
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 1, 207–222
DOI: 10.1515/amcs-2017-0015

AREA–ORIENTED TECHNOLOGY MAPPING FOR LUT–BASED
LOGIC BLOCKS

MARCIN KUBICA a,∗, DARIUSZ KANIA b

aFaculty of Mechanical Engineering and Computer Science
University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Poland

e-mail: mkinz@wp.pl

bInstitute of Electronics
Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland

e-mail: dkania@polsl.pl

One of the main aspects of logic synthesis dedicated to FPGA is the problem of technology mapping, which is directly asso-
ciated with the logic decomposition technique. This paper focuses on using configurable properties of CLBs in the process
of logic decomposition and technology mapping. A novel theory and a set of efficient techniques for logic decomposition
based on a BDD are proposed. The paper shows that logic optimization can be efficiently carried out by using multiple
decomposition. The essence of the proposed synthesis method is multiple cutting of a BDD. A new diagram form called
an SMTBDD is proposed. Moreover, techniques that allow finding the best technology mapping oriented to configurability
of CLBs are presented. In the experimental section, the presented method (MultiDec) is compared with academic and
commercial tools. The experimental results show that the proposed technology mapping strategy leads to good results in
terms of the number of CLBs.

Keywords: SMTBDD, FPGA, synthesis, decomposition.

1. Introduction

It can be observed that the popularity of FPGA
(field programmable gate array) circuits has increased
considerably in the last decade. A flexible architecture
has turned out to be the key to success. Configurable
logic blocks (CLBs) are the core of FPGA structures and
may be treated as a kind of memory. That is why the
most popular group of FPGA circuits is called look-up
table FPGAs. The number of CLBs included inside FPGA
structures is high enough to implement complex digital
circuits (Wyrwoł and Hrynkiewicz, 2013). In addition,
FPGA structures have series of specialized blocks such as
I/O blocks, DCMs (digital clock managers), PLLs (phase
locked loops), and DSP (digital signal processing). Logic
resources inside FPGA structures are arranged in the form
of a symmetrical matrix, which provides the opportunity
to lead connecting paths between them. Unfortunately, the
number of possible connections is limited because of the
limited flow of the paths between blocks. Due to limited

∗Corresponding author

connecting resources, some of the synthesis stages such as
placement or routing become significant from the point of
view of implementation of time effective structures.

The synthesis process dedicated to FPGA structures
is usually automatic. The producers of FPGA structures
very often deliver appropriate software tools. It has
been already shown by Cong and Minkovich (2007),
that the results of synthesis obtained using commercial
tools may be far from ideal. The crucial synthesis
element, whose solutions are still not satisfactory, is
decomposition. It can be treated as a mathematical model
of circuit division between CLBs. Good decomposition
should be connected with effective technology mapping
dedicated to FPGAs. In the process of technology
mapping, it is vital to take into account specific features of
logic blocks. The classic model of decomposition theory
was devised by Ashenhurst (1957) and Curtis (1962).
This model of decomposition is a theoretical background
for logic synthesis dedicated to FPGA structures. The
first synthesis tools created solutions that were far from
optimal. The algorithms of technology mapping were

© 2017 M. Kubica and D. Kania.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mkinz@wp.pl
dkania@polsl.pl

208 M. Kubica and D. Kania

originally directed towards gate structures and adapted
to the needs of FPGA structures. The most popular
algorithms, such as MIS-PGA (Murgai et al., 1991) and
ASYL (Abouzeid et al., 1993), are focused on carrying
out functions based on multiplexers. Other tools, such as
Chortle (Francis et al., 1990) and Xmap (Amap) (Karplus,
1993), used various kinds of logic networks or acyclic
graphs in the process of synthesis or the technique of
technology mapping (FlowMap) (Cong and Ding, 1994).

The specific features of the first logic synthesis
tools dedicated to FPGA structures were procedures
of factorization of Boolean functions, lexicographical
variable ordering, and iterative network division. In
the second half of the 1990s, the development of
synthesis tools brought a considerable improvement in
terms of synthesis results. The structures had small
delays and occupied a very small area of silicon because
decomposition was generalized into a multi-output
function, effective methods of decomposition of the
logic function (Rawski et al., 1997) were devised, and
inseparable decomposition was used in the process of
synthesis. Tools such as Demain (Rawski et al., 1997),
Trade (Wan and Perkowski, 1992), BDDsyn (Chang and
Marek-Sadowska, 1992), LGsyn (Lai et al., 1996), and
Decomp (Kania, 2004) played a vital role at the time and
are worth mentioning.

The effectiveness of logic synthesis process depends
on many elements (Fiser and Schmidt, 2009; 2012). Due
to the complexity of decomposition algorithms, function
representation is especially crucial. There are many
methods with which a logic function can be represented.
The most popular are the table description (Curtis, 1962),
the cube description (Micheli, 1994), and graph methods.
Binary decision diagrams (BDDs) (Akers, 1978; Bryant,
1986) have become the most popular form for presenting
logic functions lately. Synthesis algorithms using BDDs
have been developed since the 1990s. The first algorithms
such as BDDsyn (Chang and Marek-Sadowska, 1992)
and LGsyn (Lai et al., 1996) gave better results than
algorithms directed towards division of a network of
gates (Chortle (Francis et al., 1990), MIS-PGA (Murgai
et al., 1991)).

Function representation using BDDs guaranteed
small memory occupation to store data as well as good
time effectiveness. Moreover, BDDs can be easily
used for function representation of multi-output functions
(Sasao and Butler, 1996). As a result of all these
advantages, the BDD has been often used in tools that
supported the process of synthesis such as the BDS (Yang
and Ciesielski, 2002), the DDBDD (Cheng et al., 2007),
and dekBDD (Opara and Kania, 2010). The essence of
using BDDs in the process of synthesis dedicated to FPGA
structures has been presented by Scholl (2001). In a BDS
PGA system using BDDs, resynthesis occurs (Vemuri
et al., 2002).

Together with the development of FPGA circuits,
various synthesis tools dedicated to FPGA structures
were developed. Daomap (Chen and Cong, 2004) or
ABC (using the AIG—and inversion graph) (Brayton and
Mishchenko, 2010) systems may be regarded as some of
the most important achievements after 2000 as they are
considerably fast in the process of synthesis.

