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Imbalanced data classification is one of the most widespread challenges in contemporary pattern recognition. Varying
levels of imbalance may be observed in most real datasets, affecting the performance of classification algorithms. Partic-
ularly, high levels of imbalance make serious difficulties, often requiring the use of specially designed methods. In such
cases the most important issue is often to properly detect minority examples, but at the same time the performance on the
majority class cannot be neglected. In this paper we describe a novel resampling technique focused on proper detection
of minority examples in a two-class imbalanced data task. The proposed method combines cleaning the decision border
around minority objects with guided synthetic oversampling. Results of the conducted experimental study indicate that
the proposed algorithm usually outperforms the conventional oversampling approaches, especially when the detection of
minority examples is considered.
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1. Introduction

The imbalanced data problem occurs whenever there is a
significant disproportion among the number of instances
in the classes considered. It is ubiquitous in contemporary
machine learning and heavily influences many practical
applications, including biological data analysis (Yu et al.,
2013; Hao et al., 2014), medical diagnosis (Mazurowski
et al., 2008), neuroimaging (Dubey et al., 2014), anomaly
detection (Khreich et al., 2010), face recognition (Liu
and Chen, 2005), fraud detection (Wei et al., 2013), and
financing (Sanz et al., 2015), to cite only a few. Due to its
prevalence, imbalanced data have received a great amount
of attention from the scientific community. Notably, in
recent years the problem of imbalanced data has been
considered in the context of big data (Triguero et al.,
2015), data streams (Hoens et al., 2012) and multi-class
classification (Fernández et al., 2013). Nevertheless,
many open problems still remain unsolved.

Various techniques of dealing with imbalanced data
have been proposed, which may be grouped into the
following categories:

1. preprocessing methods,
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2. classification algorithms,

3. hybrid approaches.

Preprocessing methods focus on altering the original
distributions in an attempt to reduce the imbalance
ratio. Most often this is achieved by either over- or
undersampling. More sophisticated approaches can also
implicitly deal with other data difficulty factors, such as
the presence of noise (Sáez et al., 2013) or overlapping
distributions.

Classification algorithms, designed for dealing with
imbalanced data, are usually extensions of the existing
learning methods, which aim at reducing the bias towards
the majority class.

Finally, hybrid methods try to combine the two
previous approaches to maximize their strengths and
minimize their weaknesses.

In addition to the above categorization, methods of
dealing with imbalance in data may be grouped on the
basis of the priority they give to the detection of minority
examples. Methods prioritizing high recall are desired in
many practical applications, in which the cost associated
with not detecting a minority object is especially high.
While the existing approaches may be tuned to prioritize
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recall, this significantly affects the precision in many
cases. The motivation behind proposing a new approach
was to design a method capable of achieving high recall,
at the same time not completely overlooking precision.
Therefore, we propose a novel, energy-based approach to
clean the neighborhoods of minority examples, which we
later combine with an oversampling procedure.

The main contributions of this work are as follows:

• proposition of a novel oversampling method called
CCR (combined cleaning and resampling),

• exhaustive experimental evaluation of the proposed
algorithm backed up by statistical tests.

2. Related works

Several excellent survey papers have been published in the
area of imbalanced data learning. Sun et al. (2009) give
a systematic overview of the imbalanced data problem
and the methodological approaches to solve it. He and
Garcia (2009) describe the state-of-the art methods in the
field. López et al. (2013) provide a deep insight into the
nature of imbalanced data. Galar et al. (2012) give a more
specialized review of applying classifier ensembles to the
problem, whereas Wang and Yao (2012) focus on the issue
of multi-class imbalance. It is also worth mentioning
the work by Zhang et al. (2016), who deal with efficient
decomposition of the multi-class imbalance task using the
one-versus-one scheme. Despite the amount of attention
given by the scientific community, imbalanced data still
pose many open problems, as discussed by Krawczyk
(2016).

