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ABSOLUTE STABILITY OF A CLASS OF FRACTIONAL POSITIVE
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The positivity and absolute stability of a class of fractional nonlinear continuous-time and discrete-time systems are ad-
dressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient
conditions for the absolute stability of this class of fractional positive nonlinear systems are also given.
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1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains forever
in the positive orthant for all nonnegative inputs. An
overview of the state of the art in positive theory is given
by Berman and Plemmons (1994), Farina and Rinaldi
(2000) or Kaczorek (2002). A variety of models having
positive behavior can be found in engineering, economics,
social sciences, biology and medicine, etc. (cf. Ait Rami
and Tadeo, 2007; Ortigueira, 2011; Zhang et al., 2014;
Xiang-Jun, 2008).

Mathematical fundamentals of fractional calculus
are given by Oldham and Spanier (1974), Ortigueira
(2011), Ostalczyk (2008) and Podlubny (1999). Positive
fractional linear systems were investigated by Kaczorek
(2018; 2011b) and Ostalczyk (2008). The stability of
linear and nonlinear standard and positive fractional
systems was addressed by Busłowicz (2008; 2012),
Busłowicz and Kaczorek (2009), Farina and Rinaldi
(2000), Kaczorek (2016; 2015a; 2015b; 2011b),
Ortigueira (2011), Ostalczyk (2008), Podlubny
(1999) as well as Polyak and Shcherbakov (2002a).
The stabilization of positive descriptor fractional
systems was investigated by Kaczorek (2018; 2014),
Ortigueira (2011) and Ostalczyk (2008). Superstable
linear systems have been addressed by Polyak and
Shcherbakov (2002a; 2002b). Positive linear systems
with different fractional orders were introduced by
Kaczorek (2010; 2011a), while their stability was

analyzed by Busłowicz (2008; 2012) and Ortigueira
(2011). The notion of practical stability of positive
fractional linear systems was introduced by Kaczorek
(2002). Some recent interesting results in fractional
systems theory and its applications can be found in
the works of Berman and Plemmons (1994), Kaczorek
(2010), Zhang et al. (2014) and Xiang-Jun (2008).

In this paper, the positivity and absolute stability
of a class of nonlinear continuous-time and discrete-time
systems will be investigated. The paper is organized as
follows. In Section 2, some preliminaries concerning
the positivity and stability of linear systems are recalled.
The positivity and absolute stability of fractional positive
continuous-time nonlinear systems are investigated in
Section 3 and these of fractional positive discrete-time
nonlinear systems in Section 4. Concluding remarks are
given in Section 5.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; Rn×m

+ ,
the set of n × m real matrices with nonnegative entries
and R

n
+ = R

n×1
+ ; Mn, the set of n × n Metzler matrices

(real matrices with nonnegative off-diagonal entries); In,
the n× n identity matrix; AT , the transpose of matrix A.

2. Preliminaries

The following Caputo definition of the fractional
derivative will be used (Kaczorek, 2011b; Oldham
and Spanier, 1974; Ortigueira, 2011; Ostalczyk, 2008;
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Podlubny, 1999):

dα

dtα
f(t) =

1

Γ(n− α)

∫ f

0

f (n)

(t− τ)α+1−n
dτ,

n− 1 < α ≤ n ∈ N = {1, 2, . . .},
(1)

where α ∈ R is the order of the fractional derivative and

f (n)(τ) =
dnf(τ)

dτn
,

while Γ(x) =
∫∞
0

e−ttx−1dt is the gamma function.
Consider a fractional linear system described by the

equations

dαx

dtα
= Ax+Bu, 0 < α ≤ 1, (2a)

y = Cx, (2b)

where x = x(t) ∈ R
n, u = u(t) ∈ R

m, y = y(t) ∈ R
p

are the state, input and output vectors, respectively, and
A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n.

Definition 1. (Kaczorek, 2011b) The fractional system
(2) is called an (internally) positive system if and only
if x(t) ∈ R

n
+ and y(t) ∈ R

p
+ for t ≥ 0 for any initial

conditions x0 ∈ R
n
+ and all inputs u(t) ∈ R

m
+ , t ≥ 0.