Upon analysing the architecture development of
FPGA circuits, it can be observed that more complex
circuits tend to be more flexible as far as CLBs are
concerned. The most basic CLBs had relatively small
configuration abilities and could only have the number
of inputs (LUT5/1 or LUT4/2) defined. At present,
apart from defining the number of inputs, which becomes
higher, it is possible to describe the operating mode
such as arithmetic or shared mode (Altera, 2012). In
the literature, an interest in the specificity of new logic
cells may be observed (Anderson and Wang, 2011; Ray
et al., 2012). Recently, new synthesis tools have begun to
appear. Their ability to reconfigure logic blocks is partly
used by ALMmap (Liang et al., 2012). The synthesis
strategies included in these tools are focused on various
optimization targets such as delays of the structures,
minimization of the area, and minimization of power
consumption. In each of these targets, it is crucial to match
CLB configuration to the circuits that were obtained in the
process of synthesis and are the result of decomposition.
The main purpose of logic synthesis is to map a designed
circuit to very universal CLBs.

The purpose of this paper is to present a novel
logic synthesis strategy targeted at FPGAs which is based
on multiple decomposition. New FPGA architectures,
enabling configuration of CLB blocks (particularly
LUTs), are considered. Therefore, logic synthesis is
based on resource-aware decomposition of logic functions
taking advantage of such structures. Logic decomposition
is directly related to the technology mapping process. The
main contribution is twofold: first, the concept of shared
multi-terminal BDDs (SMTBDDs) is introduced; second,
a flexible technology mapping algorithm based on these is
proposed.

2. Theoretical background

A function y = f(in, . . . , i2, i1) = f(Xf , Xb) is subject
to simple disjoint decomposition, that is, f(Xf , Xb) =
F [g(Xb), Xf], if and only if the column multiplicity of
the Karnaugh map (partition matrix) ν(Xf | Xb) ≤ 2,
where Xb ∪ Xf = {in, . . . , i2, i1} and Xb ∩ Xf =
φ (Ashenhurst, 1957) (Curtis, 1962). The Xb and Xf

sets are called the bound and the free set, respectively.
The primary theorem of simple disjoint decomposition
is the base for functional decomposition of multi-output
functions. A function f : Bn → Bm is subject to
decomposition if and only if the column multiplicity of

Area-oriented technology mapping for LUT-based logic blocks 209

the Karnaugh map (partition matrix) ν(Xf |Xb) ≤ 2p,
that is,

(Xf |Xb) ≤ 2p ⇔ f(Xf , Xb)

= F [g1(Xb), g2(Xb), . . . , gp(Xb), Xf],
(1)

where Xb ∪Xf = {in, . . . , i2, i1} and Xb ∩Xf = φ.
Simple disjoint decomposition becomes the basis

of n-input and m-output partitioning of a combinational
circuit into two blocks: bound and free (Fig. 1).

As a result of the partition, separate variable sets are
connected with the bound and the free block, respectively.
The number of connections between these blocks (p)
corresponds to that of bound functions g1, g2, . . . , gp.

It is obvious that the method of searching for the
decomposition depends on a function representation. In
the case of BDDs, the essence of searching for a simple
serial decomposition is to find an appropriate horizontal
diagram cutting (Fig. 2). The variables which are above
the cutting line are associated with a bound set, while
those which are below the cutting line are connected with
a free set.

It turns out that the column multiplicity ν(Xf |Xb)
of the Karnaugh map (table partition) is equal to the
number of cut nodes of the BDD (Scholl, 2001). Cut
nodes are situated below the cutting line and are indicated
by the edges coming from the upper part of a diagram.
The number of cut nodes, which is equal to the column
multiplicity of the Karnaugh map ν(Xf |Xb), defines the
number of necessary bound functions in accordance with
Eqn. (2),

p = log2�ν(Xf |Xb)�, (2)

Simple serial decomposition is the basis of the
partition in which a single bound block and a single free
block are present. When analysing various partitions,
several may be chosen by finding the appropriate
complex decomposition (Curtis, 1962). Two basic models
of complex decompositions are known: iterative and
multiple.

Theorem 1. (Iterative decomposition) A function
f : Bn → Bm is subject to q various decompositions,
that is,

Fig. 1. Simple disjoint decomposition of a multi-output func-
tion.

f = F1[G1(Xbq, Xfq−1, Xfq−2, . . . , Xf1), Xf],

f = F2[G2(Xbq, Xfq−1, . . . , Xf2), Xf1, Xf],

...

f = Fq [Gq(Xbq), Xfq−1, Xfq−2, . . . , Xf2, Xf1, Xf],

where

G1(Xbq,Xfq−1, . . . , Xf2, Xf1)

= [g1 1(Xbq, Xfq−1, . . . , Xf2, Xf1),

g1 2(Xbq, Xfq−1, . . . , Xf2, Xf1),

. . . ,

g1 p1(Xbq, Xfq−1, . . . , Xf2, Xf1)],

G2(Xbq,Xfq−1, . . . , Xf2)

= [g2 1(Xbq, Xfq−1, . . . , Xf2),

g2 2(Xbq, Xfq−1, . . . , Xf2),

. . . ,

g2 p2(Xbq, Xfq−1, . . . , Xf2)],

...

Gq(Xbq) = [gq 1(Xbq), gq 2(Xbq), . . . , gq pq (Xbq)],

if, and only if, Xbq, Xfq−1, . . . , Xf1, Xf , are mutually
disjoint. Then

f = F0[G1[G2 . . . [Gbq(Xq), Xfq−1], . . . , Xf1), Xf].
(3)

The above theorem (proved by Curtis (1962)) serves
as a background to draw up an algorithm for multi-level

Fig. 2. Simple serial decomposition using a BDD: function de-
scription (a), result of implementing the function (b).

210 M. Kubica and D. Kania

implementation of multi-output logic functions by means
of LUT blocks.

The usage of this decomposition model leads to the
structure presented in Fig. 3.

Obviously, this type of decomposition can be carried
out by a cyclic search for a simple serial decomposition
in the subsequent steps. The application of this type
of decomposition in the synthesis process has negative
influence on the delays of the obtained structures.
Fortunately, a multiple decomposition is free from this
defect. Its essence is searching for the partition variables
into common disjoint bound subsets.

Theorem 2. (Multiple decomposition) A function
f : Bn → Bm is subject to q different decompositions:

f = F1[G1(Xb1), Xb2, Xb3, . . . , Xbq, Xf],

f = F2[Xb1, G2(Xb2), Xb3, . . . , Xbq, Xf],

...

f = Fq[Xb1, Xb2, Xb3, . . . , Gq(Xbq), Xf],

where

G1(Xb1) = [g1 1(Xb1), g1 2(Xb1), . . . , g1 p1(Xb1)],

G2(Xb2) = [g2 1(Xb2), g2 2(Xb2), . . . , g2 p2(Xb2)],

...

