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This paper develops a new actuator failure compensation scheme for two linked two-wheel drive (2WD) mobile robots
based on multiple-model control. First, a configuration of two linked 2WD robots is described, and their kinematics
and dynamics are modeled. Then, a multiple-model based failure compensation scheme is developed to compensate for
actuator failures, consisting of a kinematic controller, multiple dynamic controllers and a control switching mechanism,
which ensures system stability and asymptotic tracking properties. Finally, simulation results verify the effectiveness of the
proposed failure compensation control system.
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1. Introduction

The demand for wheeled mobile robots is increased
in many places, such as shopping centers, hospitals,
warehouses, agriculture and nuclear waste facilities
(Dixon et al., 2001). In some harsh environments,
such as fires, nuclear accidents, natural or industrial
disasters, and terrorist attacks, wheeled mobile robots are
employed to help rescuers. These robots have various
missions: they may carry some automated manipulation
instruments like mechanical arms equipped with grippers,
environment sensors like cameras or sonar, and also
materials for rescuers like tools or medicine. However, the
adverse environments increase the probability of faults,
including actuator faults, sensor faults and component
faults, which may lead to losing the robots and the
important instruments and materials they carry. If we send
a team of mobile robots, each of them bears the same risk
of failing, and if one robot is faulty, we will lose it. A
failed robot becomes an obstacle for the others and for the
rescuers, which makes the rescue mission more difficult
and less efficient.

To handle these faults and make the failed robot
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continue working (or simply to evacuate it), robots may be
physically linked. Mobile robots may be linked initially,
or they may be physically independent and linked only
when needed. Physical links between robots are essential
for solving many collective tasks. For example, robots
can form pulling chains to bring a heavy object. Also,
during navigation on a rough terrain, physical links can
help robots to pass over a large hole or through a steep.
More importantly, linked robots provide actuator and
sensor redundancies, which improve fault tolerance of the
system. If some robots are faulty, others may be used to
link them and help them continue moving. Using this
concept of linked robots makes the multi-robot system
more flexible, more efficient and more robust with respect
to faults. This paper is concerned with fault tolerant
control of such linked wheeled multi-robot systems with
actuator failures, which is performed in the context of
the project SUCRé from the Hauts-de-France region in
France, whose objective is to use robots in collaboration
with humans (rescuers) in crisis situations.

There are a lot of research results on fault diagnosis
and fault tolerant control for various applications (e.g.,
Ye and Yang, 2006; Blanke et al., 2006; Zhang and
Jiang, 2008; Zou and Kumar, 2012; Li and Yang, 2012;
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Efimov et al., 2013; Patton et al., 2012; Yu and Jiang,
2015; Franzè et al., 2015; Hamayun et al., 2015; Yang
and Maciejowski, 2015; Rotondo et al., 2015; Bilski and
Wojciechowski, 2016; Hassanabadi et al., 2016). As
for the application to wheeled mobile robots, some fault
diagnosis methods are developed (e.g., Fourlas et al.,
2015; Goel et al., 2000; Skoundrianos and Tzafestas,
2004), a sensor fault accommodation scheme is presented
by Ji and Sarkar (2007), some fault-tolerant control
systems are designed by Koh et al. (2012), Zhang and
Cocquempot (2014), Rotondo et al. (2014), Kim et al.
(2015), and Aref et al. (2015) for four-wheel drive robots,
and a hybrid fault adaptive control scheme is designed
by Ji et al. (2003) to accommodate partial faults and
degradation for two-wheel drive (2WD) mobile robots.
However, even if it is important to compensate a partial
loss of wheel-motor effectiveness, the actuators (motors)
of a wheeled mobile robot may also be totally faulty.

There are several types of wheeled robots (e.g.,
Campion et al., 1996; Caracciolo et al., 1999; Fukao
et al., 2000; Kozłowski and Pazderski, 2004; Canudas de
Wit et al., 2012; González-Sierra et al., 2014; Yang
et al., 2016). One often used is the 2WD mobile robot
(e.g., Fierro and Lewis, 1995; Ge et al., 2003; Do et al.,
2004; Huang et al., 2014). A 2WD robot has two motors
with no redundant actuator. When one motor is lost, the
2WD robot becomes uncontrollable. Thus it is important
to improve fault tolerance (using physical links) for 2WD
robots. On the other hand, even for a four-wheel drive
(4WD) mobile robot that has redundant actuators, some
actuator failures may also result in making the robot
uncontrollable. Several 4WD robots can also be linked
to deal with such faults.

For robot systems with multiple linked wheeled
bodies, a feedback nonlinear control scheme is given by
Canudas de Wit et al. (1997) for a train-like vehicle;
several kinematic control methods are proposed by
Sørdalen and Wichlund (1993), Tilbury et al. (1995),
Morin and Samson (2012), Michałek (2014; 2017),
Akhtar et al. (2015) and Ritzen et al. (2016) for one tractor
with multiple trailers systems; a kinematic control and
a dynamic control are given by Khalaji and Moosavian
(2014) for a tractor with one trailer, in which, the latter is
unactuated; two kinematic control schemes are designed
by Yuan et al. (2015) for a double-steering two linked
2WD mobile robots system. However, these control
methods are proposed without considering actuator faults.