It is, however, important to note that imbalance
in data usually does not pose a problem by itself.
Only when combined with other data difficulty factors
(Stefanowski, 2016) does it negatively affect recognition
of the minority class. Defining and understanding such
factors is therefore a crucial task when designing new
methodologies for dealing with imbalanced data. Some
research has been done in this area. Jo and Japkowicz
(2004) analyze the issue of small disjuncts caused by data
imbalance. The problem of class overlapping combined
with imbalanced distributions is tackled by Prati et al.
(2004) and Garcı́a et al. (2007). Napierała et al. (2010)
conduct an experimental study, measuring the impact of
noisy and borderline examples on the imbalanced data
learning task. Napierała and Stefanowski (2012) also
propose a method of assessing safety of an example based
on its local neighborhood.

Several resampling techniques have been proposed
to combat the issue of imbalanced data and the
related difficulty factors. By far the most prevalent
is SMOTE (Chawla et al., 2002), based on generating
synthetic examples instead of oversampling with
replacement. It has been extensively studied and

improved. SMOTEBoost (Chawla et al., 2003) combines
the original SMOTE algorithm with a boosting procedure.
The borderline-SMOTE (Han et al., 2005) family of
methods focuses on oversampling unsafe minority
examples. The safe-level-SMOTE (Bunkhumpornpat
et al., 2009) takes the opposite approach and focuses
on the safest objects. LN-SMOTE (Maciejewski and
Stefanowski, 2011) exploits the local information about
the neighborhoods of oversampled examples. MWMOTE
(Barua et al., 2014) expands SMOTE by modifying the
synthetic generation procedure. It creates new samples
using a clustering approach. RWO-sampling (Zhang and
Li, 2014) employs a random walk mechanism during the
synthesis of new examples.

Ramentol et al. (2012) and Verbiest et al. (2014) take
advantage of fuzzy rough set theory. Fernández-Navarro
et al. (2011) propose an extension of SMOTE to the
multi-class case. Finally, another important extension
to the original SMOTE algorithm is the ADASYN (He
et al., 2008) technique. It uses the idea of prioritizing the
most difficult examples. It synthesizes larger proportion
of new samples in the vicinity of a unsafe objects. It is also
worth mentioning the SPIDER algorithm (Stefanowski
and Wilk, 2008). It identifies the local characteristics of
examples, and then removes those majority examples that
may result in misclassifying examples from the minority
class. It also uses local over-sampling of the objects from
the minority class that are in a dense cloud of majority
class objects.

While oversampling the minority class is the
dominant approach, some work has been done in
the area of undersampling the majority class. The
neighborhood cleaning rule (Laurikkala, 2001) removes
difficult examples based on their neighborhood. The
EasyEnsemble and BalanceCascad (Liu et al., 2009)
algorithms combine undersampling with classifier
ensembles. Garcı́a and Herrera (2009) propose to use
undersampling together with the evolutionary algorithms.
This idea is later expanded in the form of EUSBoost
(Galar et al., 2013), in which boosting is additionally
applied.

Finally, a family of methods combining
oversampling and undersampling could be distinguished.
Estabrooks et al. (2004) experimentally investigate
the possibility of integrating these two approaches to
resampling. Batista et al. (2004) propose to use SMOTE
in combination with two data cleaning methods: Tomek
links (Tomek, 1976) and the edited nearest-neighbor
rule (Wilson, 1972). More recently, Bunkhumpornpat
and Sinapiromsaran (2015) have proposed the CORE
technique, in which oversampling is performed in
combination with undersampling of the borderline
examples.
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3. CCR algorithm

To address the issue of data imbalance, we propose a novel
algorithm for oversampling the minority class. We base
it on two observations. Firstly, class imbalance does not
make the classification problem difficult by itself. This
might be easily illustrated by an example of a highly
imbalanced, but linearly separable dataset. In such a case
finding the decision border leading to the perfect accuracy
will not be a problem for most classifiers. It is only
when we deal with noisy data, complicated distributions
or insufficient number of observations that imbalance
further exacerbates the difficulty of the classification task.
Secondly, in most problems achieving better accuracy
on the minority class is the most pressing issue. Data
imbalance mainly lowers classifiers’ performance on
examples from the minority class, leaving precision in a
large part unaffected. At the same time, misclassification
of minority examples is often more costly in practical
applications such as medical diagnosis or fraud detection.
Therefore, while we would like to achieve the highest
possible accuracy for all classes, in practice sacrificing
some precision to improve recall is often desirable.

