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Inspired by ant foraging, as well as modeling of the feature map and measurements as random finite sets, a novel for-
mulation in an ant colony framework is proposed to jointly estimate the map and the vehicle trajectory so as to solve a
feature-based simultaneous localization and mapping (SLAM) problem. This so-called ant-PHD-SLAM algorithm allows
decomposing the recursion for the joint map-trajectory posterior density into a jointly propagated posterior density of the
vehicle trajectory and the posterior density of the feature map conditioned on the vehicle trajectory. More specifically, an
ant-PHD filter is proposed to jointly estimate the number of map features and their locations, namely, using the powerful
search ability and collective cooperation of ants to complete the PHD-SLAM filter time prediction and data update pro-
cess. Meanwhile, a novel fast moving ant estimator (F-MAE) is utilized to estimate the maneuvering vehicle trajectory.
Evaluation and comparison using several numerical examples show a performance improvement over recently reported ap-
proaches. Moreover, the experimental results based on the robot operation system (ROS) platform validate the consistency
with the results obtained from numerical simulations.
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1. Introduction

Simultaneous localization and mapping (SLAM) refers
to a robot that starts from a location in an unknown
environment and uses onboard sensors to observe the
surrounding environment while incrementally building
the environment map and simultaneously determining
its position on the map (Leonard and Durrant-Whyte,
1991). Since the SLAM problem was presented for the
first time, it has captured close attention in the field
of autonomous mobile robots because of its important
theoretical and practical values (Dissanayake et al., 2001;
Thrun et al., 2005; Davison et al., 2007; Wang et al.,
2013; Viejo et al., 2014; Wilkowski et al., 2016). As a
prerequisite for robots to achieve real autonomy, SLAM
is known as the Holy Grail of the intelligent mobile
robot research field. Currently, SLAM systems generally
fall into two groups, namely, online SLAM and full
SLAM. The former seeks to recover the present robot
location instead of the entire path and usually includes
EKF-SLAM (Bailey et al., 2006; Rodriguez-Losada et al.,
2007) and FastSLAM (Montemerlo et al., 2002; Michael
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et al., 2003) algorithms, and the random finite set (RFS)
based approach (Mullane et al., 2011). In turn, full SLAM
involves estimating the posterior over the entire robot
path together with the map, and graph-SLAM (Taketomi
et al., 2017; Carlevaris-Bianco et al., 2017) is included.
A marked characteristic of these algorithms is that both
map features and measurements are treated as vectors
strictly ordered in their respective finite vectors. Hence,
these algorithms require feature association to determine
the correspondence between the map features and the
measurements. However, it is very difficult to deal
with the feature association and management due to the
uncertainty of detection, the growth in the number of
features, and clutter distractions in the environment.

An alternative approach to solve the SLAM problem
is called the random-finite-set (RFS) approach. An RFS is
a set-valued random variable in which both the order and
the number of elements are random, and Mahler’s finite
set statistic (FISST) provides practical mathematical tools
and principled approximations for dealing with RFSs
(Mahler, 2007), such as the probability hypothesis density
(PHD) filter and the labeled multi-Bernoulli (LMB) filter.

Currently, there are two popular RFS based SLAM
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algorithms, i.e., PHD-SLAM (Mullane et al., 2011) and
LMB-SLAM (Deusch et al., 2015). In the former, the
map features and measurements were treated as finite
valued sets, whereas the full SLAM posterior probability
density was first factorized into a product of the vehicle
trajectory posterior probability density and the map
posterior probability density conditioned on the vehicle
trajectory. In the latter, the posterior density of the map,
which is considered to be a labeled multi-object state,
is represented by a labeled multi-Bernoulli RFS, and
the LMB-RFS consists of multiple independent Bernoulli
RFSs and assigns a unique label to each object. Since
the full RFS-SLAM filter is numerically intractable, it is
necessary to give tractable but principled approximations.
One of the implementations of the RFS-SLAM algorithm
is called RB-PHD-SLAM (Mullane et al., 2011), in
which a particle filter is used to propagate the vehicle
trajectory, and a GM-PHD filter is used to propagate
each trajectory-conditioned map PHD. LMB-SLAM is
realized by using a GM-LMB filter and an RB particle
filter to estimate the state of the map and the trajectory
of the vehicle, respectively. The difference from the
vector based SLAM algorithms is that the RFS based
approach allows incorporating detection uncertainties,
spurious measurements and data association uncertainties
directly into the filter recursion.

Inspired by the self-organization behavior of the ant
colony, a general population-based and meta-heuristic
optimization algorithm, the ant colony optimization
(ACO) algorithm was first proposed by Dorigo and
co-workers (Dorigo et al., 1995; Dorigo and Gambardella,
1997). With the characteristics of randomness,
positive feedback and distributed collaboration, the ACO
algorithm has been successfully applied in many areas,
such as project scheduling (Zhang, 2015; Zhang et al.,
2016), vehicle routing (Huang et al., 2015), weapon-target
assignment (Narasimha et al., 2013), feature selection
(Shang, 2008; Aghdam et al., 2009), target tracking
(Rashno et al., 2015; Xu et al., 2010), etc. Since the ant
foraging behavior could be utilized to solve the problem
of parameter estimation, a new approach is proposed
here, which combines the ACO with the PHD filter to
solve the feature based SLAM problem. Unlike the
RFS-based SLAM algorithm, the proposed algorithm
defines a specific ant system, which uses intelligent ants,
i.e., an ant-PHD filter, to estimate the features of the
map through probabilistic selection and a local adjustment
mechanism, and a fast moving ant estimator, i.e., F-MAE,
to estimate the vehicle pose.