To our knowledge, there is no research result on fault
tolerant control for linked wheeled multi-robot systems.
Such a new control problem motivates the present work.
In this paper, we design a fault tolerant control scheme for
two linked 2WD mobile robots as shown in Fig. 1, with
a total loss of actuators (motors). For this configuration,
if one or two of the four actuated wheels are faulty, the
remaining actuated wheels can continue to move the two

robots. The actuator failures considered are uncertain in
nature, that is to say, the failed actuator(s) and failed time
instance(s) are unknown. These uncertainties significantly
change the system structure (control gain) from the inputs
to the outputs if a new actuator fails. This paper is focused
on developing an actuator failure compensation scheme
for two linked 2WD mobile robots, and as the failure
situation is uncertain, a multiple-model based control
design (e.g., Narendra and Balakrishnan, 1997) is used.
The main contributions are as follows:

1. The dynamic model of two linked 2WD mobile
robots is proposed, which, together with the
kinematic model proposed by Khalaji and
Moosavian (2014), is employed to deal with
the fault tolerant control problem for 2WD mobile
robots.

2. A multiple-model based compensation control
scheme is developed to compensate for actuator
failures for two linked 2WD mobile robots as
shown in Fig. 1, which can ensure the desired
system stability and asymptotic tracking properties
despite the presence of actuator failures, including
simultaneous multi-failures.

The rest of this paper is as follows. In Section 2, the
kinematic and dynamic models of two linked 2WD mobile
robots are given, and the actuator failure compensation
problem is formulated. In Section 3, a multiple-model
failure compensation control scheme is developed. In
Section 4, a simulation study is presented to verify its
effectiveness. Conclusions are given in Section 5.
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Fig. 1. Two differential 2WD robots with a physical link.
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2. System modeling and problem
formulation

In this section, the actuator failure compensation problem
is formulated for two linked 2WD mobile robots. In
Fig. 1, for each robot, the front wheel is passive and the
two rear wheels are actuated. For the link, it is fixed at
point P2 with Robot 2 and connected through a passive
rotary joint at P1 with Robot 1. Thus the orientation of
Robot 2 is consistent with the link, but the one of Robot 1
is independent.

In this paper, we suppose that (i) the positions,
orientations and velocities of the robots are measured
by onboard sensors; (ii) the physical parameters of the
dynamics are accurately known; (iii) the wheels are driven
by actuators through gears of small or unit gear-ratio,
which permits wheels rolling despite the failure of motors;
(iv) each wheel is a thin solid disk having a single point
contact with motion surface; (v) the motion is planar and
the two robots have no slipping in the lateral direction.

2.1. Kinematic model. For the i-th (i = 1, 2) robot in
Fig. 1, Pi is the center between two actuated wheels, Ci

is the center of mass, ai is the distance between Pi and
Ci, bi is half of the distance between two actuated wheels,
ri is the radius of wheels, θi is the orientation, and τil
and τir are the control torques applied to the left and right
actuated wheels, respectively. In addition, d is the distance
between P1 and P2, OXY is the inertial frame, (x, y)
denotes the position of P2 for Robot 2 in frame OXY .

Let v1 and v2 be the linear velocities of P1 and P2,
which also denote the linear velocities of Robots 1 and 2,
respectively. Then we have

v2 = v1 cos(θ1 − θ2). (1)

It follows that

θ̇2 =
v1 sin(θ1 − θ2)

d
=

v2
d

tan(θ1 − θ2). (2)

The kinematic equations of the two linked 2WD
mobile robots shown in Fig. 1 are given by

ẋ = v2 cos θ2, (3)

ẏ = v2 sin θ2, (4)

θ̇2 =
v2
d

tan(θ1 − θ2), (5)

θ̇1 = ω1, (6)

where ω1 is the angular velocity of robot 1, and |θ1(0) −
θ2(0)| < π/2.

Let q := [x, y, θ2, θ1]
� and η := [v2, ω1]

�. The
kinematic equations in (3)–(6) can be rewritten as

q̇ = S(q)η, (7)

where

S(q) =

[
cos θ2 sin θ2

1
d tan(θ1 − θ2) 0

0 0 0 1

]�
. (8)

2.2. System constraints. If we denote by (x1, y1) the
position ofP1, we have ẋ1 = v1 cos θ1 and ẏ1 = v1 sin θ1.
Then, according to (3) and (4), the system constraints are

ẋ1 sin θ1 − ẏ1 cos θ1 = 0, (9)

ẋ sin θ2 − ẏ cos θ2 = 0. (10)

With x1 = x + d cos θ2 and y1 = y + d sin θ2, Eqn. (9)
can be rewritten as

ẋ sin θ1 − ẏ cos θ1 − θ̇2d cos(θ1 − θ2) = 0. (11)

Then (9) and (10) can be expressed as

A(q)q̇ = 0, (12)

where A(q) is the system constraint matrix given by

A(q) =

[
sin θ1 − cos θ1 −d cos(θ1 − θ2) 0
sin θ2 − cos θ2 0 0

]
.

(13)

Moreover, with (8) and (13), we have

S�(q)A�(q) = 0. (14)

2.3. Dynamic model. The dynamic model of two
linked 2WD robots is obtained by using the Lagrange
method without considering the dissipative forces. It gives

M(q)q̈ + E(q, q̇) = B(q)τ +A�(q)λ, (15)

where M(q) ∈ R
4×4 is the inertia matrix that is

symmetric positive definite, E(q, q̇) ∈ R
4 is the vector of

centrifugal and Coriolis forces, B(q) ∈ R
4×4 is the input

injection matrix, τ = [τ1r, τ1l, τ2r, τ2l]
� is the control

torque vector, and λ ∈ R
2 is the vector of constraint

forces. The matrices and vectors in (15) are given by

E(q, q̇)

=

⎡
⎢⎢⎣

−a1m1θ̇
2
1 cos θ1 − (a2m2 + dm1)θ̇

2
2 cos θ2

−a1m1θ̇
2
1 sin θ1 − (a2m2 + dm1)θ̇

2
2 sin θ2

−a1dm1θ̇
2
1 sin(θ1 − θ2)

a1dm1θ̇
2
2 sin(θ1 − θ2)

⎤
⎥⎥⎦ ,

M(q)