Gq(Xbq) = [gq 1(Xbq), gq 2(Xbq), . . . , gq pq (Xbq)],

if, and only if, Xbq, Xbq−1, . . . , Xb1, Xf are mutually dis-
joint. Then

f = F [G1(Xb1), G2(Xb2), . . . , Gq(Xbq), Xf]. (4)

The use of this theorem (proved by Curtis (1962))
leads to the circuits partition presented in Fig. 4.

Many synthesis strategies carried out in FPGA
structures of LUT type use the elements of iterative or
multiple decomposition in a direct or an indirect way. It
turns out that the process of searching for an appropriate
multiple decomposition may be directed towards looking

Fig. 3. Structure of the circuit after the usage of iterative decom-
position.

for an effective technology mapping to flexible logic
blocks included in the FPGA. In this case, it is vital to
find the multiple decomposition as fast as possible. In
the case of logic functions given in the form of a BDD,
there are two alternative methods of searching for such
decomposition: the method based on a cyclic change of
variable ordering (classic method) and the multiple cutting
method.

The core of the classic method is carrying out simple
serial decomposition in a cyclic way by a single cutting of
a BDD. It is also important to provide variable ordering
in which the nodes corresponding to bound functions
are below the cutting line (Opara, 2008). An alternative
method uses a multiple cutting of a BDD. In the first step,
the cutting of a diagram on several levels at the same
time is performed. Separate BDD sub-diagrams between
cutting lines are called BDD extracts. It turns out that the
segments are associated with various forms of BDDs. If
they have one root and more than two multi-bit terminal
nodes, we call them MTBDDs (multi-terminal BDDs)
(Mikusek and Dvorak, 2009; Mikusek, 2009; Scholl et al.,
2001). However, if they have more than one root but
only two terminal nodes, they are called SBDDs (shared
BDDs) (Minato et al., 1990; Ochi et al., 1991; Thornton
et al., 1999). When there is more than one root and more
than two multi-bit terminal nodes in a given extract, such
a BDD extract can be described as an SMTBDD (shared
multi-terminal BDD) (Kubica and Kania, 2016; 2015;
Kubica, 2014; Babu and Sasao, 1998).

Fig. 4. Structure of the circuit after using multiple decomposi-
tion.

Area-oriented technology mapping for LUT-based logic blocks 211

Example 1. Let us consider a double cutting of a diagram
presented in Fig. 5. As a result of this process, three
segments, which are an MTBDD, an SMTBDD, and an
SBDD, are obtained.

Let Ei be the variable set for the i-th extract of a
diagram. The elements of set Ei create bound sets (Xbi)
of multiple decomposition. The choice of the i-th bound
set is justified when card(Ei) is greater than the number
of bound functions (numb of g) connected with a given
extract. Thus, the method of indicating the number of
bound functions for separate extracts becomes vital. If
a given extract is a diagram including only one root, to
indicate the number of bound functions it is enough to
determine only the number of cut nodes. In the case of
diagrams that have more roots (i.e., the SMTBDD), it
is necessary to define the column multiplicity of a root
table (Kubica and Kania, 2015). The root table can be
defined as a combination of cut nodes that correspond
to the paths of the SMTBDD. It is worth mentioning
that the starting points of the SMTBDD paths are roots
corresponding to separate lines in the root table. In Fig. 6,
the essence of creating a root table as well as defining
column multiplicity for a sample SMTBDD is presented.

Multiple decomposition makes it possible

x0

x1

x2

x3

x4

x5

x6

1 0

x6

x7

x8

x3
x3

x4

x5

x3

x0

x1

x2

MTBDD
(special
case of
SMTBDD)

SMTBDD

Extract 0

Extract 1

Extract 2
x6

1 0

x6

x7

x8

SBDD
(special
case of
SMTBDD)

Fig. 5. Multiple ROBDD cutting—various forms of extracts.

to implement several bound blocks into LUTs
simultaneously. LUT cells can have different numbers of
inputs. Therefore, the core of mapping to logic blocks
is the appropriate choice of cutting lines, resulting in the
minimum number of cut nodes. �

3. Logic synthesis oriented to LUT-based
logic blocks

Configurable logic blocks (CLBs) are the main logic
resources of the FPGA. In general, a CLB consists
of a few logical cells (called the slice, adaptive logic
module (ALM), logic element (LE), etc.). A typical
elementary cell is based on LUTs. At present, it is
possible to modify the functionality of configurable logic
blocks, especially the number of inputs of LUTs. In
the XC3000 CLB (Xilinx, 1997), a single 5-input LUT
(LUT5/1) or two 4-input LUTs (LUT4/2) with shared
inputs are implemented. In Spartan (Xilinx, 2011), a
similar configuration of the CLB is possible but the inputs
of LUT4/2 are independent. In the most technologically
advanced FPGAs, very flexible blocks, such as the ALM
(Altera, 2012), are embedded.

3.1. Configuration features of logic cells.
Configuration capabilities of contemporary logic
cells have already been described in many scientific
papers (Anderson et al., 2012; Garg et al., 2005; Mao
et al., 2011; Rohani and Zarandi, 2009). One of their
characteristic features resulting in better configurability
is a considerably higher number of inputs compared
with older constructions. Blocks that include seven or
more inputs are now widely available (Lattice, 2012).
The following example of ALM-based blocks included
in the popular FPGA Stratix series by Altera shows the
configurations abilities of moderns CLBs. Blocks of
this FPGA may be configured in six different ways, as
illustrated in Fig. 7.

Possible configurations of ALM-based blocks may
be divided into two groups. The first one is characterized
by existing independent LUT-based blocks. In this

Fig. 6. Essence of determining column multiplicity of a root ta-
ble associated with an SMTBDD.

212 M. Kubica and D. Kania

case, there are no common inputs for LUT-based blocks
included in the ALM-based block. An ALM-based block
can carry out independent functions whose arguments
create disjoint variable subsets. The configurations
presented in Figs. 7(a), (c), and (d) may be classified
into this group. The second configuration group is
characterized by the existence of a given number of
common inputs. These common inputs give ALM blocks
with more inputs. The configurations of this group are
presented in Figs. 7(b), (e), and (f). The above shown
flexibility guarantees more effective implementation than
in the case of firm logic blocks.

3.2. Decomposition models directed towards configu-
ration capabilities of logic cells. Let k be the number of
logic blocks inputs. The essence of decomposition is the
choice of appropriate cutting line in BDDs. In the case
of the simple serial decomposition, cutting line should
be chosen on the k-th level from a root, which is clearly
depicted in Fig. 8. Such a choice of the cutting line makes
cardinality of bound set elements equal to k. In this way,
all of the LUT-based blocks inputs are used.