Theorem 1. (Kaczorek, 2011b) The continuous-time frac-
tional system (2) is (internally) positive if and only if the
matrix A is a Metzler matrix and

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ . (3)

Definition 2. (Kaczorek, 2011c) The positive fractional
system (2) is called asymptotically stable if

lim
x→∞x(t) = 0, ∀x(0) ∈ R

n
+. (4)

Theorem 2. (Kaczorek, 2011b) The positive fractional
system (2) is asymptotically stable if and only if one of the
following equivalent conditions is satisfied:

(i) all the coefficients of the characteristic polynomial

pn(s) = det[Ins−A]

= sn + an−1s
n−1 + · · ·+ a1s+ a0

(5)

are positive, i.e., ai > 0 for i = 0, 1, . . . , n− 1;

(ii) there exists a strictly positive vector λT =
[ λ1 · · · λn]

T , λk > 0, k = 1, . . . , n, such that

Aλ < 0 or λTA < 0. (6)

If the matrix A is nonsingular, then we can choose
λ = A−1c, where c ∈ R

n is strictly positive.

Consider the fractional discrete-time linear system
(Kaczorek, 2011b; Ostalczyk, 2008)

Δαxi+1 = Axi +Bui, i ∈ Z+ = {0, 1, . . .}, (7a)

yi = Cxi, (7b)

Δαxi =

i∑
j=0

cjxi−j , cj = (−1)j
(
α

j

)

=

{
1 for j = 0,

(−1)j α(α−1)···(α−j+1)
j! for j = 1, 2, . . .,

(7c)

xi ∈ R
n, ui ∈ R

m, yi ∈ R
p being the state, input and

output vectors, respectively, and A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n.

Definition 3. (Farina and Rinaldi, 2000; Kaczorek,
2011b; 2002) The fractional discrete-time linear system
(7) is called (internally) positive if xi ∈ R

n
+, yi ∈ R

p
+,

i ∈ Z+, for any initial conditions x0 ∈ R
n
+ and all inputs

ui ∈ R
m
+ , i ∈ Z+.

Theorem 3. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The fractional discrete-time linear system (7) is positive if
and only if

A ∈ R
n×n
+ , B ∈ R

n×m
+ , C ∈ R

p×n
+ . (8)

Definition 4. (Farina and Rinaldi, 2000; Kaczorek,
2011b; 2002) The fractional positive discrete-time system
(7) is called asymptotically stable if

lim
i→∞

xi = 0, ∀x0 ∈ R
n
+. (9)

Theorem 4. (Farina and Rinaldi, 2000; Kaczorek, 2011b;
2002) The fractional positive discrete-time linear system
(7) is asymptotically stable if and only if one of the follow-
ing equivalent conditions is satisfied:

(i) all the coefficients of the characteristic polynomial

pn(z) = det[In(z + 1)−A]

= zn + an−1z
n−1 + · · ·+ a1z + a0

(10)

are positive, i.e., ai > 0 for i = 0, 1, . . . , n− 1;

(ii) there exists a strictly positive vector λT =
[ λ1 · · · λn]

T , λk > 0, k = 1, . . . , n such that

(A− In)λ < 0 or λT (AT − In) < 0. (11)

If the matrix (A − In) is nonsingular then we can choose
λ = (A− In)

−1c, where c ∈ R
n is strictly positive.
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3. Absolute stability of positive
continuous-time nonlinear systems

Consider the fractional nonlinear continuous-time system
shown in Fig. 1 and described by the equations

dαx

dtα
= Ax+Bu, u = f(e), 0 < α < 1, (12a)

y = Cx, (12b)

where x = x(t) ∈ R
n, u = u(t) ∈ R

m, y = y(t) ∈ R
p

are respectively the state, input and output vectors of
the system A ∈ R

n×n, B ∈ R
n×1, C ∈ R

1×n, and
the characteristic f(e) of the nonlinear element (Fig. 2)
satisfies the conditions

ke < f(e) < 0, if e < 0, (13a)

0 < fe < ke if e > 0, (13b)

f(0) = 0. (13c)

Definition 5. The fractional nonlinear system (12) is
called (internally) positive if x(t) ∈ R

n
+, y(t) ∈ R

p
+,

t ≥ 0 for any initial conditions x(0) ∈ R
n
+ and all inputs

u(t) ∈ R+, t ≥ 0.

Theorem 5. The fractional nonlinear system (12) is pos-
itive if and only if

A ∈ Mn, B ∈ R
n×1
+ , C ∈ R

1×n
+ , (14)

and the conditions (13) are satisfied.