=

⎡
⎢⎢⎣

m1 +m2 0
0 m1 +m2

−(a2m2 + dm1) sin θ2 (a2m2 + dm1) cos θ2
−a1m1 sin θ1 a1m1 cos θ1

−(a2m2 + dm1) sin θ2 −a1m1 sin θ1
(a2m2 + dm1) cos θ2 a1m1 cos θ1
m2a

2
2 +m1d

2 + Im2 a1dm1 cos(θ1 − θ2)
a1dm1 cos(θ1 − θ2) m1a

2
1 + Im1

⎤
⎥⎥⎦ ,
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B(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ1
r1

cos θ1
r1

sin θ1
r1

sin θ1
r1

d sin(θ1 − θ2)

r1

d sin(θ1 − θ2)

r1
b1
r1

− b1
r1

cos θ2
r2

cos θ2
r2

sin θ2
r2

sin θ2
r2

b2
r2

− b2
r2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

where m1 and m2 are the masses of the two robots, and
Im1 and Im2 denote the inertia parameters with respect to
the robots rotating at their centers of mass (C1, C2) in the
planar plane.

Substituting the time derivative of (7) into (15), and
multiplying by S�(q), A�(q)λ can be eliminated with
(14). Then (15) becomes

M̄1(q)η̇ + M̄2(q)η + Ē(q, q̇) = B̄(q)τ, (17)

where η = [v2, ω1]
�, and

M̄1(q) = S�(q)M(q)S(q),

M̄2(q) = S�(q)M(q)Ṡ(q),

Ē(q, q̇) = S�(q)E(q, q̇),

B̄(q) = S�(q)B(q). (18)

Note that M̄1(q) is also symmetric positive definite as
M(q) is symmetric positive definite.

2.4. Actuator failure model. The actuator failures
considered cover the case when some motors lose their
powers and cannot generate control torques, which are
modeled as

τ(t) = σ(t)u(t), (19)

where τ = [τ1r, τ1l, τ2r, τ2l]
� is the control torque vector,

u = [u1r, u1l, u2r, u2l]
� is the control signal vector to

be designed, and σ = diag{σ1r, σ1l, σ2r , σ2l} is the
uncertain failure pattern matrix with

σj(t) =

{
0, if the j-th motor fails,
1, otherwise,

(20)

for j ∈ {1r, 1l, 2r, 2l}. For example, if the motor of the
right side in Robot 1 is not faulty, then σ1r = 1; and if it
loses its power, then σ1r = 0.

2.5. Actuation redundancy. For the two linked 2WD
mobile robots, to control v2 and ω1 in (17), there are

at least two actuated wheels and the following actuation
redundancy condition needs to be satisfied:

rank(B̄σ) = 2 (21)

for all possible failure pattern matrices σ.

Remark 1. Recalling B̄(q) in (18), the compensable
failure cases satisfying this redundancy condition are as
follows: (i) a fault free case, i.e., σ = diag{1, 1, 1, 1};
(ii) one actuator fails, i.e., σ = diag{0, 1, 1, 1},
σ = diag{1, 0, 1, 1}, σ = diag{1, 1, 0, 1}, or σ =
diag{1, 1, 1, 0}; (iii) two actuators fail. However, if
the two failed actuators are both on Robot 2, i.e.,
σ = diag{1, 1, 0, 0}, then the system is similar to a
tractor-trailer one (Khalaji and Moosavian, 2014) and
is compensable; if two failed actuators are on different
robots, i.e., σ = diag{0, 1, 0, 1}, σ = diag{0, 1, 1, 0},
σ = diag{1, 0, 0, 1}, or σ = diag{1, 0, 1, 0}, then the
system is also compensable; but if the two failed actuators
are on Robot 1, the system is noncompensable, because
rank(B̄σ) = 1 with σ = diag{0, 0, 1, 1}, and there is no
torque to control ω1.

2.6. Fault-tolerant control objective. The objective
of this paper is to develop an actuator failure
compensation scheme for two linked 2WD mobile robots
whose model is given by (7) and (17) to asymptotically
track a reference trajectory, despite the presence of
some actuator failures modeled as (19) and (20) that
satisfy the condition (21). In other words, the control
objective is to design a control signal u(t) to guarantee
that all closed-loop system signals are bounded and
limt→∞(x(t) − xd(t)) = 0, limt→∞(y(t) − yd(t)) = 0
and limt→∞(θ2(t)−θd(t)) = 0 in the presence of actuator
failures with an unknown σ(t), where xd, yd, θd are
desired reference trajectories.

Remark 2. The position of P1 is determined by x, y and
θ2; in this sense, the preceding control objective contains
the position objective of the whole system. Moreover,
from the dynamic equation in (17), we can see that this
objective is implemented by the control of ω1. Together
with θ̇1 = ω1, the orientation angle θ1 can be seen as an
intermediate variable that needs to be controlled.

In this paper, the desired trajectories are assumed to
be implemented by a virtual robot as follows:

ẋd = vd cos θd, (22)

ẏd = vd sin θd, (23)

θ̇d = ωd, (24)

where vd and ωd are the linear velocity and angular
velocity of the reference virtual robot, respectively. Note
that the reference trajectory of the unicycle-like robot can
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be computed based on the differential flatness of these
kinematics or by numerical integration of the unicycle
kinematic equations. On the one hand, vd, ωd, v̇d and
their time derivatives ω̇d, v̈d and ω̈d can be computed
upon successive time derivatives of xd, yd and θd; in
turn, the desired reference trajectories xd, yd and θd can
also be computed by integrating (22)–(24) while choosing
appropriate vd, ωd and initial values xd(0), yd(0), θd(0),
and then v̇d, ω̇d, v̈d and ω̈d are calculated directly from vd
and ωd. In this paper, we consider the tracking problem
of mobile robots as described by Fierro and Lewis (1995).
Then the following assumption is given for the reference
trajectories.