Based on these observations, we propose a novel
combined cleaning and resampling (CCR) algorithm. As
the name indicates, it consists of two operations. Firstly,
cleaning the neighborhoods of minority samples from
majority objects. The aim of this step is to simplify the
task of classification of examples from the minority class.
Secondly, selectively generating synthetic samples, with
the highest number of synthetic objects created near the
least safe observations. In that we force the algorithm
to focus on examples which are the most difficult to
learn. A detailed pseudocode of the proposed algorithm
is presented in Algorithm 1. The visualization of its
behavior is presented in Fig. 1. In the remainder of
this section we give a thorough description of both the
cleaning and sample generating steps.

3.1. Cleaning the minority samples neighborhood.
The problem noise present in data is especially difficult
in the case of imbalanced distributions. Distortions
can significantly deteriorate classifiers’ performance,
especially on examples from the minority class (called
later minority examples, objects or points) (Van Hulse
et al., 2007). We propose a method of overcoming this
issue by cleaning a minority object neighborhood out
of the examples from the majority class (called later
majority examples, objects or points). Intuitively, what
we try to achieve is to expand the decision borders in
favor of minority examples. By doing so, we reduce
the impact of noise in the majority examples on the
minority class detection. At the same time, accounting
for minority outliers is necessary, at least to some extent.
To satisfy these conflicting requirements, we propose an

Algorithm 1. CCR algorithm.
1: function NoP(point, radius):
2: h ← number of majority points within radius of

point
3: return h+1 {incremented to avoid division by zero}

4:

5: function CCR(energy):
6: for all minority points mi do
7: ei← energy {remaining energy budget}
8: ri ← 0
9: while ei > 0 do

10: Δr ← ei
NoP(mi, ri)

11: if NoP(mi, ri +Δr) > NoP(mi, ri) then
12: Δr ← dist. to the nearest majority point not

within ri
13: end if
14: ri ← ri +Δr
15: ei← ei - Δr · NoP(mi, ri)
16: end while
17: for all majority points Mj within ri of mi do
18: d← ‖Mj −mi‖1
19: tj ← tj +

ri − d

d
· (Mj − mi) {translation of

Mj}
20: end for
21: end for
22: apply accumulated translations to all majority points
23: G ← |M | − |m| {no. of synthetic samples to be

generated}
24: for all minority points mi do

25: gi ← r−1
i∑
k r

−1
k

·G {proportion of G for mi}
26: for gi times do
27: p← random point inside a sphere with radius ri

28: generate synthetic point mi + p
29: end for
30: end for

energy-based method of neighborhood cleaning. The
visualization of the approach is presented in Fig. 2.
Every minority example has an associated energy budget,
defined as a parameter of the algorithm. With every
minority object there is also associated a sphere, a region
that will be later cleared of majority objects. Starting
from the minority point, we try to expand the radius of
the sphere, expending the available energy. However,
every majority example we reach increases the cost
of growing the sphere linearly, blocking the expansion
process. We introduce this limitation to decrease the
impact of minority outliers. In the case of the minority
samples surrounded by a large number of majority objects,
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(a) (b) (c) (d)

Fig. 1. Visualized steps of the CCR algorithm: original imbalanced data (a), the sphere radius calculated for every minority point (b),
the occurrence of majority points within the radius limits its final length—majority points within the radius pushed out of the
spheres (c), generated synthetic minority samples (d). The number of generated samples near the minority point is inversely
proportional to its radius.

the resulting spheres will be small. This corresponds to
lower confidence we have about proper labeling of the
object considered. Finally, the original majority examples
are pushed out of the spheres.