Proof. It is well known (Kaczorek, 2011b; Bartosiewicz,
2017) that, if u = f(e) ≥ 0, t ≥ 0, then x(t) ∈ R

n
+, t ≥ 0

for x(0) ∈ R
n
+ if and only if A ∈ Mn and B ∈ R

n×1
+ .

From (12b) for t = 0 we have y(0) = Cx(0) ∈ R+ for
x(0) ∈ R

n
+ if and only if C ∈ R

1×n
+ . �

Definition 6. The fractional positive nonlinear system
(12) is called absolutely stable if x(t) ∈ R

n
+, t ≥ 0, and

lim
t→∞x(t) = 0, ∀x(0) ∈ R

n
+. (15)

The Metzler matrix A ∈ Mn is called a Hurwitz
Metzler matrix if all its eigenvalues λk satisfy the
condition Rλk < 0, k = 1, . . . , n.

Theorem 6. The positive fractional nonlinear system
(12) is absolutely stable if

(i) A ∈ Mn is the Hurwitz Metzler matrix,

B ∈ R
n×1
+ , C ∈ R

1×n
+ ; (16)

(ii) the nonlinear characteristic f(e) satisfies the condi-
tion (13).

Fig. 1. Fractional nonlinear continuous-time system.

Fig. 2. Characteristic f(e) of the nonlinear element.

Proof. The proof is based on the Lyapunov method
for fractional positive systems. As a candidate for the
Lyapunov function the following linear function of the
state vector x(t) ∈ R

n
+, t ≥ 0, is assumed:

V (x(t)) = λTx(t),

λT = [ λ1 . . . λn ],

λk > 0, k = 1, . . . , n. (17)

Using (17) and (12a), we obtain

dαV (x)

dtα
= λT dαx(t)

dtα

= λT [Ax(t) +Bf(e)] < 0

(18)

since, by (16) and (6),

λTA < 0 and f(−e) < 0 for − e < 0 and t ≥ 0. (19)

Therefore, the fractional positive nonlinear system
(12) is absolutely stable if both the conditions of Theorem
6 are satisfied. �

Remark 1. The absolute stability of the fractional
positive nonlinear system is directly independent of the
transfer function of its linear part (and also of its fractional
frequency characteristics).

Example 1. Consider the fractional nonlinear system
(11) with

A =

[ −2 1
1 −3

]
, B =

[
1
0

]
,

C =
[
0 2

]
.

(20)
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The fractional positive nonlinear system is absolutely
stable for the characteristic f(e) satisfying the condition
(13) since the matrix A ∈ M2 is asymptotically stable and
its characteristic polynomial

det[I2s−A] =

∣∣∣∣ s+ 2 −1
−1 s+ 3

∣∣∣∣ = s2 + 5s+ 5 (21)

has positive coefficients (Theorem 2, Condition (i)).
The same result follows from Condition (ii) of

Theorem 2 since, for

λ =

[
1
1

]
,

we have

Aλ =

[ −2 1
1 −3

] [
1
1

]
=

[ −1
−2

]
< 0. (22)

Therefore, by Theorem 6 the fractional nonlinear
system with (20) is absolutely stable for all nonlinear
characteristics f(e) satisfying the condition (13). �

4. Absolute stability of fractional
discrete-time nonlinear systems

Consider a fractional nonlinear discrete-time system
shown in Fig. 3 and described by the equations

Δαxi+1 = Axi +Bui, (23a)

yi = Cxi, (23b)

ui = f(ei), i ∈ Z+ = {0, 1, . . .} (23c)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R are respectively the
state, input and output vectors of the system A ∈ R

n×n,
B ∈ R

n×1, C ∈ R
1×n, and the characteristic f(ei) of the

nonlinear element (Fig. 4) satisfies the condition

0 < f(ei) < kei, 0 < k < ∞, (24)

and

Δαxi =

i∑
j=0

(−1)j
(
α

j

)
xi−j , 0 < α < 1, (25)

(
α

j

)
=

{
1 for j = 0,
α(α−1)···(α−j+1)

j! for j = 1, 2, . . .
(26)

is the fractional α-th order difference of xi.
Substitution of (25) into (23a) yields

xi+1 +
i+1∑
j=2

cjxi−j+1

= Aαxi + Bf(ei), i ∈ Z+, (27a)

where

Aα = A+ Inα, Cj = (−1)j
(
α

j

)
. (27b)

Fig. 3. Fractional nonlinear discrete-time system.