Assumption 1. The reference trajectories xd, yd
and θd and their third-order time derivatives, as well
as the corresponding vd and ωd and their second-order
time derivatives, are continuous and uniformly bounded;
moreover, vd �= 0 and |θ2(0)− θd(0)| < π/2.

Remark 3. In Assumption 1, it is imposed that vd �= 0 to
avoid singularity in the controller for trajectory tracking of
the mobile robots. On the other hand, in order to stop the
vehicle when the tracking mission is completed, another
controller could be switched to.

2.7. Design issues. To achieve the control objective,
we will develop a multiple-model control scheme
covering all possible σ, which has a cascaded structure
as shown in Fig. 2.
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Fig. 2. Block diagram of the multiple-model actuator failure
compensation control scheme.

The control design consists of three parts:

(i) For the kinematic equations in (7), v2 and ω1 can be
seen as intermediate control signals. Thus, we first design
a kinematic control law ηc = [v2c, ω1c]

� such that, when
it is applied, all closed-loop system signals are bounded,
and limt→∞(x(t)−xd(t)) = 0, limt→∞(y(t)− yd(t)) =
0 and limt→∞(θ2(t)− θd(t)) = 0.

(ii) Then multiple controllers are designed, each using
one possible failure pattern matrix. If the failure pattern

used in the controller applied is consistent with the actual
one, the employed control signal can ensure (η(t) −
ηc(t)) → 0 as t goes to infinity and also the desired system
performance.

(iii) Finally, a control switching mechanism is established
to select the appropriate controller to generate the
employed control signal u.

3. Multiple-model actuator failure
compensation scheme

In this section, a multiple-model failure compensation
scheme as shown in Fig. 2 is developed.

3.1. Kinematic controller design.

3.1.1. Kinematic control law. Define the output
tracking error as

ẽ =

⎡
⎣ ẽx

ẽy
ẽθ

⎤
⎦ :=

⎡
⎣ x− xd

y − yd
θ2 − θd

⎤
⎦ , (25)

and a transformation matrix as

Te(θd) :=

⎡
⎣ cos θd sin θd 0

− sin θd cos θd 0
0 0 1

⎤
⎦ . (26)

Then, a new error is defined as

e = [ex, ey, eθ]
� := Teẽ. (27)

Note that, since Te is nonsingular with det[Te] = 1, and
if limt→∞ e(t) = 0, then limt→∞ ẽ(t) = 0. According
to (3)–(5), (22)–(24) and (25)–(27), we have the time
derivatives of ex, ey, eθ as follows:

ėx = ωdey + v2 cos eθ − vd, (28)

ėy = −ωdex + v2 sin eθ, (29)

ėθ =
v2
d

tan(θ1 − θ2)− ωd. (30)

The details needed to obtain (28)–(30) are given in
Appendix A.

To develop a kinematic control law ηc = [v2c, ω1c]
�

for η = [v2, ω1]
�, we introduce the following

diffeomorphism:

z1 := ex, (31)

z2 := ey, (32)

z3 := tan eθ, (33)

with an additional signal

z4 :=
tan(θ1 − θ2)

d cos3 eθ
− ωd

vd cos2 eθ
+ ey, (34)
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and an input transformation

α =

[
α1

α2

]
:=

[
v2 cos eθ − vd

ż4

]
. (35)

Then, the time derivatives of z1, z2, z3 and z4 are

ż1 = ωdz2 + α1, (36)

ż2 = −ωdz1 + (vd + α1)z3, (37)

ż3 = vd(z4 − z2) + α1(z4 − z2 +
ωd

vd
(1 + z23)), (38)

ż4 = α2. (39)

The details needed to obtain (36)–(39) are given in
Appendix B.

Differentiating (34) and together with (35), we obtain

α = Tαη + fα, (40)

where Tα ∈ R
2×2 and fα ∈ R

2 are given in
Appendix C. The nonsingularity and boundedness of Tα

will be analyzed in the performance analysis later.
Define a virtual kinematic control law

αc := Tαηc + fα, (41)

and the velocity tracking error as

ηe := η − ηc. (42)

Then we have

αe = α− αc = Tαηe. (43)

Now, we design the virtual kinematic control law αc as

αc1 = −k1(z1 + z3(z4 +
ωd

vd
(1 + z23)), (44)

αc2 = −k2vdz3 − k3z4, (45)

where k1 > 0, k2 > 0 and k3 > 0 are chosen to be
constant. Note that, if vd is too small, then αc1 may be
very large, which will result in a bad system transient
response. Accordingly, for the practical situation, the
reference velocity vd should be chosen as an appropriate
one that can contribute to a smooth system transient
response. Upon (41), the kinematic control law is

ηc = T−1
α (αc − fα). (46)

3.1.2. Preliminary analysis. Select a positive definite
function as

V1 =
1

2
(z21 + z22 + z23 +

1

k2
z24). (47)

According to (36)–(39), its time derivative is

V̇1 =z1ωdz2 + z1α1 − z2ωdz1 + z2vdz3 + z2α1z3

+ z3vdz4 − z3vdz2 + z3α1z4 − z3α1z2

+
z3α1ωd(1 + z23)

vd
+

z4
k2

α2

=(z1 + z3(z4 +
ωd

vd
(1 + z23)))α1 + vdz3z4 +

z4
k2

α2

=(z1 + z3(z4 +
ωd

vd
(1 + z23)))αc1 + vdz3z4

+
z4
k2

αc2 + (z1 + z3(z4 +
ωd

vd
(1 + z23)))αe1

+
z4
k2

αe2. (48)

Letting fη := [z1 + z3(z4 + ωd

vd
(1 + z23)),

z4
k2
]� and

substituting (44), (45) and (43) into (48) yield

V̇1 =− k1(z1 + z3(z4 +
ωd

vd
(1 + z23)))

2

− k3
k2

z24 + f�
η Tαηe. (49)

If there is no f�
η Tαηe, then V̇1 is nonpositive. To eliminate

this and ensure the desired system performance, we will
design a dynamic controller in the next section.