In the case of multiple decomposition carried out
using the multiple cutting method, cutting levels should
be chosen in such a way that the numbers of elements of
separate bound sets (E0, . . . , En) correspond to those of
inputs of LUTs for the chosen configuration (k0, . . . , kn).
The idea of such a cutting is presented in Fig. 9.

It can be observed that multiple decomposition
carried out using the multiple cutting method is a suitable
choice for ALM-based configuration blocks in which
independent LUT-based blocks are present (Fig. 7(a), (c),
(d)). For instance, by carrying out decomposition defined
by cutting lines at levels 3 and 8 or levels 5 and 8 counting
from the root of the BDD, the configurations presented in
Fig. 10 will be found.

The following example shows that the choice of the
cutting level is essential from the point of view of the
number of bound functions.

Example 2. Let us consider the decomposition of the
function f(x0, x1, . . . , x6) described using the BDD that
is illustrated in Fig. 11(a) into logic blocks of LUT 4/1
type.

Two alternative diagram cuttings are possible
(Fig.11(a)). In the first one, the zero part is connected
with the bound set Xb = E0 = {x0, x1, x2} (A cutting
line). In the second one, the zero part is associated with
the bound block Xb = E0 = {x0, x1, x2, x3} (B cutting
line). The A and C cutting lines create parts for which
card(E0) = 3 and card(E1) = 4, and lead to multiple
decomposition in which three bound functions exist (Fig.
11(b)). The B and C cutting lines create parts for which
card(E0) = 4 and card(E1) = 3, results in five bound
functions (Fig. 11(c)). The solution from Fig. 11(c) is

Fig. 7. ALM-based blocks configurations (Altera, 2012).

Fig. 8. Core of technology mapping to a block that has k inputs
for simple serial decomposition.

Fig. 9. Essence of technology mapping for decomposition car-
ried out using several cutting lines (E0, . . . , En): sepa-
rate bound sets.

Fig. 10. Technology mapping for an ALM-based cell.

Area-oriented technology mapping for LUT-based logic blocks 213

much worse in terms of the number of LUT-based blocks.
�

In the above example, it can be seen that different
cuttings of a BDD give different mapping results in terms
of effectiveness. Thus, to choose an optimum solution,
some monotone coefficient of mapping efficiency is
necessary.

3.3. Choice of the decomposition path based on
the mapping efficiency coefficient. While mapping a
function to resources of the programmable structure used,
it is necessary to take into consideration the number of
LUT inputs and outputs and the CLB structure.

Let us consider carrying out decomposition of the
function f : Bn → Bm into LUT-based FPGA structures
including CLBs in which one of two configurations of
LUTs is possible. It is symbolically described as LUT
5/1 or LUT 4/2. While searching for the best technology
mapping, it is necessary to adjust the decomposition
process to resources of the structure used. The problem
of mapping is based on the choice of an appropriate
decomposition path that should be carried out in such a
way as to use the lowest number of configurable logic
cells. Minimization of the inputs of the free block is
required, too. That is why the coefficient of mapping
efficiency may be defined by

δ = numb of blocks − (card(Xb) − numb of g),
(5)

where numb of blocks indicates the number of CLBs
used in the i-th stage and card(Xb) the number of

Fig. 11. Multiple decomposition carried out using the multiple
cutting method: ROBDD diagram that underwent mul-
tiple cutting (a), blocks associated with the first logic
level for the A cutting line (b), blocks connected with
the first logic level for the B cutting line (c).

bound sets (numb of g indicates the number of bound
functions).

Let us consider the i-th stage of decomposition of
function f : Bn → B. As a result of decomposition
defined by an ordered pair (card(Xb), numb of g), a
circuit, in which a free block has n − (card(Xb) −
numb of g) inputs, is obtained and described by the
function f ′ : Bn−(card(Xb)−numb of g) → B. Therefore,
the expression (card(Xb) − numb of g) stands for the
number by which the number of function arguments
has been reduced before the (i + 1)-th stage of
decomposition. The three parameters of the mapping
efficiency coefficient δ correspond to three different
aspects of the decomposition process. Card(Xb) results
from the strategy of partitioning arguments, (numb of g)
is the effect of coding cut nodes, while (numb of blocks)
depends on the logic block configuration used.

Let us present the value of the mapping efficiency
coefficient δ in the form of a triangular table in which the
rows are associated with the number of bound functions
(numb of g) and the columns are connected with the
cardinality of a bound set card(Xb). The values of the
coefficient δ calculated in accordance with Eqn. (5) are
placed in separate table cells (Fig. 12).

The process of searching for appropriate
decomposition results directly from the values included
in the triangular table is presented in Fig. 12. The lower
the parameter δ, the better the mapping of a function to a
circuit structure. The usage of the table from Fig. 12 in
the process of searching for an appropriate decomposition
path for technology mapping of a function in CLB LUT
5/1 and LUT 4/2 will be discussed using the following
example.

Fig. 12. Triangle table used to evaluate mapping efficiency for
configurable logic blocks LUT 5/1 and LUT 4/2.

214 M. Kubica and D. Kania

Example 3. Let us consider a logic function described
with the use of the BDD with a given variable ordering
(Fig. 13). In order to find the decomposition that
will give the best technology mapping, three different
cutting lines on levels 3, 4, and 5 from the root are
considered. The bound sets have three, four, and five
variables, respectively. Each diagram is associated with
a circle in the triangular table card(Xb). The search for
the decomposition that will guarantee the most effective
mapping should be started with the lowest number of
δ = −3 corresponding with the decomposition connected
to a pair of numbers (card(Xb), numb of g) = (5, 1).

Such a value δ exists only in the case of a
five-element bound block (Fig. 13(c)). Thus, searching
shall be started with the case of card(Xb) = 5. For
diagram 13(c), there are five cut nodes. In order to
distinguish them, three bound functions are needed. The
value of the δ factor for decomposition (card(Xb),
numb of g) = (5, 3) is 1. This case is indicated in the
triangular table (Fig. 13(c)) with a circle. In the remaining
cases, δ may take a value lower than 1 for partition of the
set of arguments for which card(Xb) < 5. For bound
sets in which the number of elements is lower than five,
the minimal value δ = −2.5 is reached for a four-element
set in which (card(Xb), numb of g) = (4, 1). For the
corresponding cutting line (diagram 13b), there are three
cut nodes. Thus, it is necessary to use two bound functions
in order to distinguish them.

For (card(Xb), numb of g) = (4, 2), the value
δ = −1 and is lower than the coefficient δ obtained in
the previous stage of the analysis. We mark this value
with a circle. For a three-element bound set (card(Xb),
numb of g) = (3, 1), there is only one case in which δ <
−1. In Fig. 13(a), it can be seen that the decomposition
for which card(Xb) = 3 needs two bound functions. This
means that no better solution than δ = 0 has been found.
An appropriate symbol is placed in the triangular table in
Fig. 13(a).