A modification of the original data is a possibly
dangerous operation, because some information might be
lost. Most conventional resampling techniques do not do it
explicitly. However, we would like to argue that extensive
oversampling of the minority class may lead to a similar
conclusion.

We chose the spherical shape of the clean-out region
due to the computational simplicity associated with it. It
should, however be noted that in many cases it may be
suboptimal, for instance, if majority objects are grouped
on one side of the minority example. It would be
preferable to limit the growth of the region on this side,
expanding it much further on the other.

Two objections should be stated with regard to
algorithm implementation. First of all, in some cases
majority points could be affected by a number of spheres
simultaneously. Several approaches to this problem may
be employed, e.g., sphere expansion could be conducted
interactively, taking into account previous translations of
majority points. This could, however, lead to pushing
majority examples right into the neighborhood of the
minority points already considered. Alternatively, a more
drastic approach to such majority points could be taken, in
which they would be deleted. We opted for a strategy in
which the translations are accumulated on an unchanging
distribution and later applied all at once. In this paradigm
it is possible for a cluster of minority points to push out
a majority point with combined, possibly unwarranted
energy. Furthermore, majority points can still be pushed
out into the spheres associated with neighboring minority
objects. While this approach does pose its own issues, we
decided that they were least severe.

Secondly, we are faced with the choice of a distance
measure used to calculate the cleaning regions. The
influence of the different distance metrics applied to
high-dimensional data has been well studied. It has been
shown that the Manhattan distance is usually preferable
to the Euclidean distance when operating on data with a
large number of dimensions (Aggarwal et al., 2001). We
therefore used the L1 norm as a distance metric in the
implementation of the algorithm.

Fig. 2. Visualized sphere radius calculation. Every example
from the minority class (inside the sphere) has obtained
energy budget. Starting from the minority point, the
sphere radius is expanded, decreasing available energy.
Upon reaching a majority example, the energy cost of
the expansion is increased. The consecutive orbits, de-
picted with an increasing color intensity, reflect higher
expansion cost. Finally, the available energy is depleted
and the expansion stops. The original majority examples
are pushed out of the sphere.
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3.2. Selectively generating synthetic samples. In the
second step of the algorithm we perform oversampling to
artificially balance the majority and the minority class. We
rely heavily on the spheres produced during the cleaning
process. For every sample, a synthetic sample is generated
randomly within the area of the sphere. The proportion of
samples generated for every minority example is reversely
proportional to its associated radius. Let ri be the radius of
the i-th minority point, N the number of minority points
and G the total number of synthetic minority points we
wish to generate. We define the number of synthetic points
generated around the i-th point as

gi =
r−1
i

∑N
k=1 r

−1
k

G. (1)

Thereby we force the classification algorithm to
focus on the most difficult examples. Since minority
points with the smallest spheres associated to them are the
ones surrounded by most majority examples, their correct
classification would be normally most difficult. At the
same time, however, since spheres associated with them
are relatively small, the synthetic samples are generated
in a close proximity. This forces the classifier to constrain
the area assigned to the minority class in such regions,
reducing the negative impact of minority outliers.

4. Experimental study

To evaluate the performance of the proposed CCR
algorithm, we conducted an experimental study divided
into two stages. In the first one, preliminary analysis,
we measured the impact of the CCR energy parameter on
the performance of the algorithm. The goal of this part
of the study was establishing what value of the energy
parameter, if any, is optimal for the algorithm. In the
second one, final analysis, we compared the proposed
method with the state-of-the-art techniques based on
synthetic oversampling and performed statistical analysis
of the results. In this section we describe the set-up
of the conducted experiments and discuss the achieved
outcomes.