3.2. Multiple dynamic controllers design. To cover
all possible failure patterns, we will design one specific
control law for each failure pattern. Then, we will also
establish a control switching mechanism to select the
appropriate control law to be applied.

3.2.1. Multiple dynamic control laws. Substituting
(19) into (17), we have

η̇ = −M̄−1
1 M̄2η − M̄−1

1 Ē + M̄−1
1 B̄σu, (50)

where u = [u1r, u1l, u2r, u2l]
� is the control signal

applied. The time derivative of (42) is

η̇e = −M̄−1
1 M̄2η − M̄−1

1 Ē + M̄−1
1 B̄σu − η̇c. (51)

Let σ(k), k ∈ {1, 2, . . . , N} denote the k-th possible
failure pattern matrix satisfying the condition (21), with N
being the number of all possible failure cases. Recalling
(21), M̄−1

1 B̄σ(k) has full row rank, which also means
its pseudo invertibility is guaranteed. For each σ(k), the
control law is designed as

u(k) =(M̄−1
1 B̄σ(k))

+(−k4ηe − T�
α fη

+ M̄−1
1 M̄2η + M̄−1

1 Ē + η̇c), (52)

where k4 > 0 is an arbitrarily chosen constant and
(M̄−1

1 B̄σ(k))
+ is a generalized inverse matrix satisfying

M̄−1
1 B̄σ(k)(M̄

−1
1 B̄σ(k))

+ = I2.
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3.2.2. Performance analysis. Here the system
performance is analyzed for each control law.

Lemma 1. If the control law applied matches the actual
failure pattern matrix, i.e., σ = σ(a) and u = u(a) for
a ∈ {1, 2, . . . , N}, then the boundedness of all closed-
loop signals is ensured, and limt→∞(x(t) − xd(t)) = 0,
limt→∞(y(t) − yd(t)) = 0, limt→∞(θ2(t) − θd(t)) = 0
and limt→∞(η(t) − ηc(t)) = 0, when |θ1(0) − θ2(0)| <
π/2 and |θ2(0)− θd(0)| < π/2

Proof. Consider σ = σ(a) and u = u(a), and choose the
Lyapunov function candidate as

V2(a) = V1 +
1

2
η�e ηe. (53)

Then, according to (49) and (51), its time derivative is

V̇2(a) =− k1(z1 + z3(z4 +
ωd

vd
(1 + z23)))

2 − k3
k2

z24

+ f�
η Tαηe + η�e (−M̄−1

1 M̄2η − M̄−1
1 Ē

+ M̄−1
1 B̄σ(a)u− η̇c)

=− k1(z1 + z3(z4 +
ωd

vd
(1 + z23)))

2 − k3
k2

z24

+ η�e (T
�
α fη − M̄−1

1 M̄2η − M̄−1
1 Ē

+ M̄−1
1 B̄σ(a)u− η̇c). (54)

Substituting (52) with k = a into (54) yields

V̇2(a) =− k1(z1 + z3(z4 +
ωd

vd
(1 + z23)))

2

− k3
k2

z24 − k4η
�
e ηe ≤ 0, (55)

which indicates z1, z2, z3, z4, ηe, z1 + z3(z4 + ωd

vd
(1 +

z23)) ∈ L∞, and z4, ηe, z1 + z3(z4 +
ωd

vd
(1 + z23)) ∈ L2.

From (33) and (34) it follows that cos eθ �= 0
and tan(θ1 − θ2) ∈ L∞, meaning cos(θ1 − θ2) �= 0.
Then, from Appendix C, (28)–(46) and (50)–(52), we
can obtain that Tα is bounded and nonsingular, and
fα, αc, αe, α, ηc, η, ż1, ż2, ż3, ż4, α̇c, η̇c, u(k), η̇, η̇e, α̇e, α̇
∈ L∞, which also means that the time derivative
of z1 + z3(z4 + ωd

vd
(1 + z23)) is bounded.

According to Barbalat’s lemma, it is concluded
that all closed-loop signals are bounded, and
limt→∞(z1 + z3(z4 +

ωd

vd
(1 + z23))) = 0, limt→∞ z4 = 0

and limt→∞ ηe = 0, which also implies limt→∞ αe = 0
and limt→∞ αc1 = 0 with (43) and (44) meaning
limt→∞ α1 = 0.

From (39), we have z̈4 = α̇2 = α̇c2 + α̇e2 ∈ L∞

with α̇c2, α̇e2 ∈ L∞, which means that ż4 is uniformly
continuous, together with limt→∞

∫ t

0
ż4(τ) dτ =

z4(∞) − z4(0) = −z4(0). We can further obtain
limt→∞ ż4 = limt→∞ α2 = limt→∞(αc2 + αe2) = 0
according to Barbalat’s lemma. Then, with

limt→∞ αe = 0, limt→∞ z4 = 0, αc2 = −k2vdz3 − k3z4
and vd �= 0, we have limt→∞ αc2 = 0 and
limt→∞ z3 = 0. It follows that limt→∞ z1 = 0 with
limt→∞(z1 + z3(z4 + ωd

vd
(1 + z23))) = 0. On the other

hand, from ż3 = vd(z4 − z2)+α1(z4 − z2+
ωd

vd
(1+ z23))

in (38), we have z̈3 ∈ L∞. Similarly, limt→∞ ż3 = 0
is ensured according to Barbalat’s lemma. Then, we can
further obtain limt→∞ z2 = 0 with limt→∞ z4 = 0,
limt→∞ α1 = 0 and vd �= 0.