The paper is organized as follows. Some background
for the PHD-SLAM and ACO algorithms is included in
Section 2. A motivation for combining the ant system
with the PHD filter and the details of the specific process
of our approach are described in Section 3. Section 4
reports experimental simulation results and a comparison

with the existing SLAM algorithms. Finally, conclusions
are drawn in Section 5.

2. Background

2.1. PHD-SLAM formulations. In general, the
SLAM problem can be considered a state estimation
problem whose goal is to jointly estimate the vehicle
trajectory and the map which includes the number of
map features and their locations by using all sensor
measurements. It is assumed that the state of the vehicle
pose follows a first-order Markov process, and the vehicle
state is modeled as a random vector. Then the dynamic
model for the vehicle is

Xk = fX(Xk−1,Uk,ω(k)), (1)

where Xk denotes the pose state of the vehicle containing
its two-dimensional position (xk , yk) and its orientation
θk at time k, fX(·) denotes the state transition function of
the vehicle, Uk represents the control input to the vehicle
at time k, and ω(k) is process noise.

During mapping, the landmarks that appear in the
field of view (FoV) are time-dependent due to the
FoV limitations of sensors, such as the appearance of
new landmarks and the disappearance of old landmarks.
Therefore, modeling the SLAM problem with RFSs can
naturally express the uncertainty of the measurements and
the map features. Let the map state Mk be an RFS which
evolves in time according to

Mk = Mk−1 ∪Bk, (2)

i.e., as the set union of the previous RFS multi-feature map
Mk−1 and Bk the RFS of the new features at time k.

In order to describe the uncertainty of measurements
and the effect of the detected spatial clutter, the
measurement Zk is also treated as a finite set. In
particular, the measurements received at each time step
are formed by a series of measurements generated by
the current real map features and false measurements.
Therefore, in the case of a known feature map Mk and
the vehicle state Xk , the measurement set Zk at time k
can be expressed as

Zk =
⋃

m∈Mk

Dk(m,Xk) ∪Ck(Xk), (3)

where Dk(m,Xk) denotes the RFS of measurements at
time k generated by a real map feature m, and Ck(Xk)
denotes the RFS of the false measurements.

In general, the number of elements in Zk =
{z1k, z2k, . . . , znk } is random and may differ from the
number of the real map features Mk, due to detection
uncertainties and false measurements. For each real
feature m ∈ Mk and measurement zik ∈ Zk,
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Dk(m,Xk) = Φ with probability 1 − PD(m,Xk)
and Dk(m,Xk) = {zik} with probability density
PD(m,Xk)gk(z

i
k|m,Xk), where PD(m,Xk) is the

probability of detecting real featurem, and gk(zik|m,Xk)
denotes the likelihood of the measurement zik.

In consequence, the FB-SLAM problem can be
posed in the framework of Bayesian filtering, and the
probability density function (PDF) of the RFS can be
propagated through a Bayesian recursion (Mullane et al.,
2011) as follows:

pk|k−1(Mk,X1:k)

= fX(Xk|Xk−1,Uk)

∫
fM (Mk|Mk−1,Xk)

× pk−1(Mk−1,X1:k−1)δ(Mk−1),

(4)

pk(Mk,X1:k|Z0:k)

=
gk(Zk|Xk,Mk)pk|k−1(Mk,X1:k)

gk(Zk|Z0:k−1,X0)
, (5)

where fM (·) denotes the transition density of the set of
features, and

∫ · δX is a multitarget set integral.
Unfortunately, the full RFS-SLAM Bayes filtering

formulas (4) and (5) contain multiple integrals in
the feature space, which leads to quite intractable
mathematical calculations. It is necessary to resort
to tractable but principled approximations. The PHD
approach which propagates the first-order moment of the
posterior multi-object RFS has proven to be both powerful
and effective in multi-object filtering. For a map RFS
Mk, the PHD is a non-negative function v, such that for
each region S in the space of feature

∫

S

vk(m) dm = E[|Mk ∩ S|]. (6)

The mass of the PHD gives the expected number of
features in the map Mk and its peaks indicate most likely
locations of feature existence. However, this technique
cannot be directly applied to the SLAM problem in which
the joint posterior density of the map and the vehicle
trajectory are propagated as a whole. An alternative way
is that a weighted sum-of-Gaussians is used as the PHD
function, and the mapping recursion is approximated by
a GM-PHD filter, while the trajectory recursion adopts a
particle filter (Mullane et al., 2011).

The PHD predictor equation is

vk|k−1(m|Xk) = vk−1|k−1(m|Xk−1)

+ b(m|Xk),
(7)

where vk−1|k−1(m|Xk−1) is the previous GM estimate
of the PHD, vk|k−1(m|Xk) is its prediction at time k, and
b(m|Xk) is the GM-PHD of the birth RFS.