4.1. Datasets. Evaluation was performed on 42
datasets taken from the KEEL (Alcalá et al., 2010)
imbalanced data repository. The datasets were randomly
divided into two partitions: the first one, consisting of
10 datasets, was dedicated to the preliminary analysis,
whereas the second one, consisting of 32 datasets,
was used during the final analysis. Both partitions
contained diverse datasets, with diversification measured
by parameters such as the the imbalance ratio, the number
of features and the number of samples. Details of the
datasets are presented in Tables 1 and 2 for the preliminary
and the final partition, respectively. Only two-class
datasets composed solely of numerical data were used.

Table 1. Details of datasets used during preliminary evaluation.

No. Name IR Features Samples

1 pima 1.87 8 768
2 yeast1 2.46 8 1484
3 haberman 2.78 3 306
4 vehicle2 2.88 18 846
5 led7digit02456789vs1 10.97 7 443
6 yeast1vs7 14.30 7 459
7 winequalityred4 29.17 11 1599
8 poker9vs7 29.50 10 244
9 abalone3vs11 32.47 8 502
10 winequalitywhite9vs4 32.60 11 168

4.2. Implementation and reproducibility.
Experiments were implemented in the Python
programming language. The code is publicly available at
https://github.com/michalkoziarski/CCR.
Additionally, cross-validation folds used throughout the
experimental study were supplied together with the code.
Whenever possible, existing implementations of the
algorithms were used to limit the risk of programming
errors. Notably, classification algorithms provided in
the scikit-learn (Pedregosa et al., 2011) library were
used, as well as data resampling methods provided in the
imbalanced-learn (Lemaitre et al., 2017) library.

4.3. Preliminary analysis. During the first stage of the
experimental study, preliminary analysis, we evaluated the
impact of the CCR energy parameter on its performance.
To this end, we measured the values of AUC, G-mean
and F-measure for 10 distinct datasets while adjusting
the value of energy, chosen from {0.001, 0.0025, 0.005,
0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0, 25.0,
50.0, 100.0}. The datasets were partitioned into folds
and the 5 × 2 cross-validation procedure was employed,
with the average values of the metrics being reported.
During this stage of the experiment a single classifier,
the CART decision tree, was used. The achieved results
are displayed in Fig. 3. Based on the observed results,
we conclude that there is no single value of the energy
parameter optimal for all the tested datasets. For Datasets
1–5 and 9, performance was relatively stable for lower
values of energy, whereas the choice of a higher value
led to a decrease in performance. In contrast, the
behavior was less stable for Datasets 6–8 and 10, for
which setting the higher value of energy led to better
performance, especially when AUC and G-mean were
considered. Despite the fact that higher values of energy
were preferred for 4 out of 5 datasets with a higher
imbalance ratio, fine-tuning of the parameters was still
necessary to achieve optimal performance.

https://github.com/michalkoziarski/CCR
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Fig. 3. Results of preliminary analysis: the impact of the energy parameter on AUC, G-mean and F-measure is evaluated for 10 datasets
(DS); a CART decision tree was used as a classification algorithm.

4.4. Final analysis. In the second stage of the
experimental study, final analysis, the CCR algorithm
proposed in this paper was compared with the
state-of-the-art resampling techniques. To provide a wide
range of relevant methods, we considered the following
reference algorithms: SMOTE and ADASYN as general,
widely used methods of dealing with imbalance in data;
borderline-SMOTE (Bord) as an example of a method
designed specifically to deal with borderline minority
examples; SMOTE in combination with Tomek links
(SMOTE+TL) and the edited nearest-neighbor rule
(SMOTE+ENN) as an example of methods combining
oversampling with the cleaning of difficult examples; and
the neighborhood cleaning rule (NCL), an undersampling
technique focused on cleaning the neighborhood of
difficult minority objects. Additionally, as a baseline
we evaluated the case in which no form of resampling
was applied to the data (Base). Four different classifiers
were considered: a CART decision tree, k-nearest
neighbors (k-NN), a support vector machine (SVM) with
linear kernel and naive Bayes (NB). Additionally, we
evaluated the case in which bagging was used with CART
(CART+Bag) and k-NN (k-NN+Bag).