Finally, the boundedness of all closed-loop signals
is ensured, limt→∞ zi(t) = 0, where i = 1, 2, 3, 4
and limt→∞(η(t) − ηc(t)) = 0, which also means
limt→∞(x(t) − xd(t)) = 0, limt→∞(y(t) − yd(t)) = 0
and limt→∞(θ2(t) − θd(t)) = 0 according to (31)–(33)
and the transformation in (27). �

Remark 4. For the controller parameters k1, . . . , k4,
choosing small ones may lead to a smooth system
transient response but with a slow convergence speed of
tracking errors, while choosing large ones may contribute
to fast convergent tracking errors but with a large transient
response. To fully utilize these properties, k1, . . . , k4 are
chosen empirically. The system may be first simulated
with different sets of parameters (small ones and large
ones); then we can choose the most appropriate set that
may ensure a good smooth system transient response with
an acceptable convergence speed of the tracking errors.

Since σ is unknown, a control switching mechanism
is needed to select the most appropriate u(k) from (52) as
the employed control signal u.

3.3. Control switching mechanism design. In this
subsection, we first reconstruct an η(k) for each possible
σ(k), k ∈ {1, 2, . . . , N}. Then, multiple cost functions are
calculated from the reconstruction errors and employed to
generate the control switching signal.

3.3.1. Signal reconstruction. Consider the dynamic
equation in (50):

η̇ = −M̄−1
1 M̄2η − M̄−1

1 Ē + M̄−1
1 B̄σu. (56)

Choosing a stable filter 1
s+γ with γ > 0 and operating

both sides of (56), we have

s

s+ γ
[η](t) =

1

s+ γ
[−M̄−1

1 M̄2η − M̄−1
1 Ē](t)

+
1

s+ γ
[M̄−1

1 B̄σu](t), (57)

where η̇(t) = s[η](t) and 1
s+γ [χ](t) denotes the output of

the filter 1
s+γ with input χ(t) (Tao, 2003). From (57), we



770 Y. Ma et al.

further obtain

η(t) =
γ

s+ γ
[η](t) +

1

s+ γ
[−M̄−1

1 M̄2η − M̄−1
1 Ē](t)

+
1

s+ γ
[M̄−1

1 B̄σu](t). (58)

Now, for each possible σ(k), k ∈ {1, 2, . . . , N}, we
reconstruct a signal as

η̂(k)(t) =
γ

s+ γ
[η](t) +

1

s+ γ
[−M̄−1

1 M̄2η − M̄−1
1 Ē](t)

+
1

s+ γ
[M̄−1

1 B̄σ(k)u](t). (59)

Define the reconstruction error as

η̃(t) := η(t)− η̂(t). (60)

Consider σ = σ(a). Then with (58) and (59), the matched
reconstruction error is

η̃(a)(t) = 0, (61)

and the unmatched reconstruction errors are

η̃(b)(t) =
1

s+ γ
[M̄−1

1 B̄σ(a)u− M̄−1
1 B̄σ(b)u](t), (62)

for b ∈ {1, 2, . . . , N, b �= a}, which may be nonzero.

3.3.2. Control signal selection. For control switching,
multiple cost functions are first calculated from the
reconstruction errors as

J(k)(t) = η̃�(k)(t)η̃(k)(t) (63)

for k ∈ {1, 2, . . . , N}. Then, control switching, as
shown in Fig. 3, is implemented by comparing all the
cost functions in (63), and determining the index k
corresponding to the minimum one, that is,

k(t) = arg min
k=1,2,...,N

J(k)(t), (64)

and then selecting the corresponding control law from
(52) as the applied one, that is,

u(t) = u(k)(t). (65)

3.4. Overall system performance analysis. This
mobile robot system composed of two linked 2WD
robots may be in different failure situations. To deal
with these actuator failures, multiple control laws and
multiple nonnegative cost functions are designed, each
of which matches one possible failure situation. Control
switching is implemented by comparing all the cost
functions and applying the control law corresponding

to the minimum one. The cost function matching the
actual system is theoretically zero, which is minimum.
Hence the matched control law will be selected, which
can ensure system stability and asymptotic tracking
properties. In some specific situations, an unmatched
control law may be selected. This means that the
corresponding unmatched cost function is minimum. In
this case, the selected unmatched control law can also
ensure the desired system performance. Therefore, the
desired performance of the overall system is ensured by
the developed multiple-model based control scheme.

The performance of the overall system is given as
follows.

Theorem 1. The developed multiple-model actua-
tor failure compensation control scheme, formed by the
kinematic control law in (46), multiple dynamic control
laws in (52) and the control switching mechanism imple-
mented by (64) and (65) with multiple reconstructed sig-
nals in (59) and multiple cost functions in (63), applied to
two linked 2WD mobile robots modeled as (7) and (17),
guarantees that all closed-loop signals are bounded and
limt→∞(x(t) − xd(t)) = 0, limt→∞(y(t) − yd(t)) = 0,
limt→∞(θ2(t)− θd(t)) = 0, when |θ1(0)− θ2(0)| < π/2
and |θ2(0) − θd(0)| < π/2, despite the presence of actu-
ator failures modeled as (19) and (20).

Proof. Consider σ = σ(a). From (61) and (63), we
have J(a) = 0 for the matched cost function. But for
the unmatched functions J(b), b ∈ {1, 2, . . . , N, b �= a},
this zero property may not hold due to (62). Since all
cost functions are nonnegative, the matched cost function
J(a) = 0 will generically become smaller than the other
ones. Then, the matched control law u(a) will be selected
as the employed one upon (64) and (65). According to
Lemma 1, the selected control law can guarantee that
all closed-loop signals are bounded and limt→∞(x(t) −
xd(t)) = 0, limt→∞(y(t)− yd(t)) = 0, limt→∞(θ2(t)−
θd(t)) = 0, despite the presence of actuator failures. This
is the generic (generally true) matched case.