The PHD corrector equation is

vk|k(m|Xk)

= vk|k−1(m|Xk)
[
(1− PD(m,Xk))

+
∑

z∈Zk

Λ(m|Xk)

ck(z) +
∫
Mk

Λ(ξ|Xk)vk|k−1(ξ|Xk) dξ

]

(8)

where vk|k(m|Xk) is the new GM estimate of the PHD at
time k, and Λ(m|Xk) = PD(m,Xk)gk(z|m,Xk).

2.2. Generic ACO algorithm. The original idea of the
ACO algorithm stems from the ant foraging process in
real word. When ants search for food, they will release
a kind of chemical substance called pheromone on their
moving paths, and each ant can detect the pheromone on
the path. The pheromone will concentrate on the path
traveled by the majority of ants. Thus, this path will be
chosen by more and more ants. Therefore, the higher the
pheromone concentration, the more attractive the selected
route, and thus a positive feedback mechanism is formed.
On the other hand, as time evolves, the pheromone on
the path will evaporate and its intensity will decrease
accordingly. This forms a negative feedback mechanism,
and those paths with a low level pheromone amount will
be discarded by ants. In this way, shortcuts between their
nest and food source can be found by this mechanism.

In the ACO algorithm, artificial ants are usually
used to solve the combinatorial optimization problem
by iteratively constructing a random candidate solution.
In this process, the behavior of the ants is mainly
affected by two aspects, namely, the pheromone value
and the heuristic information. The pheromone value
is the positive feedback of the ant paths in the whole
algorithm, while the heuristic information is dependent on
the problem and it has different forms in different cases.

Now suppose that there are a total of N ants, the ant
s is at the decision point i, and then it will determine
the direction of the next move based on the probability
decision

P si,j =

⎧
⎪⎨

⎪⎩

[τi,j ]
α
[ηi,j ]

β

∑
l∈Ns

i
[τi,l]

α
[ηi,l]

β
if j ∈ Ns

i ,

0 otherwise,

(9)

where the parameters α and β reflect the relative
importance of the pheromone trail τi,j and heuristic ηi,j
respectively, and Ns

i indicates the number of candidate
points that have not been visited by ant s yet.

Along with ant traveling, a certain amount of
pheromone will be released on its trail. If ant s reaches
its destination, the path ant traveled is evaluated and the
pheromone update process is executed. At each iteration t,
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the pheromone trail on the path from point i to its adjacent
point j is updated by

τi,j(t+ 1) = (1− ρ)τi,j(t) + Δτi,j(t), (10)

where τi,j(t) and τi,j(t + 1) are the pheromone trails
on the path from point i to point j before and after the
update, respectively, and ρ is the pheromone evaporation
coefficient expressed by a constant within interval (0, 1).
The effect of the evaporation coefficient ρ is to enhance
the search ability of ants and to avoid premature
convergence to sub-optimal solutions. Here Δτi,j(t) is
the following pheromone trail updated by all ants:

Δτi,j(t) =
N∑

s=1

Δτsi,j(t) (11)

with

Δτsi,j(t)

=

⎧
⎨

⎩

Q

Ls
if ant s moves from point i to j at step t,

0 otherwise,
(12)

where Q is the pheromone intensity, and Ls is the total
length traveled by ant s at the current iteration. Therefore,
the shorter the path, the larger the value the pheromone
trail.

3. Ant-PHD-SLAM method

This section characterizes the proposed ant-PHD-SLAM
algorithm for the FB-SLAM problem, in which the
location and the number of map features are estimated
using an ant-PHD filtering, and the estimation of the
vehicle trajectory is carried out using a fast moving ant
estimator (F-MAE).

3.1. Motivation for combining PHD-SLAM with
an ant system. In the particle PHD-SLAM algorithm,
the vehicle trajectory and the map are estimated
separately. Specifically, the vehicle trajectory is
estimated by the particle filter and the map is estimated
by the particle PHD filter. Let a set of particles
represent the PHD-SLAM density at time k − 1,
{η(i)k−1,X

(i)
0:k−1, v

(i)
k−1(m|X(i)

0:k−1)}Ni=1, where η
(i)
k−1 is

the weight of the i-th hypothesized vehicle trajectory
X

(i)
0:k−1 and v

(i)
k−1(m|X(i)

0:k−1) is the PHD of the map

corresponding to this vehicle state X
(i)
0:k−1. Then,

the filter will approximate the map-trajectory posterior
density of the next moment by a new set of weighted
particles {η(i)k ,X

(i)
0:k, v

(i)
k (m|X(i)

0:k)}Ni=1. The expected
vehicle trajectory is extracted through the particle with
the highest weight, and the estimation map is its

Target

Map PHD

Resampling particles:

Decision in ant estimator

Cluster

Target
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Map PHD
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     The PDF of  the 
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Target
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Fig. 1. Motivation behind the ant system combined with the
PHD filter.

corresponding map. That is, the vehicle trajectory and the
interrelated so that the estimation accuracy of the vehicle
trajectory drastically affects the results of map estimation.

As was already mentioned, the vehicle trajectory can
be estimated by a particle filter and a rigorous formulation
can be found in the work of Xu et al. (2011), where
an appropriate definition of importance sampling and
the re-sampling strategy is necessary. The importance
sampling and re-sampling scheme is in essence a process
of adjusting the distribution of particles to approximate
the posterior density of the state, and some particles
with high importance weights, probably located near the
true states, could produce more copies of the individual
original state while those with low weights will be
re-sampled with poor chances and discarded in the
following iterations.