There is no point in considering the case in which
card(Xb) = 2 because the corresponding column of the
table has only one element equal to −0, 5 which is higher
than the value already obtained for card(Xb) = 4. In
such a situation, decomposition in which the bound set
has four elements, which results in two bound functions
((card(Xb), numb of g) = (4, 2)), guarantees the best
mapping. The method of calculating the coefficient δ
for LUT5/1 and LUT 4/2 blocks may also be applied for
another configurable blocks. The presented strategy may
be used in classic decomposition methods as well as in the
multiple cutting method using an SMTBDD. It can be also
generalized to multi-output functions.

4. Method for technology mapping
optimization

The process of optimizing technology mapping is
associated with techniques that enable minimization of the
value of the coefficient δ. As can be seen in Eqn. (5), one
of the ways of lowering the value of the coefficient δ is
reducing the number of bound functions (numb of g).
This may be done by replacing some parts of the bound
function g with the variables x associated with circuit
inputs. This may cause a situation in which some
inputs are connected with a bound block as well as to
the free block. Such a decomposition model is called
non-disjoint decomposition (Scholl, 2001). The essence
of this decomposition is partitioning the variables set into
a bound set, a free set, and common set Xs = Xb ∩Xf .

Non-disjoint decomposition is generalization of
a simple serial decomposition in which bound and
free sets are disjoint. In some cases, non-disjoint
decomposition may lead to the reduction of the number
of logic blocks. In the case of multi-root SMTBDDs
searching for non-disjoint decomposition starts from
disjoint decomposition. All the variables which belong
to the SMTBDD are analysed, taking into consideration

Fig. 13. Diagrams presenting the analyzed logic function: with
a cutting line on level 3 (a), with a cutting line on level
4 (b), with a cutting line on level 5 (c) together with
triangle tables.

Area-oriented technology mapping for LUT-based logic blocks 215

their ability to replace bound functions. This means
joining variables to the set Xs and checking whether
this is profitable in terms of number of logic blocks.
When the attachment of the appropriate variable xi to
the set Xs is profitable, variable xi itself becomes a
bound function (gi = xi). The crucial part of searching
for non-disjoint decomposition is judging whether the
attachment of variable xi to the set Xs leads to a reduction
in the number of bound functions g.

Each variable xi corresponds to a node at a given
level in the SMTBDD. Variable xi may take a value
of 0 (xi = 0) or 1 (xi = 1), which is denoted by
the respective coming out from a given node. These
edges indicate respective sub-diagrams for xi = 0 and
xi = 1. Each sub-diagrams points to a given number
of cut nodes for a given root. There is a possibility of
creating root tables for xi = 0 and xi = 1 for which
column multiplicity may be defined. The number of
different column patterns determines that of bits (bound
functions) for variable value xi = 0 as well as xi = 1
used to distinguish them from each other. When the
number of bits (bound functions) necessary to distinguish
column patterns of a root table for the nodes indicated
by a sub-diagram connected with xi = 0 is lower than
that of bits for disjoint decomposition and the number of
bits for a sub-diagram associated with xi = 1 fulfills the
same condition, variable xi may play the role of the bound
function. �

Example 4. For the function described using the diagram
presented in Fig. 14(a), the part between two cutting lines
was separated. This part includes three variables, E =
{x2, x3, x4}. As a result of cutting, an SMTBDD, which
has two roots, a and b, was created. The SMTBDD is
associated with four cut nodes: m, n, o, and p (Fig. 14(b)).
In order to define the number of bound functions, a root
table in which four column patterns occur was created
(Fig. 14(c)). Because the column multiplicity of the root
table is 4, it is necessary to create two bound functions. In
order to replace one of them with variable x, non-disjoint
decomposition has to be found. Let us use the variable
x2 as a switch over first. In Fig. 14(c), two root tables
connected with x2 = 0 and x2 = 1, respectively, are
presented. In both cases, the column multiplicity is 2.
Thus, a single bit is sufficient to distinguish them (single
bound function). Because of the fact that for both x2 = 0
and x2 = 1 that of bound functions is lower than the
number of bound functions for disjoint decomposition,
variable x2 may fulfill the role of a bound function. The
obtained circuit structure is shown in Fig. 14(d).

�

5. Synthesis algorithm directed towards
using configurability of logic blocks

The synthesis methods described in the paper were
implemented in the prototype MultiDec program.
MultiDec makes it possible to conduct decomposition
while taking into account technology mapping for a given
FPGA structure. The program generates a description
in Verilog HDL that may be used in commercial tools
which carry out the final stages of synthesis (placement
and routing). The essence of the MultiDec operation is
presented in the form of Algorithm 1.

MultiDec uses a non-commercial CMU BDD library
(Long, 2008). The choice of this library was motivated
by relatively small memory usage (Miczulski, 2000). A
comparison of several available libraries can be found in
the paper of Long (1998). It should be mentioned that
MultiDec is able to perform the synthesis process focused
on specific logic cells automatically. After logic synthesis,
the number of LUT-based blocks used and that of logic
levels of the structure are reported.

Fig. 14. Non-disjoint decomposition in SMTBDD diagrams:
ROBDD diagram together with cutting lines (a),
SMTBDD diagram (b), root tables (c), structure ob-
tained (d).

216 M. Kubica and D. Kania

Algorithm 1. MultiDec.
Step 1. Read the description of the multi-output function
in the PLA format and define the variable sets on which
separate functions that are parts of the multi-output are
dependent.

Step 2. Group initial functions into multi-output
functions.

Step 3. Create MTBDDs for created multi-output
functions:

for 0 to Number of pattern of cutting line do

{
Step 4. Choose the set of cutting lines for a given number
of LUT-based block inputs:

for 0 to Number of bdd ordering do

{
Step 5. Change the variable ordering in the BDD.

Step 6. Cut the MTBDD (decomposition of the
multi-output function).

Step 6a. Define sets E.

Step 6b. Create root tables.

Step 6c. Determine column multiplicity for separate root
tables.

Step 6d. Check whether decomposition is profitable. If
not, return to Step 5.

Step 6e. Search for non-disjoint decomposition.

Step 6f. Search for common g functions (unicoding).

Step 6g. Determine the efficiency coefficient of technolo-
gy mapping:
Compare the solution with the solutions obtained in the
previous stages. The best solution, that is, the one for
which efficiency coefficient δ mapping has the lowest
value, is remembered.
}endfor
}endfor

Step. 7. Check whether multiple decomposition is found.
If not, a search for decomposition with a single cutting
line, for which the mapping efficiency coefficient has the
minimum value, should be started (Step 4).