On the other hand, if the unmatched control law
u(b), b �= a, is selected as the employed one, which
means J(b)(t) ≤ J(a), then J(b)(t) = 0 as J(a)(t) =

0. From (62), J(b)(t) = 0 means M̄−1
1 B̄σ(a)u(b) −
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Fig. 3. Structure of the control switching mechanism.
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M̄−1
1 B̄σ(b)u(b) = 0. According to (52), we further obtain

M̄−1
1 B̄σ(b)u(b) = M̄−1

1 B̄σ(a)u(a); it also means that if
σ = σ(a) but u(b) is selected, then u(b) has the same
control effectiveness compared with the matched control
law u(a). In this sense, the desired system performance is
also ensured for this unmatched case. �

Remark 5. The designed multiple model control scheme
can also be applied when some actuator failures occur
and disappear, i.e., for intermittent failures. On the other
hand, we would like to point out that the time intervals
between every two different faulty cases should be long
enough. This hypothesis means that the status of the
actuators will not change quickly, which is also reasonable
for the actual robots. Moreover, for practical robots,
an artificial waiting time Tmin > 0 (e.g., Narendra and
Balakrishnan, 1997; Tan et al., 2016) may be employed
between every two control switchings to prevent an
arbitrarily fast switching. The proposed multiple-model
control scheme only employs the switchings of control
signals, but not a switched system that will be switched
among several subsystems. On the other hand, the control
switchings in this paper are independent of the waiting
time, but they depend on the cost function based control
switching mechanism. Thus we call Tmin a waiting time
but not a dwell-time that needs to be designed for switched
systems.

Remark 6. In this paper, the control objective is focused
on the tracking task for the rear robot, and the front robot
can be seen to help the rear one to track the reference
trajectory. The reason is the following: in this paper, the
states x, y are chosen to be the position of the rear robot,
based on which the kinematics and dynamics are modeled,
and then the control scheme is designed. Of course,
the position of the front robot can also be chosen as the
states x and y, but the kinematic and dynamic models will
change correspondingly. In this case, the control scheme
should be redesigned.

4. Simulation studies

To verify the effectiveness of the developed
multiple-model failure compensation scheme, a
simulation study is presented as follows.

4.1. Simulation conditions. In this simulation, we
assume that each of the two 2WD robots is the one used
by Fukao et al. (2000); then the physical parameters are
chosen as a1 = a2 = 0.3 m, b1 = b2 = 0.75 m, r1 =
r2 = 0.15 m, m1 = m2 = 30 kg, Im1 = Im2 = 15.625
kg/m2. The length of the link is assumed to be d = 1.7
m. In this simulation, an eight-like reference trajectory is

considered. The velocities vd and ωd are chosen as

vd =
√
1.8225 cos2(0.15t) + 1.265625 cos2(0.075t)

m
s
,

ωd =
fωd1

(t)− fωd2
(t)

v2d

rad
s
,

where fωd1
(t) = 0.2278125 sin(0.15t) cos(0.075t),

fωd2
(t) = 0.11390625 sin(0.075t) cos(0.15t). Then xd,

yd and θd are generated by (22)–(24) with xd(0) =
yd(0) = θd(0) = 0.

In order to verify failure compensation effectiveness
of the developed multiple-model control scheme, the
following failure cases are simulated:

no failure, σ(1) = diag{1, 1, 1, 1}, 0 ≤ t < 100 s,
τ1r fails, σ(2) = diag{0, 1, 1, 1}, 100 s ≤ t < 200 s,
τ1r, τ2r fail, σ(3) = diag{0, 1, 0, 1}, 200 s ≤ t < 300 s,
τ2r, τ2l fail, σ(4) = diag{0, 1, 1, 0}, 300 s ≤ t < 400 s,
τ1r, τ2l fail, σ(5) = diag{1, 1, 0, 0}, t ≥ 400 s.

There are five failure pattern matrices that satisfy the
condition (21): a failure free case, the one when one
actuator fails, one actuator on the same side and different
sides of each robot fails, and when the two actuators of
Robot 2 fail. Then five control laws in (52), reconstructed
signals in (59) and cost functions in (63) are employed.
The initial conditions are chosen as x(0) = 0, y(0) = 1
m, θ2(0) = 10 deg, θ1(0) = 0, v2(0) = 0 and ω1(0) = 0.
The control gains are chosen as k1 = 1, k2 = 2, k3 = 0.5
and k4 = 3, and the waiting time between every two
switchings is Tmin = 0.01s. Furthermore, considering
a practical situation, in this simulation we also add some
random sensor noise signals, whose variances are less than
(0.025)2.

4.2. Simulation results. The multiple-model failure
compensation control scheme developed is applied. The
following simulation results are given to demonstrate its
effectiveness.

Figure 4 shows the trajectories of robot 2 (solid), the
reference robot (dashed) and robot 1 (dot-dash), Fig. 5
shows the system tracking errors, and Fig. 6 shows the
system velocities v2 and ω1. Here, we can see that the
desired system stability is ensured despite the presence
of actuator failures and some random sensor noises, and
even if the asymptotic tracking property is not ensured,
the system tracking performance is good enough.

Figure 7 shows the control torques generated by the
four wheels in two robots, from which we can see that
the actuator failures are consistent with the failure cases
in simulation conditions.