Inspired by the foraging behavior in the ant system,
the importance sampling and re-sampling scheme could
be improved and simulated by the distributed tendency
mechanism in the ant search behavior. Specifically,
the re-sampling process in the traditional particle filter
is actually a one-step probabilistic decision without
any local adjustment and particle cooperation, and the
particles with largest weights are kept for subsequent use.
Note that these largest weight particles may be far away
from the real target, which may result in larger errors and
faults both in the map and the vehicle pose. To solve
this problem, a novel ant-PHD-SLAM is proposed and
developed in the ant system framework to achieve a better
map and vehicle pose estimation, as shown in Fig. 1.

As for map estimation, we use the ant system,
instead of particles in generic PHD-SLAM to estimate
the map. The success of ant-PHD has been verified
by Xu et al. (2011) in tracking multi-objects. To
get a vehicle pose estimate, the F-MAE is used and
shows more robustness (Zhu et al., 2010) when tracking
maneuvering objects. This is the case that vehicle moves
non-linearly when mapping. Therefore, it is expected
that the use of ant-PHD-SLAM and F-MAE leads to
an improved performance compared with the recently
reported algorithms.
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3.2. Ant-PHD filtering for feature map estimation.
At time k − 1, a set of weighted ants {w(i)

k−1,x
(i)
k−1}Lk−1

i=1

is given and it represents the approximated distribution
of discrete PHD function, where Lk−1 represents the
number of the ants, w(i)

k−1 is the PHD associated with
ant i and the expected number of targets can be
approximated by N̂k−1 =

∑Lk−1

i=1 w
(i)
k−1, x

(i)
k−1 =

[x
(i)
k−1, y

(i)
k−1, ẋ

(i)
k−1, ẏ

(i)
k−1]

T denotes the state of ant i,

with its position (x
(i)
k−1, y

(i)
k−1) and velocity (ẋ

(i)
k−1, ẏ

(i)
k−1).

Making an ant decision, we assume that each ant starts
from its current state in ant state space Ωk−1 to the
state in Ωk at next time k. In the previous time,
i.e., k − 1, the ant state space Ωk−1 is naturally
expressed by Ωk−1 = {w(i)

k−1,x
(i)
k−1}Lk−1

i=1 , while the
ant state space at time k is defined by Ωk|k−1 =

{w(i)
k|k−1,x

(i)
k|k−1}Lk−1

i=1 ∪ {w(j)
k ,x

(j)
k }Jk

j=1 with surviving

ants and birth ants {w(j)
k ,x

(j)
k }Jk

j=1. In order to capture
the new entering features at time k by the ants in Ωk−1,
the previously defined Ωk−1 = {w(i)

k−1,x
(i)
k−1}Lk−1

i=1 is then

augmented by the birth ants {w(j)
k ,x

(j)
k }Jk

j=1 and yields

Ωk−1 = {w(i)
k−1,x

(i)
k−1}Lk−1

i=1 ∪ {w(j)
k ,x

(j)
k }Jk

j=1, as shown
in Fig. 2.

At time k, an ant s in Ωk−1 moves to the state of ant
j in Ωk|k−1 according to the following probability (Xu
et al., 2011):

P s,jk

=

∑
zk∈Zk

g(zk|x(j)
k|k−1)f(x

(j)
k|k−1|x(s)

k−1)

Lk−1+Jk∑
i=1

∑
zk∈Zk

g(zk|x(i)
k|k−1)f(x

(i)
k|k−1|x(s)

k−1)

.
(13)

When all ants have finished their one-step decisions
from Ωk−1 to Ωk|k−1 , the corresponding PHD of ant i
need to be re-evaluated,

w̄
(i)
k|k−1

=

⎧
⎨

⎩

PS,k(x
(i)
k−1)w

(i)
k−1, 1 ≤ i ≤ Lk−1,

γk(x
(i)

k|k−1
)

qk(x
(i)

k|k−1
|Zk)

1
Jk
, Lk−1 + 1 ≤ i ≤ Lk−1 + Jk.

(14)

where PS,k(·) denotes the surviving probability of an ant,
qk(·|Zk) represents a proposal density function, γk(x)
denotes the birth intensity function at time k. Actually,
there are many ways to define these two functions. For
simplicity, the proposed density qk(·|Zk) follows the
same rule as the state transition function fM (·) and γk(x)
is defined as a Gaussian mixture form.

Due to the stochastic probability selection of each
ant, not all the predicted locations in Ωk|k−1 are visited
by ants. In other words, some candidates have not

Fig. 2. Two search spaces at two consecutive sampling steps.

been visited at all while some have been visited several
times. Therefore, the PHD update associated with ant i is
performed only among those visited candidates,

w̃
(i)
k

= w̄
(i)
k|k−1

[
1− PD(x

(i)
k|k−1)

+
∑

zk∈Zk

PD(x
(i)
k|k−1)gk(zk|x(i)

k|k−1)

Ck(zk)+
∑
j

PD(x
(j)
k|k−1)gk(zk|x(j)

k|k−1)w̄
(j)
k|k−1

]
.