Step. 8. Choose the decomposition for which the
mapping efficiency coefficient has the minimum value.

Step. 9. Define bound functions.

Step. 10. Was the mapping of the entire circuit carried
out? If not, go to Step 2.

Step. 11. Create a description of a gained solution in
Verilog.

6. Results of experiments

The key element of estimating the effectiveness of the
analysed methods of technology mapping is comparison

of the results gained with those for other academic as well
as commercial tools. In the case of academic tools, it is
very difficult to objectively compare the results obtained
with the use of various tools supporting the synthesis
process. The main reasons for this are following:

• The results of academic tools are usually presented
for a chosen group of benchmarks. It often happens
that the number of common tests is so small that it
is difficult to get a conclusion about the advantage of
one system over another.

• The minimization process may have influence on the
results obtained in the decomposition process.

• The results given in the literature are not always
complete, e.g., usually only the number of logic
blocks used is given, without presenting synthesis
time and the delays obtained for the solutions.

In the literature, comparison of academic systems
is often presented for blocks that may be configured
as LUT4/2 or LUT5/1. Thus, it was decided to
focus the technology mapping carried out by MultiDec
on such structures. It is worth mentioning that the
functionality of the system is limited to very small
benchmarks due to directing the MultiDec system
towards multiple decomposition carried out using the
multiple cutting method and limitations resulting from the
non-commercial form of the BDD library. The results
of the experiments performed on a group of popular
benchmarks (McElvain, 1993) are presented in Table 1. In
the first column, the name of the benchmark used is given.
Two other columns contain the number of inputs (in) and
the number of outputs (out) of a combinational circuit
subjected to the synthesis process. In the next columns,
the numbers of blocks obtained with the use of various
academic synthesis tools are presented.

In order to compare various synthesis methods, it is
worth considering the total number of blocks used and
the total number of levels achieved for separate systems.
In order to illustrate average reduction of the number of
blocks, the following coefficient is used:

Profit A

=
Sum of the numb of blocks (Xsystem)

Sum of the numb of blocks (MultiDec)
.

(6)

The value Profit A > 1 indicates that the MultiDec
system led to solutions which use Profit A times less
blocks than those obtained with the use of system x. The
values of Profit A < 1 prove the superiority of system
x. Similarly, the profit in terms of the number of levels

Area-oriented technology mapping for LUT-based logic blocks 217

Table 1. Comparison of results gained with the use of the MultiDec program for academic systems for the blocks (LUT5/1 LUT4/2).
Benchmark ILR+BDS DDBDD Demain Decomp ALTO MultiDec

in out Bl L Bl L Bl L Bl L Bl L Bl L

9sym 9 1 8 3 5 3 5 3 7 3 5 4
t481 16 1 5 2 6 5
rd73 7 3 5 2 5 2 8 2 4 3
rd84 8 4 16 3 7 3 7 3 13 3 6 3
5xp1 7 10 15 2 19 2 9 2 11 2 19 2 10 2
z5xp1 7 10 9 3
con1 7 2 3 2
sqr6 6 11 12 2
inc 7 9 20 2
sqn 7 3 11 3

misex1 8 7 14 2 8 1 10 3 14 2 11 3
f51m 8 8 14 3 10 2 10 3 15 3 7 3
b12 15 9 17 3

z4m1 7 4 6 3
x2 10 7 11 3
clip 9 5 32 3 16 4 33 3 16 4

misex2 25 18 24 3 37 2 31 3
ldd 9 19 21 2

Profit A 1.71 1.74 0.93 1.12 1.62 1.00
Profit L 1.00 0.71 0.80 0.89 0.80 1.00

was calculated:

Profit L

=
Sum of the numb of levels (Xsystem)

Sum of the numb of levels (MultiDec)
.

(7)
In order to indicate appropriate values of Profit A

and Profit L, only those benchmarks are taken into
account for which the result is given for both system x and
MultiDec. Figure 15 illustrates graphically comparison of
separate academic synthesis systems.

In the chart in Fig. 15(a), it can be observed that the
majority of academic tools lead to worse solutions than
the MultiDec system with regard to the area. In extreme
cases such as the DDBDD (Cheng et al., 2007), ILR+BDS
(Tang et al., 2007), and ALTO (Huang et al., 2000), the
MultiDec system obtained results that are 1.74, 1.71, and
1.62 times better, respectively. For the Decomp system
(Kania, 2004), the results are nearly the same. MultiDec
obtained slightly better results, but this may may be due
the limited number of experiments. Comparison with
the DEMAIN system (Rawski et al., 1997) indicates that
the results gained by MultiDec are 7% worse. It seems
that the superiority of DEMAIN systems results from the
implementation of the algorithms which allow parallel
decomposition to be carried out. Taking into account the
number of logic levels (15(b)), it turns out that in most
cases the MultiDec strategy leads to solutions that are
about 20% worse. One exception is the system ILR+BDS.
The obtained results are nearly the same with regard to the
number of logic levels as the solutions gained using the

MultiDec synthesis strategy.

For the purpose of comparison of the proposed
synthesis method with commercial systems, two
commercial tools offered by the producers of FPGAs
were chosen. These are ISE by Xilinx and Quartus
by Altera. The comparison seem to be most valuable
when the MultiDec system is used to carry out the initial
synthesis stages and commercial systems are used for the
final stages of synthesis (fitting and routing). This method
of conducting the synthesis process makes it possible to
use the analysed synthesis strategies immediately by an
engineer.

In order to compare MultiDec with the ISE tool
by Xilinx (Xilinx, 2013), it was also decided to
choose technology mapping directed towards popular
logic blocks included in Spartan 3 circuits (LUT4/2 or
LUT5/1). The results of the comparison are presented in
Table 2. The first three columns of the table contain the
name of the benchmarks, the number of inputs, and the
number of outputs. The column named ISE contains the
synthesis results in which all of the synthesis stages were
conducted using ISE (Xilinx, 2013). Two other columns
(MultiDec(equ.)+ISE and MultiDec(tab.)+ISE) include
synthesis results in which the initial stages of synthesis
were carried out in the MultiDec system and the result was
described in Verilog HDL. The difference between the
columns MultiDec(equ.)+ISE and MultiDec(tab.)+ISE is
the form of description of a circuit after decomposition. A
decomposed circuit may be specified in two forms: either
a tabular description of separate modules connected with
k-input LUT-based blocks or a description with the use

218 M. Kubica and D. Kania

(a) (b)

Fig. 15. Comparison of the academic systems in terms of the area (a) and the number of logic levels (b).

of logic equations with no more than k variables. It seems
that a description of separate modules with the use of logic
equations gives more freedom in the process of additional
optimization done by the ISE system. The last column
of Table 2 presents the number of logic blocks obtained in
MultiDec without the final structure mapping to the FPGA
circuit done with the commercial tool.