Based on the results of the preliminary analysis,
we decided to choose the value of the energy parameter
separately for each dataset. To this end, we performed
a 5-fold cross-validation on the training data. Similarly
to the preliminary analysis, the values of energy from
{0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5,
1.0, 2.5, 5.0, 10.0, 25.0, 50.0, 100.0} were considered.
The value of energy for which the average AUC was
maximized was selected and used for final resampling
on the full training set. For the remaining resampling
algorithms, as well as all of the classification algorithms,

the default values of the parameters contained in the
corresponding libraries were used. In all the cases
oversampling was applied up to the point of achieving
balanced distributions. Prior to classification, data were
normalized to the range from 0 to 1. No further
preprocessing was applied. 5 × 2 cross-validation was
used in all the tests.

The results of the conducted experimental
study are presented in Table 3. It contains average
rankings for various classification algorithms and
performance measures, obtained by applying the
Friedman procedure, as well as the results of Shaffer’s
post-hoc procedure. Additionally, complete results
of this part of the experimental study, that is, tables
containing the precise values of the evaluation measures
as well as the results of the conducted statistical
analysis, are provided as supplementary material at
https://github.com/michalkoziarski/CCR.
Since the choice of the performance measure is
ambiguous when dealing with imbalanced data, all
of the most common metrics were used, namely accuracy,
precision, recall, F-measure, G-mean and AUC. The
resampling algorithm proposed in this paper, CCR,
scored the highest average ranking in recall for all of
the classifiers except NB. When combined with CART
and CART+Bag, the highest average rank was achieved
in G-mean and AUC as well, with significantly better
results than most of the reference methods. For AUC, the
highest average rank was observed also for k-NN+Bag.
In general, using the CCR algorithm resulted in achieving
high recall at the cost of precision for all of the classifiers
except NB. When combined performance metrics were
considered, this led to a better G-mean and AUC at the
cost of a worse F-measure. Interestingly, the trend of

https://github.com/michalkoziarski/CCR
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Table 2. Details of datasets used during the final evaluation.

No. Name IR Features Samples

1 glass1 1.82 9 214
2 ecoli0vs1 1.86 7 220
3 wisconsin 1.86 9 683
4 glass0 2.06 9 214
5 vehicle1 2.90 18 846
6 vehicle3 2.99 18 846
7 glass0123vs456 3.20 9 214
8 vehicle0 3.25 18 846
9 ecoli1 3.36 7 336
10 newthyroid1 5.14 5 215
11 ecoli2 5.46 7 336
12 segment0 6.02 19 2308
13 glass6 6.38 9 214
14 yeast3 8.10 8 1484
15 ecoli3 8.60 7 336
16 pageblocks0 8.79 10 5472
17 yeast2vs4 9.08 8 514
18 yeast05679vs4 9.35 8 528
19 vowel0 9.98 13 988
20 glass016vs2 10.29 9 192
21 glass2 11.59 9 214
22 ecoli4 15.80 7 336
23 pageblocks13vs4 15.86 10 472
24 abalone918 16.40 8 731
25 yeast1458vs7 22.10 8 693
26 yeast2vs8 23.10 8 482
27 yeast4 28.10 8 1484
28 yeast1289vs7 30.57 8 947
29 yeast5 32.73 8 1484
30 yeast6 41.40 8 1484
31 poker89vs6 58.40 10 1485
32 abalone19 129.44 8 4174

achieving higher recall at the price of lower precision was
reversed for the NB classifier. In this case, CCR achieved
the highest average rank in precision, as well as all three
of the combined performance metrics, at the same time
having worse recall.

One of the most important questions we have to ask
when dealing with imbalanced data is what performance
measure should we optimize for. This, of course, depends
heavily on the specific problem domain. We would argue,
however, that correct detection of minority examples is
often the most pressing issue, especially when dealing
with extreme levels of imbalance. The results of the
conducted experimental study seem to indicate that the
proposed CCR method is particularly well suited for such
a task. At the same time it would be trivial to construct
an algorithm achieving perfect recall with no regard for
precision. In the conducted study, the CCR algorithm
proved to strike a right balance between the two.