(15)

Observe that (14) and (15) yield an initial estimate of
PHD associated with each ant, and such a probabilistic
movement is based on the ant one-step decision. This
preliminary ant distribution needs a further adjustment,
i.e., a local adjustment of the ant state. For the current
ant distribution of map features, the probability that ant i
selects ant j as a direction indicator of its next adjustment
defined as

P̄ i,jk =
w

(j)
k,tempτi,j(t)

∑
i�=j w

(i)
k,tempτi,j(t)

,

w
(i)
k,temp =

w̃
(k)
t∑Lk−1+Jk

j=1 w̃
(j)
k

,

(16)

where w(i)
k,temp is the temporary normalized intensity.

Once ant j is selected as a further movement
direction, ant i has to make a decision how it can move
close to ant j. For simplicity, we only consider the case of
ant movement, in one dimension, e.g., the x direction, and
for other dimensions, it follows in the same manner. Here,
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two types of moving behavior models are investigated.
If the intensity of ant j is greater than that of ant i, i.e.,
w

(j)
k,temp > w

(i)
k,temp, the update of ant i follows the rule

x
(i)
k = x

(j)
k|k−1, (17)

otherwise, i.e., when w(j)
k,temp ≤ w

(i)
k,temp, the update of ant

i is defined by

ẋ
(i)
k = ẋ

(i)
k|k−1 −

(
x
(j)

k|k−1
−x(i)

k|k−1

T

)
·Gi,jk ,

x
(i)
k = x

(i)
k|k−1 − ẋ

(i)
k · T,

(18)

where T denotes the sampling interval,Gki,j is the velocity
adjustment coefficient defined by

Gi,jk = 1− exp(−λ · (w(j)
k,temp − w

(i)
k,temp)

2), (19)

with λ as a constant value. It can be seen that if the
intensity w(j)

k,temp of the selected state is much larger than

the intensity w(i)
k,temp, the value of Gi,jk will be close to 1,

i.e., the velocity of ant i is close to the maximum velocity,
so that the update position of ant i has a significant change.
On the contrary, the update of the position of ant i will
change a little.

The pheromone update process according to two
types of moving behavior models is executed and modeled
by the following law, respectively:

τi,j(t+ 1) = τi,j(t) +
1

ε
τi,j(t), (20)

τi,j(t+ 1) = τi,j(t)− Gi,jk
ε
τi,j(t), (21)

where ε =
∑
i�=j G

i,j
k is the total pheromone value

deposited on the trail between states x(i)
k|k−1 and x

(j)
k|k−1.

When all ants finish their state update, i.e., from
x
(i)
k|k−1 to x

(i)
k , it is required to re-evaluate the PHD due

to the value change of the likelihood function for each
ant, as indicated in (15), and the PHD update of each ant,
therefore, is re-formulated as

w̃
(i)
k

= w̄
(i)
k|k−1

[
1− PD(x

(i)
k )

+
∑

zk∈Zk

PD(x
(i)
k )gk(zk|x(i)

k )

Ck(zk) +
∑
j

PD(x
(j)
k )gk(zk|x(j)

k )w̄
(j)
k|k−1

]
.

(22)

During the output of the map feature state, the
merging operation is performed if two estimated features
are located too close to each other, and the pruning
operation is also required if the likelihood function of an
ant is below a predefined threshold. For more details, the
readers are referred to the work of Xu et al. (2011).

3.3. F-MAE for vehicle trajectory posterior es-
timation. Let the posterior distribution of the
vehicle trajectory and the corresponding map PHD
at time k − 1 be represented by a set of N ants,
{η(i)k−1,X

(i)
0:k−1, v

(i)
k−1(m|X(i)

0:k−1)}Ni=1, where η(i)k−1 is the

weight of the i-th ant, X(i)
0:k−1 is the whole trajectory of

the i-th ant, and v(i)k−1(m|X(i)
0:k−1) is its map PHD.

The process of estimating the posterior probability
density of the vehicle trajectory using the F-MAE can be
divided into the following four main steps (Zhu et al.,
2010).
1. Prediction: It is assumed that the ant state X

(i)
k−1

representing the vehicle pose at time k − 1 is known, and
the corresponding one-step prediction ant state X

(i)
k|k−1 is

available according to the following formula:

X
(i)
k|k−1 = fX(X

(i)
k−1,Uk,ω(k)). (23)

2. Weighing: The weight of the i-th vehicle pose ant can
be calculated according to

η
(i)
k = gk(Zk|Zk−1,X

(i)
k|k−1)η

(i)
k−1, (24)

where the measurement likelihood is defined by

gk(Zk|Zk−1,X
(i)
k|k−1)

≈ 1

Γ
vk|k−1(m̄|X(i)

k|k−1)
[
(1− PD)ck(z)

Zk

+ PD
∑

z∈Zk

ck(z)
Zk−{z}

gk(z|m̄,X
(i)
k|k−1)

]

with

Γ = exp(m̂k|k−1 − m̂k +

∫
ck(z) dz)vk(m̄|X(i)

k|k−1),

where

m̂k|k−1 =

∫
vk|k−1(m|X0:k) dm,

m̂k =

∫
vk(m|X0:k) dm,

and m̄ denotes the single feature map Mk = {m̄}
selected with the feature with the least uncertainty or the
maximum measurement likelihood.
3. Selection: Each ant needs to make a probabilistic
decision before moving, and then decides the direction of
the movement according to the probability