The results obtained indicate that the use of the
MultiDec system leads to improvement of the results. The
total number of blocks obtained as a result of the synthesis
of the circuit described in a table and described using
equations (similar results in MultiDec columns (table
description)+ISE, MultiDec(equation description)+ISE,
MultiDec, is lower than the total number of the blocks
obtained as a result of the synthesis carried out only in
the ISE system. It is also noticeable that the Verilog
description of a decomposed circuit in the form of
equations gives much better results. In this case, the ISE
system probably uses additional optimization possibilities
related to the specificity of the circuits used. It is worth
emphasizing that the expected number of blocks at the
decomposition stage (MultiDec column) coincides with
the results obtained for both the table description and the
description with the use of equations.

The analysed synthesis strategy was also compared
with Quartus II (Altera, 2010). The experiments were
conducted for circuit 5CEBA2F17C7 from the Cyclone
V series. This structure includes LUT-based blocks that
have a maximum of seven inputs. The results of the
experiments are illustrated in Table 3. They are presented
in the form of the numbers of ALM blocks.

Comparing the synthesis results obtained using the
analysed methods with those gained in the synthesis
process carried out exclusively in the Quartus II system,
the following conclusions may be drawn. First, thanks
to the use of the MultiDec algorithm, it was possible
to reduce the number of blocks used by about 30%. It

is also worth mentioning that the results predicted at
the decomposition stage (MultiDec) coincide with the
final synthesis results (MultiDec(equ.)+Quartus II). On
the basis of the above comparison, it can be said that there
is a possibility to use the analysed methods to improve
the synthesis results obtained by the Quartus II system.
Comparing the MultiDec system with commercial tools
indicates that the use of MultiDec at the initial synthesis
stages results in better solutions. It should also be stated
that the use of the technique for evaluation of mapping
efficiency may be generalized to all LUT-based FPGAs.

7. Conclusion

The essence of the presented logic synthesis concepts
is based on mapping the decomposition process to the
configurability of logic blocks. The decomposition
path is chosen on the basis of the analysis of the
mapping efficiency coefficient, which makes it possible
to choose the best decomposition, taking into account
the use of programmable structure resources. In the
technology mapping process, multiple decomposition,
which is carried out using the method of multiple cutting
of the BDD, plays a crucial role.

The presented experimental results clearly indicate
the possibility of an improvement of the synthesis results
obtained using the most popular commercial tools. The
use of multiple decomposition carried out by the multiple
cutting method leads to a reduction in the employed logic
resources of FPGAs. Despite the fact that the paper only
focuses on selected families of FPGA structures, whose
CLB cells are characterized by special configuration
abilities, the presented concepts of technology mapping
are more general.

One of the aims of a further development of the
MultiDec system is to generalize the proposed methods
to a wider spectrum of FPGAs. It would be also desired to
be able to carry out decomposition of circuits that have a

Area-oriented technology mapping for LUT-based logic blocks 219

Table 2. Results of synthesis for the Spartan 3 circuit done in ISE.
Bench. in out ISE MultiDec(equ.)+ISE MultiDecD(tab.)+ISE MultiDec

9sym 9 1 8 5 5 5
t481 16 1 3 6 6 6
rd73 7 3 9 4 4 4
rd84 8 4 13 7 6 6
5xp1 7 10 12 10 10 10
z5xp1 7 10 13 9 9 9
con1 7 2 3 3 3 3
sqr6 6 11 13 12 12 12
inc 7 9 16 21 20 20
sqn 7 3 10 10 11 11

misex1 8 7 9 10 11 11
f51m 8 8 13 7 7 7
b12 15 9 15 17 17 17
z4ml 7 4 3 5 6 6
x2 10 7 8 8 11 11

clip 9 5 25 17 17 16
misex2 25 18 21 30 32 31

ldd 9 19 17 21 22 21
SUM: 211 202 209 206

Table 3. Comparison of synthesis results for the Cyclone V circuit.
Bench. in out Quartus II MultiDec(equ.)+Quartus II MultiDec

9sym 9 1 4 3 3
t481 16 1 3 5 4.5
rd73 7 3 8 3 3
rd84 8 4 40 6 6
5xp1 7 10 12 8 8
z5xp1 7 10 13 8 8
con1 7 2 1 1 1.5
sqr6 6 11 7 7 7
inc 7 9 12 11 9
sqn 7 3 8 8 5

misex1 8 7 8 6 6.5
f51m 8 8 11 6 5.5
b12 15 9 10 11 11.5

z4ml 7 4 5 3 3
x2 10 7 7 11 6
clip 9 5 32 11 13

misex2 25 18 15 21 23
ldd 9 19 14 18 18.5

SUM: 210 147 142

considerably higher number of inputs. Moreover, it would
be preferable to develop techniques reducing the number
of logic levels. This would certainly minimize delays of
the obtained circuits.

Taking into account the above recommendations
would undoubtedly improve the effectiveness of logic
synthesis focused on LUT-based FPGAs. It should also
be mentioned that the present form of technology mapping
algorithms implemented in the MultiDec system makes it
possible to use the developed methods in the practice of
circuits design.

Acknowledgment

This work was partially supported by the Ministry of
Science and Higher Education funding for statutory
activities (BK-220/RAu-3/2016).

References
Abouzeid, P., Babba, B., Crastes de Paulet, M. and Saucier, G.

(1993). Input-driven partitioning methods and application
to synthesis on table-lookup-based FPGAs, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems 12(7): 913–925.

220 M. Kubica and D. Kania

Akers, S. (1978). Binary decision diagrams, IEEE Transactions
on Computers C-27(6): 509–516.

Altera (2010). Introduction to the Quartus II software, ver. 10.0,
www.altera.com/content/dam/altera-www/
global/en_US/pdfs/literature/manual.

Altera (2012). Logic array blocks and adaptive logic modules in
Stratix V devices,
www2.engr.arizona.edu/˜ece506/readings/
project-reading/6-cad/ .

Anderson, J. and Wang, Q. (2011). Area-efficient FPGA logic
elements: Architecture and synthesis, 16th Asia and South
Pacific Design Automation Conference (ASP-DAC), Yoko-
hama, Japan, pp. 369–375.

Anderson, J., Wang, Q. and Ravishankar, C. (2012).
Raising FPGA logic density through synthesis-inspired
architecture, IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems 20(3): 537–550.