5. Conclusions and future work

We presented a novel oversampling technique, the CCR
algorithm, designed to deal with the imbalanced data
classification task, which employs two core ideas. Firstly,
to clear the decision border by pushing away majority
examples located too closely to minority ones. Secondly,
to oversample selectively, with a higher number of
synthetic data points generated around unsafe samples.
During the experimental evaluation we empirically proved
that the proposed algorithm is well suited for tackling the
imbalanced data problem. The CCR algorithm achieved
best performance in combination with the CART decision
tree. Additionally, it scored the best recall for the majority
of the tested classifiers. In most cases high recall was,
however, accompanied by precision lower than that of
the reference methods. This trade-off turned out to
be beneficial with regard to the value of the combined
metrics, since in several cases CCR also achieved the best
F-measure, G-mean and AUC.

Despite its good performance on the benchmarks
considered, the CCR algorithm in its current form has
some limitations. It was not designed to deal with
categorical data. In the conducted experimental study,
no such datasets were considered and, therefore, the
algorithm’s performance in such cases remains unknown.
It is possible that to properly deal with categorical datasets
the algorithm would have to be modified accordingly.
Secondly, since the method is distance-based, it performs
best when the features take values in similar ranges. This,
however, is easily mitigated by proper preprocessing.
Finally, in the proposed form the algorithm is suitable only
for a two-class classification problem. To be usable in a
multi-class task, the problem has to be decomposed into
several binary tasks.

Furthermore, in this paper we did not focus on the
computational complexity of the presented algorithm. The
execution time of CCR on the benchmarks considered was
comparable with that of the reference methods. However,
an more thorough analysis would be required to assess the
algorithm’s behavior on larger datasets. To make learning
feasible on such data, adjustments to the algorithm would
be required. For instance, in the presented form the
algorithm can be easily parallelized.

Finally, several simplifications were made in the
proposed implementation of the algorithm that do not
full capture its intended behavior. Using spheres as the
regions out of which majority samples are pushed out
is computationally inexpensive. However, it does not
take into account the exact position of the said samples
within the sphere. More sophisticated shapes might be
required to accurately capture the nature of complicated
distributions. Similarly, generating synthetic samples
randomly within the sphere is a naive approach. Using
more sophisticated regions for sampling could potentially
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Table 3. Average rankings obtained by applying the Friedman procedure: the highest average ranking for every classifier (Cl.) and
metric combination in boldface. Shaffer’s post-hoc procedure was used to determine the statistical significance of the results.
Methods that achieved significantly different results (with p = 0.05) than CCR are denoted in subscript, with the minus sign
for methods that achieved better results and the plus sign for those that achieved worse results.

Cl. Metric Base SMOTE ADASYN Bord SMOTE+TL SMOTE+ENN NCL CCR

C
A

R
T

Accuracy 3.0156 – 4.8438 – 5.2031 3.6250 – 4.5156 – 3.5469 – 4.3750 – 6.8750
Precision 3.0938 – 4.5312 – 5.5625 3.7500 – 4.4375 – 2.9375 – 5.0000 6.6875
Recall 7.1875 + 4.8750 + 2.8906 5.1094 + 4.6719 + 5.5156 + 3.8594 + 1.8906
F-measure 4.9688 4.7188 4.1875 4.4062 4.4688 4.5000 3.4062 – 5.3438
G-mean 6.8750 + 4.8125 + 3.4062 5.0938 + 4.5000 + 5.3125 + 3.8125 2.1875
AUC 6.6875 + 5.0469 + 3.4062 4.9844 + 4.5625 + 5.0938 + 3.7500 2.4688