P i,jk =
η
(j)
k τi,j(t)

∑
i�=j η

(j)
k τi,j(t)

, (25)

where τi,j(t) is the pheromone value between X
(i)
k−1 and

X
(j)
k|k−1.
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Table 1. Estimation of map features using an ant-PHD filter.
\\ initialize the distribution of ants

1. Ωk−1 = {w(i)
k−1,x

(i)
k−1}Lk−1

i=1 ∪ {w(j)
k ,x

(j)
k }Jk

j=1

\\compute the predited distribution of ants

2. Ωk|k−1={w(i)
k|k−1,x

(i)
k|k−1}Lk−1

i=1 ∪ {w(j)
k ,x

(j)
k }Jk

j=1

\\ for each ant
3. for each ant from 1 to Lk−1 + Jk do
4. compute the selection probability P s,jk in (13)

5. compute the predicted weight w̄(i)
k|k−1 in (14)

6. update the weight w̃(i)
k in (15)

7. end for
\\local adjustment strategy
8. for each ant from 1 to Lk−1 + Jk do
9. compute the probability P̄ i,jk in (16)
\\update the state of ants

10. x(i)k = x
(j)
k|k−1 or x

(i)
k = x

(i)
k|k−1 − ẋ

(i)
k · T

11. update the pheromone τi,j(t+ 1) in (20) and (21)

12. update the PHD of each ant w̃(i)
k in (22)

13. end for
14. pruning and merging operations
15. estimate and output map

4. Update: Once each ant has determined its move
direction, it will use the same local adjustment strategy
as detailed in the previous section to reach the destination
and update its state. Meanwhile, both the pheromone
intensity and weight are also updated as in (20)–(22). That
is to say, the update mechanism is the same as the one in
the ant-PHD filter.

The pseudo-codes of our algorithm for the
FB-SLAM problem are given in Tables 1 and 2.
Table 1 outlines the feature estimation of the map
using the ant-PHD filter, and Table 2 illustrates the
trajectory estimation of the vehicle using the F-MAE
filter. Intuitively, the posterior distribution of the vehicle
trajectory is available and represented by {η(i)k ,X

(i)
k }Ni=1,

while the expected state of the vehicle trajectory is
extracted and denoted by an ant with the highest weight
within the current ant colony, and the expected feature
map is its corresponding map.

4. Experiments and analysis

4.1. Simulation environment and parameter set-
tings. In this section, we will test and analyze the
performance of the proposed approach by simulation
experiments. The map features are assumed to have the
same detection probability, and the clutter intensity is
uniformly distributed in the measurement space, while
the number of clutter measurements follows a Poisson
distribution. The following cases are tested:

Table 2. Estimation of the vehicle trajectory using F-MAE.
\\ initialize the state of ants at time k − 1

1. {η(i)k−1,X
(i)
0:k−1}Ni=1

2. for each ants form 1 to N do
\\ compute the predicted state in (22)

3. X(i)
k|k−1 = fX(X

(i)
k−1,Uk, ω(k))

\\ compute the weight of ants in (23)

4. η(i)k = g(Zk|Zk−1,X
(i)
k|k−1)η

(i)
k−1

\\ decide the moving direction in (25)

5. P i,jk =
η
(j)
k τi,j(t)

∑
i�=j η

(j)
k τi,j(t)

\\ update the state of ants

6. x(i)k = x
(j)
k|k−1 or x

(i)
k = x

(i)
k|k−1 − ẋ

(i)
k · T

7. update the pheromone τi,j(t+ 1) in (20) and (21)
8. update the weight of each ant in (22)
9. end for

10. estimate and output vehicle pose state X
(i)
k

corresponding to the largest weight η(i)k

Table 3. Parameters of the motion model.
Parameter Variable Value

velocity V 3 m/s
sensor maximum range 10 m

maximum bearing 150o

measurement noise range 0.4 m
bearing 2o

control noise velocity 0.3 m/s
steer 2o

Case 1: A total of 50 features are randomly distributed
in the simulation area, and at least one landmark can be
observed by the vehicle in each time step.
Case 2: A total of 16 features in the simulation area, and
at some time steps, the landmarks are not within the scope
of the vehicle.

The simulated environments of two cases with an
area size of 70 m×60 m are given in Fig. 3, in which the
gray solid circle represent the real map features, the black
dots represent measurements with noise and the black line
is the real vehicle trajectory.

In order to show the performance of the proposed
ant-PHD-SLAM algorithm more intuitively, both the
FastSLAM algorithm (Michael et al., 2003) and the
PHD-SLAM algorithm (Mullane et al., 2011) are
introduced and the evaluation is conducted along with
the ant-PHD-SLAM algorithm. The number of particles
or ants used by all SLAM filters is 20 for the vehicle
trajectory estimation. It should be noted that the simulated
vehicle used in the experiment is equipped with a
range-bearing sensor with a detection probability ofPD =
0.98.
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Fig. 3. Simulated environment.