Figure 8 shows the control switching index, the
dominating sequence of which is 1 → 2 → 3 → 4 → 5.
We can see that the control switching index matches with
the actual failure pattern index. Although there are some
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Fig. 8. Control switching index.

wrong or delayed switchings after failure occurrence time
instants, which may be caused by the noisy measurements,
the desired system performance is ensured. In addition,
the control switching index can also be seen as additional
failure identification information, because it generically
matches the actual failure pattern index after a short time
interval.

5. Conclusions

This paper developed a new actuator failure compensation
system for two linked 2WD robots. The kinematics and
dynamics of this two-robot configuration were modeled,
thus a multiple-model failure compensation scheme was
designed, including a kinematic control law, a multiple
dynamic control law and a control switching mechanism.
The effectiveness of the proposed failure compensation
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system was demonstrated by simulation results. Like all
other multiple model control design techniques, although
the simulation results show that the control switching
settled down at one particular control signal in a finite
time, this is not theoretically proven, which is still an
open problem that needs to be solved. On the other hand,
extending the proposed method for n > 2 linked mobile
robots is also our interest in future work.
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Appendix A

Derivation of (28)–(30)

With (25)–(27), we have

ex = (x− xd) cos θd + (y − yd) sin θd, (A1)

ey = −(x− xd) sin θd + (y − yd) cos θd, (A2)

eθ = θ2 − θd. (A3)

Together with (3)–(5) and (22)–(24), we have

ėx = (v2 cos θ2 − vd cos θd) cos θd − (x − xd)ωd sin θd

+ (v2 sin θ2 − vd sin θd) sin θd + (y − yd)ωd cos θd

= ωd(−(x− xd) sin θd + (y − yd) cos θd)

+ v2(cos θ2 cos θd + sin θ2 sin θd)

− vd(cos θd cos θd + sin θd sin θd)

= ωdey + v2 cos eθ − vd,

ėy =− (v2 cos θ2 − vd cos θd) sin θd − (x− xd)ωd cos θd

+ (v2 sin θ2 − vd sin θd) cos θd − (y − yd)ωd sin θd

= ωd(−(x − xd) cos θd − (y − yd) sin θd)

+ v2(− cos θ2 sin θd + sin θ2 cos θd)

+ vd(sin θd cos θd − sin θd sin θd)

=− ωdex + v2 sin eθ,

ėθ =
v2
d

tan(θ1 − θ2)− ωd. (A4)

Appendix B

Derivation of (36)–(39)

It is easy to obtain ż1, ż2 and ż4 from (28)–(35). From
z3 = tan eθ in (33) and with (32), (34) and (35), we have

ż3 =
1

cos2 eθ
ėθ =

v2 tan(θ1 − θ2)

d cos2 eθ
− ωd

cos2 eθ

=
tan(θ1 − θ2)

d cos3 eθ
v2 cos eθ − ωd

vd cos2 eθ
v2 cos eθ

+
ωd

vd cos2 eθ
(v2 cos eθ − vd)

=(z4 − z2)v2 cos eθ +
ωd

vd cos2 eθ
α1

=vd(z4 − z2) + α1(z4 − z2 +
ωd

vd
(1 + z23)). (B1)

Appendix C

Derivation of Tα and fα in (40)

From

z4 =
tan(θ1 − θ2)

d cos3 eθ
− ωd

vd cos2 eθ
+ ey

in (34), and with (5), (6), (30) and (29), we have

ż4 =

θ̇1−θ̇2
cos2(θ1−θ2)

cos3 eθ + 3 tan(θ1 − θ2) cos
2 eθ sin eθėθ

d cos6 eθ

− ω̇dvd cos
2 eθ − ωd(v̇d cos

2 eθ − 2vd cos eθ sin eθėθ)

v2d cos
4 eθ

+ ėy

=
ω1 − v2

d tan(θ1 − θ2)

d cos3 eθ cos2(θ1 − θ2)
− ω̇d

vd cos2 eθ
+

ωdv̇d
v2d cos

2 eθ

+
3 tan(θ1 − θ2) sin eθ(

v2
d tan(θ1 − θ2)− ωd)

d cos4 eθ

− 2ωd sin eθ(
v2
d tan(θ1 − θ2)− ωd)

vd cos3 eθ
− ωdex + v2 sin eθ
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=
(3 tan2(θ1 − θ2) sin eθ

d2 cos4 eθ
− tan(θ1 − θ2)

d2 cos3 eθ cos2(θ1 − θ2)

− 2ωd tan(θ1 − θ2) sin eθ
dvd cos3 eθ

+ sin eθ

)
v2

+
1

d cos3 eθ cos2(θ1 − θ2)
ω1 − ω̇d

vd cos2 eθ

− 3ωd tan(θ1 − θ2) sin eθ
d cos4 eθ

+
ωdv̇d

v2d cos
2 eθ

+
2ω2

d sin eθ
vd cos3 eθ

− ωdex, (C1)

Together with α1 = v2 cos eθ − vd and α2 = ż4. we
can finally obtain

α =

[
α1

α2

]
= Tαη + fα

=

[
Tα11 Tα12

Tα21 Tα22

] [
v2
ω1

]
+

[
fα1
fα2

]
, (C2)

where Tα11 = cos eθ, Tα12 = 0,

Tα21 =
3 tan2(θ1 − θ2) sin eθ

d2 cos4 eθ
− tan(θ1 − θ2)

d2 cos3 eθ cos2(θ1 − θ2)

− 2ωd tan(θ1 − θ2) sin eθ
dvd cos3 eθ

+ sin eθ,

Tα22 =
1

d cos3 eθ cos2(θ1 − θ2)
, fα1 = −vd,

fα2 =− 3ωd tan(θ1 − θ2) sin eθ
d cos4 eθ

− ω̇d

vd cos2 eθ

+
ωdv̇d

v2d cos
2 eθ

+
2ω2

d sin eθ
vd cos3 eθ

− ωdex.
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