computing (ICAC 13), San Jose, CA, USA , pp. 23–27.

Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.G. and Wu,
Y. (2016). Cloud performance modeling with benchmark
evaluation of elastic scaling strategies, IEEE Transactions
on Parallel and Distributed Systems 27(1): 130–143.

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos,
A.V., Ghit, B., Epema, D. and Iosup, A. (2017).
An experimental performance evaluation of autoscaling
policies for complex workflows, Proceedings of the 8th
ACM/SPEC on International Conference on Performance
Engineering, ICPE’17, L’Aquila, Italy, pp. 75–86.

Jakobik, A., Grzonka, D. and Kolodziej, J. (2017). Security
supportive energy aware scheduling and scaling for cloud
environments, European Conference on Modelling and
Simulation, ECMS 2017, Budapest, Hungary, pp. 583–590.

Jindal, A., Podolskiy, V. and Gerndt, M. (2017). Multilayered
cloud applications autoscaling performance estimation,
2017 IEEE 7th International Symposium on Cloud and
Service Computing (SC2), Kanazawa, Japan, pp. 24–31.

Versluis, L. and Neacsu, A.I. (2017). A trace-based
performance study of autoscaling workloads of workflows
in datacenters, Technical Report 1711.08993v1, Vrije
Universiteit Amsterdam, Amsterdam.

Liu, Y., Rameshan, N., Monte, E., Vlassov, V. and Navarro, L.
(2015). Prorenata: Proactive and reactive tuning to scale a
distributed storage system, 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing,
Shenzen, China, pp. 453–464.

Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L. and Pallickara,
S. (2018). Serverless computing: An investigation of
factors influencing microservice performance, 2018 IEEE
International Conference on Cloud Engineering (IC2E),
Orlando, FL, USA, pp. 159–169.

Moore, L.R., Bean, K. and Ellahi, T. (2013). Transforming
reactive auto-scaling into proactive auto-scaling, Proceed-
ings of the 3rd International Workshop on Cloud Data
and Platforms, CloudDP’13, Prague, Czech Republic,
pp. 7–12.

Nikravesh, A.Y., Ajila, S.A. and Lung, C.-H. (2015). Towards
an autonomic auto-scaling prediction system for cloud
resource provisioning, Proceedings of the 10th Interna-
tional Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS’15, Florence, Italy,
pp. 35–45.

Papadopoulos, A.V., Ali-Eldin, A., Arzen, K.-E., Tordsson,
J. and Elmroth, E. (2016). PEAS: A performance
evaluation framework for auto-scaling strategies in cloud
applications, ACM Transactions on Modeling and Perfor-
mance Evaluation of Computing Systems 1(4): 15:1–15:31.

Roy, N., Dubey, A. and Gokhale, A. (2011). Efficient
autoscaling in the cloud using predictive models for
workload forecasting, 2011 IEEE 4th International Con-
ference on Cloud Computing, Washington, DC, USA,
pp. 500–507.

Sotomayor, B., Montero, R.S., Llorente, I.M. and Foster, I.
(2009a). Resource leasing and the art of suspending
virtual machines, Proceedings of the 2009 11th IEEE
International Conference on High Performance Comput-
ing and Communications, HPCC’09, Seoul, South Korea,
pp. 59–68.

Sotomayor, B., Montero, R.S., Llorente, I.M. and Foster, I.
(2009b). Virtual infrastructure management in private and
hybrid clouds, IEEE Internet Computing 13(5): 14–22.

https://ieeexplore.ieee.org/document/8351912
https://ieeexplore.ieee.org/document/8351912

244 V. Podolskiy et al.

Vladimir Podolskiy is a PhD student at TUM
and a DAAD scholar. His research interests are
in the area of predictive cloud applications, au-
toscaling, evaluation of autoscaling solutions and
scalable middleware for the Internet of things. He
graduated in 2014 from Bauman Moscow State
Technical University (BMSTU), Russia. Prior to
starting his PhD, he had worked for several years
at IBS Group as an analyst and a software archi-
tect.

Anshul Jindal is a PhD student at TUM. His
research interests include cloud computing, au-
toscaling and performance predictions of mi-
croservices. He completed his MSc in informat-
ics in 2018 at TUM, Germany. Prior to starting
his studies, he had worked for 2 years at Samsung
Research Institute in Bangalore, India, as a senior
software engineer.

Michael Gerndt received a PhD in computer sci-
ence in 1989 from the University of Bonn. In
1990 and 1991, he held a postdoc position at
the University of Vienna, and joined Julich Re-
search Centre in 1992. He habilitated in 1998
at the Technical University of Munich (TUM).
Since 2000 he has been a professor of archi-
tecture of parallel and distributed systems there.
His research focuses on resources management in
cloud environments and on programming models

and tools for scalable parallel architectures.

Received: 18 July 2018
Revised: 12 December 2018
Accepted: 1 February 2019

	Introduction
	Theoretical framework and background
	Scalability and elasticity
	Changing the cloud capacity through scaling
	Types of scaling
	Scaling the virtual infrastructure
	Scaling containerized applications
	Multilayered and cooperative scaling

	Autoscaling
	Reactive autoscaling
	Scheduled autoscaling
	Predictive autoscaling

	Evaluation of autoscaling

	Approach to evaluate autoscaling performance
	Single-layered autoscaling performance evaluation
	Performance evaluation of multilayered autoscaling

	ScaleX: An autoscaling performance measurement tool
	ScaleX overview
	User interface
	Single-layered autoscaler interface
	Multilayered autoscaler interface
	Load generator and monitoring
	Database

	Multilayered autoscaling performance evaluation
	Experimental setting
	Experimental results
	Evaluating the performance of multilayered autoscaling
	Evaluating the effect of the container image size and pulling policy on the scaling performance

	Related works
	Conclusion and future work
	Availability

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