Fig. 4. Characteristic f(ei) of the nonlinear element.

Definition 7. The fractional nonlinear system (23) is
called (internally) positive if xi ∈ R

n
+, yi ∈ R+, i ∈ Z+,

for every initial condition x0 ∈ R
n
+ and all inputs ui ∈

R+, i ∈ Z+.

Theorem 7. The fractional nonlinear system (23) is pos-
itive if and only if

Aα ∈ R
n×n
+ , B ∈ R

n×1
+ , C ∈ R

1×n
+ , (28)

and

f(ei) ≥ 0 for ei ≥ 0, (29)

f(−ei) < 0 for − ei < 0 (30)
for all i ∈ Z+.

Proof. It is well known (Kaczorek, 2011b) that, if ui =
f(ei) ≥ 0, i ≥ 0, then xi ∈ R

n
+, i ∈ Z+, for every

xi ∈ R
n
+ if and only if Aα ∈ R

n×n
+ and B ∈ R

n×1
+ since

cj > 0 for j = 1, 2, . . . . From (23b), for i = 0 we have
y0 = Cx0 ∈ R+ for x0 ∈ R

n
+ if and only if C ∈ R

1×n
+ .

�

Definition 8. The fractional positive nonlinear system
(23) is called absolutely stable if xi ∈ R

n
+, i ∈ Z+, and

lim
i→∞

xi = 0, ∀x0 ∈ R
n
+. (31)

The matrix Aα ∈ R
n×n
+ is called a Schur matrix if all its

eigenvalues zi, i = 1, . . . , n, satisfy the condition

|zi| < 1, i = 1, . . . , n. (32)

Theorem 8. The fractional positive nonlinear system
(23) is absolutely stable if
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(i) Aα ∈ R
n×n
+ is a Schur matrix and

B ∈ R
n×1
+ , C ∈ R

1×n
+ ; (33)

(ii) the nonlinear characteristic f(ei) satisfies the condi-
tion (29).

Proof. The proof is based on the Lyapunov method for
fractional positive nonlinear systems. As a candidate for
the Lyapunov function, the following linear function of
the state vector xi ∈ R

n
+, i ∈ Z+, is chosen

Vα(xi) = λTxi,

λT = [ λ1 . . . λn ],

λk > 0, k = 1, . . . , n.

(34)

Using (34) and (27a), we obtain

ΔαV (xi) = Vα(xi+1)− Vα(xi)

= λT
[
xi+1 − xi

]

= λT [Aα − In] + λTBf(ei) < 0

(35)

since, by (11), we have

B ∈ R
n×1
+ , λT [Aα − In] < 0

Bf(−ei) < 0, i ∈ Z+. (36)

Therefore, the fractional positive nonlinear system (23) is
absolutely stable. �

Remark 2. The absolute stability of the fractional
positive nonlinear system (23) is directly independent of
the transfer function of its linear part.

Example 2. Consider the fractional nonlinear system
(23) with α = 0.5 and

A =

[
0.1 0.2
0.2 0.3

]
, B =

[
1
2

]
, C = [ 1 0 ],

(37)
and the characteristic of the nonlinear element satisfying
the condition (29). The matrix A ∈ R

2×2
+ (defined by

(36)) is a Schur matrix since its characteristic polynomial

det[I2(z + 1)−Aα] =

∣∣∣∣ z + 0.4 −0.2
−0.2 z + 0.2

∣∣∣∣
= z2 + 0.6z + 0.04

(38)

has positive coefficients. The same result can be obtained
by using the condition (10) since, for λT = [ 0.8 1 ]
and

[Aα − I2] =

[ −0.4 0.2
0.2 −0.2

]
, (39)

we have

λT [Aα − I2] =

[ −0.12
−0.04

]
< 0. (40)

Therefore, by Theorem 8 the fractional positive nonlinear
system with (37) is absolutely stable for all nonlinear
characteristics satisfying the condition (24). �

5. Concluding remarks

The positivity and absolute stability of a class of fractional
nonlinear continuous-time and discrete-time systems have
been addressed. Necessary and sufficient conditions
for the positivity of the fractional nonlinear systems
have been established (Theorems 5 and 7). Sufficient
conditions for the absolute stability of fractional nonlinear
systems have been also obtained (Theorems 6 and 8). The
discussion has been illustrated by numerical examples.
The presented results can be extended to multi-input
multi-output nonlinear systems and nonlinear systems
with different fractional orders.
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