The specific motion model parameters used in the
simulated trial are shown in Table 3. Assume that the
number of clutters follows the Poisson distribution with
an average rate of λc = 10 per-scan, and 10 Monte-Carlo
(MC) runs are carried out for each SLAM filter.

4.2. Simulation results and performance evaluation.
The overall performance of the three SLAM algorithms
on the studied two cases is illustrated in Fig. 4. The black
line is the ground truth vehicle trajectory, and the black
dots and gray line represent respectively the estimated
features position and the estimated vehicle trajectory. It
can be observed that all algorithms could produce accurate
estimates in both the vehicle trajectory and the map
features, and our proposed algorithm performs better in
a general way.

Vehicle trajectory estimate. In order to evaluate the
performance of vehicle pose, we adopt the metric of root

mean square error (RMSE) defined as

RMSEk(xk, x̂k) =

√√√√ 1

MC

MC∑

i=1

(‖xk − x̂k‖)2 (26)

where MC = 10 indicates the number of Monte Carlo
runs, xk and x̂k are defined as the true and estimated
positions of the vehicle, respectively.

As shown in Fig. 5, the RMSEs corresponding
to our algorithm are generally smaller compared with
other two algorithms both in the x and y directions.
Figure 6 shows the overall trajectory estimation errors
of the three SLAM algorithms in the vehicle position
estimate. Through the above analyses, we observe that the
ant-PHD-SLAM algorithm is more accurate in estimating
the vehicle pose, and it performs better than the other two
SLAM algorithms.

Map feature estimate. We adopt the average optimal
sub-pattern assignment (OSPA) (Adams et al., 2014) to
evaluate the performance of the map feature estimate over
time. The OSPA metric is designed on the basis of
the Wasserstein distance (WD), which overcomes some
limitations such as inconsistent behavior and the lack
of a meaningful physical interpretation by introducing a
parameter controling the relative emphasis of localization
and cardinality errors, and can accommodate cardinality
differences in a mathematically consistent and physically
meaningful sense.

Let d(c)(x, y)
Δ
= min(c, d(x, y)) denote the distance

between x and y with a nonnegative cut-off parameter
c (we used c = 5 in our experiments), and let ψk be
the set of permutations on {1, 2, . . . , k} for k ∈ N =
{1, 2, . . .}. For 1 ≤ p < ∞ and any two finite subsets
X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, if
m < n, the OSPA is then defined as

d̄(c)p (X, Y )

Δ
=

( 1

n

(
min
ψ∈ψn

m∑

i=1

d(c)(xi, yψ(i)
)
p
+ cp(n−m)

))1/p

.

(27)

In addition, as p→ ∞, the OSPA metric is defined as

d̄(c)∞ (X, Y )

Δ
=

⎧
⎨

⎩
min
ψ∈ψn

max
1≤i≤n

d(c)(xi, yψ(i)) if m = n,

c otherwise.
(28)

Note that, if m = n = 0, the OSPA matric is set as
zero directly for both cases.

Figure 7 shows a comparison of results for the
number of map features estimated by the three algorithms
at each time step. To present the estimated results in a



An ant-based filtering random-finite-set approach to simultaneous localization and mapping 513

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

X−Coordinate in (m)

Y
−

C
oo

rd
in

at
e 

in
 (

m
)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

X−Coordinate in (m)

Y
−

C
oo

rd
in

at
e 

in
 (

m
)

(a) (b)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

X−Coordinate in (m)

Y
−

C
oo

rd
in

at
e 

in
 (

m
)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

X−Coordinate in (m)

Y
−

C
oo

rd
in

at
e 

in
 (

m
)

(c) (d)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

X−Coordinate in (m)

Y
−

C
oo

rd
in

at
e 

in
 (

m
)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

X−Coordinate in (m)

Y
−

C
oo

rd
in

at
e 

in
 (

m
)

(e) (f)

Fig. 4. Estimated results by different approaches: FastSLAM (Case 1) (a), FastSLAM (Case 2) (b), PHD-SLAM (Case 1) (c), PHD-
SLAM (Case 2) (d), ant-PHD-SLAM (Case 1) (e), ant-PHD-SLAM (Case 2) (f).

more clear way, the inconsistency of cardinality at each
time is only marked and highlighted along with the black
line representing the true number of the map features at
each time step. Similarly, the comparison results of the
number of missing and false alarms for each SLAM filters
are shown in Fig. 8, where the ant-PHD-SLAM algorithm
has a lower number of missing and false alarms than
other algorithms. In other words, the ant-PHD-SLAM

algorithm is more accurate in estimating the number of
map features, and its estimation accuracy is much higher
than those of the FastSLAM and PHD-SLAM algorithms.

The OSPA comparisons are conducted in Fig. 9, and
a smaller c is selected to highlight the importance of the
map feature position errors and neglect the cardinality
differences. It can be seen that the ant-PHD-SLAM
algorithm error curve has smaller fluctuations and the
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Fig. 5. Vehicle pose estimated errors by different approaches: Case 1 (a), Case 2 (b).