C
A

R
T

+
B

ag

Accuracy 2.7344 – 4.4062 – 5.1406 4.1875 – 4.3125 – 4.5000 – 3.8438 – 6.8750
Precision 2.2500 – 4.7344 – 5.6250 4.2812 – 4.1875 – 3.7031 – 4.3125 – 6.9062
Recall 7.3281 + 4.4844 + 2.7969 5.2656 + 4.1094 + 5.3750 + 4.9844 + 1.6562
F-measure 5.4062 4.2031 3.9688 4.4062 3.8750 4.6406 4.2500 5.2500
G-mean 6.9375 + 4.3281 + 2.9688 5.2500 + 3.8750 5.3906 + 5.0625 + 2.1875
AUC 6.8438 + 4.4375 + 3.0000 5.1094 + 3.9375 5.3906 + 4.9375 + 2.3438

k-
N

N

Accuracy 1.9062 – 4.9688 – 5.2812 4.3750 – 4.9844 – 4.5000 – 3.0312 – 6.9531
Precision 1.9688 – 5.0625 5.5938 4.7188 – 4.8438 – 4.1875 – 2.7500 – 6.8750
Recall 7.9062 + 3.2969 3.6562 4.0000 3.5938 4.5156 + 6.5469 + 2.4844
F-measure 4.8594 4.0625 5.2812 3.5625 – 4.0000 4.2500 4.1719 5.8125
G-mean 7.4531 + 3.0625 4.4375 3.8125 3.1562 4.0938 6.4219 + 3.5625
AUC 7.4375 + 3.2500 4.3750 3.4375 3.4219 4.0156 6.3750 + 3.6875

k-
N

N
+B

ag

Accuracy 1.9219 – 5.5312 5.4375 4.7500 4.9375 3.9062 – 3.1094 – 6.4062
Precision 1.9219 – 5.5312 5.8438 5.0312 4.8125 3.8125 – 2.7031 – 6.3438
Recall 7.7344 + 3.2969 3.6719 3.8750 3.4219 4.4844 6.7188 + 2.7969
F-measure 5.0469 4.2188 5.3125 3.8438 3.7812 3.7500 4.5781 5.4688
G-mean 7.3281 + 3.4375 4.2500 3.9062 3.2188 3.7500 6.7031 + 3.4062
AUC 7.3438 + 3.5938 4.2500 3.7344 3.4531 3.6719 6.6875 + 3.2656

SV
M

Accuracy 2.2969 – 4.6875 – 5.9531 5.1875 – 4.6875 – 3.6562 – 2.4062 – 7.1250
Precision 2.8594 – 4.2344 – 5.7188 5.3125 4.4531 – 3.1562 – 3.4531 – 6.8125
Recall 7.8906 + 4.0938 + 2.4531 3.7344 4.2344 + 4.8594 + 6.7031 + 2.0312
F-measure 6.0625 3.4844 – 4.5312 4.2188 3.8281 3.5625 4.8438 5.4688
G-mean 7.6875 + 3.2969 3.3125 4.0312 3.4531 3.9062 6.5000 + 3.8125
AUC 7.4062 + 3.3594 3.5625 3.9062 3.6719 3.9062 6.2812 + 3.9062

N
B

Accuracy 4.1562 4.0469 7.3281 + 4.5156 4.5625 3.2812 4.4688 3.6406
Precision 3.8750 3.8750 6.5000 + 5.1562 + 4.7344 3.6719 4.5938 3.0625
Recall 5.0625 4.5781 2.5312 – 4.4844 4.4531 4.7344 4.7031 5.4531
F-measure 4.7812 4.3438 6.0000 + 4.5625 4.7188 3.9688 4.5938 3.0312
G-mean 5.1875 4.0000 6.0938 + 4.4688 4.2500 3.6875 4.9375 3.3750
AUC 4.9375 4.2500 5.5000 + 4.9062 4.6250 4.0625 4.6875 3.0312

be beneficial, especially when considering the precision of
the algorithm. Alternatively, a guided sampling strategy
could be employed, in which information about the local
neighborhood would be used.
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