Table 4. Average operation time of each step.
Case FastSLAM PHD-SLAM ant-PHD-SLAM

1 0.2957[s] 0.7163[s] 1.7315[s]
2 0.1816[s] 0.3962[s] 0.9142[s]

value at each time step is smaller as well.
In terms of the computational burden, the average

operation time of each SLAM algorithm at each time
step in two different simulation scenarios is recorded. It
was found that, as illustrated in Table 4, our algorithm
consumes more effort than the other two algorithms even
in 2D applications, although its estimated accuracy of the
vehicle and map features is higher.

Finally, the real indoor environment where we work
has been selected to test the proposed algorithm. The
testing environment and the robot platform are shown in
Fig. 10. Our TurtleBot2 robot based on the robot operation
system (ROS) is equipped with the RPLIDAR A1 360◦

laser scanning range radar, as shown in Fig. 10(a). In
the TurtleBot2 system, three main parts including the
robot system, ROS and MATLAB, directly or indirectly
communicate with each other through WLAN. The ROS
is a communication interface that enables different parts
of the robot system to discover, send and receive data.
When the robot obtains sensor data, the ROS will receive
and preprocess the data. Afterwards, it sends results to
MATLAB to process them and send back to the ROS.
Figure 10(b) shows a corridor based environment, where
the upper half of the figure illustrates the sketch map of the
whole environment and the lower half gives the pictures

of each corridor. The total length of corridors is 130 m.
Figure 10(c) illustrates a landmark based environment,
which shows a 5 m×5 m region with 17 landmarks, and
the diameter of each landmark is 24 mm.

In order to show the effectiveness of the proposed
algorithm and quantify the estimation accuracy of both
the vehicle pose and the map features, the FastSLAM and
PHD-SLAM algorithms are tested in the corridor based
environment. In this experiment, the moving speed of
robot is 0.2 m/s, and the maximum detection range and
FoV are set to be 5 m and 180◦, respectively. The
results comparison of the position estimation, average
position error and OSPA distance are shown in Fig. 11,
and the estimated results of the vehicle trajectory and map
features are given in Fig. 12, where the gray and white
lines denote the true and estimated trajectory, respectively.
It can be seen that the estimation results for the proposed
algorithm are more accurate than for the other two SLAM
algorithms.

Furthermore, to test our algorithm in a unified
RFS framework, the LMB filter is introduced in our
experiment. Thus, three RFS-based algorithms, i.e.,
PHD-SLAM, LMB-SLAM, and ant-PHD-SLAM, are
tested in the landmark-based environment. In our
experiment, the moving speed of the robot is 0.1 m/s, and
the maximum detection range and FoV are set to be 1.5 m
and 180◦, respectively. The results of a comparison for
the position estimation, average position error and OSPA
distance are shown in Fig. 13, and the estimation results
of the vehicle trajectory and map features are illustrated
in Fig. 14. As can be seen, the estimated accuracy of
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Fig. 6. Average estimated errors of the vehicle pose by different
approaches: Case 1 (a), Case 2 (b).

the proposed algorithm is higher than for the PHD-SLAM
algorithm, and close to the LMB-SLAM algorithm.

To get insight into the effectiveness of various
approaches, the average computation time at each time
step is recorded and calculated. In the corridor
environment, the average running time is, 0.3542 s,
0.9257 s and 1.8435 s for FastSLAM, PHD-SLAM and
ant-PHD-SLAM, respectively. It is observed that our
algorithm suffers from a larger computational burden.
Similarly, in the landmark environment, our algorithm
consumes on the average 1.4850 s in running, twice as
much as PHD-SLAM required with 0.7725 s, and a little
more time than the LMB-SLAM algorithm with 1.1765 s.
Therefore, the most burning issue in our algorithm is
to optimize the procedure, such as the look-ahead ant
mechanism, or pre-segmentation in the ant system for a
parallel implementation to operate on those real SLAM
systems.

5. Conclusions

An ant-PHD-SLAM algorithm has been proposed to solve
the simultaneous localization and mapping problem. The
ant based PHD filter is used to estimate the feature map
and a fast moving ant estimator is used to estimate the
vehicle trajectory. The performance comparisons have
been drawn through two different simulated scenarios and
tested in a real environment by using ROS. The results
show that the proposed algorithm achieves more estimate
accuracy in terms of the state of the vehicle pose, the

state and the cardinality of the map feature. In addition,
the performance comparisons have been made on the
ROS platform in a real environment, and our algorithm
shows superiority over other approaches in terms of the
estimated accuracy. Note that our algorithm performs in
the same way as LMB-SLAM, but they both suffer from
the computational burden. In our future work, our efforts
will be directed towards reduction in the computational
burden of the proposed algorithm to make it meaningful
in real environments.
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Fig. 7. Cardinality estimates of map features by different ap-
proaches: Case 1 (a), Case 2 (b).
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Fig. 8. Missing and false alarm estimates by different ap-
proaches: Case 1 (a), Case 2 (b).
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Fig. 11. Estimated results in a real corridor environment by different approaches: estimated vehicle pose errors (a), average estimated
vehicle pose errors (left) and the OSPA distance of map features (right) (b).
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Fig. 12. Estimation results in real corridor environment: FastSLAM (a), PHD-SLAM (b), ant-PHD-SLAM (c).
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Fig. 13. Estimated results in a real landmark environment by RFS based approaches: estimated vehicle pose errors (a), average esti-
mated vehicle pose errors (left) and the OSPA distance of map features (right) (b).
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