Ashenhurst, R. (1957). The decomposition of switching
functions, Proceedings of an International Symposium
on the Theory of Switching, Cambridge, MA, USA, pp.
74–116.

Babu, H.M.H. and Sasao, T. (1998). Shared multi-terminal
binary decision diagrams for multiple-output functions, IE-
ICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 81(12): 2545–2553.

Brayton, R. and Mishchenko, A. (2010). ABC: An
academic industrial-strength verification tool, in T. Touili
et al. (Eds.), Proceedings of the 22nd International
Conference on Computer Aided Verification, CAV’10,
Springer-Verlag, Berlin/Heidelberg, pp. 24–40, DOI:
10.1007/978-3-642-14295-6 5.

Bryant, R. (1986). Graph-based algorithms for Boolean
function manipulation, IEEE Transactions on Computers
C-35(8): 677–691.

Chang, S.-C. and Marek-Sadowska, M. (1992). Technology
mapping via transformations of function graphs, IEEE
1992 International Conference on Computer Design: VLSI
in Computers and Processors, Washington, DC, USA,
pp. 159–162.

Chen, D. and Cong, J. (2004). DAOMAP: A depth-optimal
area optimization mapping algorithm for FPGA designs,
IEEE/ACM International Conference on Computer Aided
Design, ICCAD-2004, San Jose, CA, USA, pp. 752–759.

Cheng, L., Chen, D. and Wong, M. (2007). DDBDD:
Delay-driven BDD synthesis for FPGAs, 44th ACM/IEEE
Design Automation Conference, DAC’07, San Diego, CA,
USA, pp. 910–915.

Cong, J. and Ding, Y. (1994). FlowMap: An optimal
technology mapping algorithm for delay optimization in
lookup-table based FPGA designs, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
13(1): 1–12.

Cong, J. and Minkovich, K. (2007). Optimality study of logic
synthesis for LUT-based FPGAS, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
26(2): 230–239.

Curtis, H. (1962). A New Approach to the Design of Switching
Circuits, Chin Jih, Princeton, NJ.

Fiser, P. and Schmidt, J. (2009). The case for a
balanced decomposition process, 12th Euromicro Confer-
ence on Digital Systems Design (DSD), Patras, Greece,
pp. 601–604.

Fiser, P. and Schmidt, J. (2012). On using permutation of
variables to improve the iterative power of resynthesis,
10th International Workshop on Boolean Problems
(IWSBP), Freiberg, Germany, pp. 107–114.

Francis, R., Rose, J. and Chung, K. (1990). CHORTLE: A
technology mapping program for lookup table-based field
programmable gate arrays, 27th ACM/IEEE Design Au-
tomation Conference, Orlando, FL, USA, pp. 613–619.

Garg, V., Chandrasekhar, V., Sashikanth, M. and Kamakoti,
V. (2005). A novel CLB architecture and circuit
packing algorithm for logic-area reduction in SRAM-based
FPGAs, Asia and South Pacific Design Automation
Conference ASP-DAC 2005, Shanghai, China, Vol. 2,
pp. 791–794.

Huang, J.-D., Jou, J.-Y. and Shen, W.-Z. (2000). Alto:
An iterative area/performance tradeoff algorithm for
LUT-based FPGA technology mapping, IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems
8(4): 392–400.

Kania, D. (2004). Decomposition elements dedicated for
LUT-based FPGAs, Archiwum Informatyki Teoretycznej i
Stosowanej 16(1): 45–62.

Karplus, K. (1993). Xtmap: Generate-and-test mapper for
table-lookup gate arrays, Compcon Spring’93, San Fran-
cisco, CA, USA, pp. 391–399.

Kubica, M. (2014). Decomposition and Technology Mapping
Using Binary Decision Diagrams, PhD thesis, Silesian
University of Technology, Gliwice, (in Polish).

Kubica, M. and Kania, D. (2015). New concept of graph
for function decomposition, IFAC Conference on Pro-
grammable Devices and Embedded Systems, PDES 2015,
Cracow, Poland, pp. 61–66.

Kubica, M. and Kania, D. (2016). Decomposition of
multi-output functions oriented to configurability of logic
blocks, Bulletin of the Polish Academy of Sciences: Tech-
nical Sciences, (accepted).

Lai, Y.-T., Pan, K.-R. and Pedram, M. (1996). OBDD-based
function decomposition: Algorithms and implementation,
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 15(8): 977–990.

Lattice (2012). Lattice ECP3 family data sheet,
www.latticesemi.com/.../LatticeSemi/.../
DataSheets/Lattice/
LatticeECP3EAFamilyData.

Liang, Y.-Y., Kuo, T.-Y., Wang, S.-H. and Mak, W.-K. (2012).
Almmap: Technology mapping for FPGAs with adaptive
logic modules, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 31(7): 1134–1139.

www.altera.com/content/dam/altera-www/
global/en_US/pdfs/literature/manual
www2.engr.arizona.edu/~ece506/readings/
project-reading/6-cad/
www.latticesemi.com/.../LatticeSemi/.../
DataSheets/Lattice/
LatticeECP3EAFamilyData

Area-oriented technology mapping for LUT-based logic blocks 221

Long, D. (1998). The design of a cache-friendly BDD library,
IEEE/ACM International Conference on Computer-Aided
Design, 1998, San Jose, CA, USA, pp. 639–645.

Long, D. (2008). Carnegie Mellon University BDD Library,
http://www.cs.cmu.edu/afs/cs/project/
modck/pub/www/.

Mao, Z., Chen, L., Wang, Y. and Lai, J. (2011). A
new configurable logic block with 4/5-input configurable
LUT and fast/slow-path carry chain, IEEE 9th Interna-
tional Conference on ASIC (ASICON), Xiamen, China,
pp. 67–70.

McElvain, K. (1993). IWLS’93 benchmark set: Version 4.0,
https://ddd.fit.cvut.cz/prj/Benchmarks/
IWLS93.pdf.

Micheli, G.D. (1994). Synthesis and Optimization of Digital Cir-
cuits, 1st Edn., McGraw-Hill Higher Education, New York,
NY.

Miczulski, P. (2000). Analysis of the efficiency of BDD libraries,
International Scientific Symposium for Students and Young
Scientists, Zielona Góra, Poland, pp. 65–71, (in Polish).

Mikusek, P. (2009). Multi-terminal BDD synthesis and
applications, International Conference on Field Pro-
grammable Logic and Applications, FPL 2009, Prague,
Czech Republic, pp. 721–722.

Mikusek, P. and Dvorak, V. (2009). Heuristic synthesis
of multi-terminal BDDs based on local width/cost
minimization, 12th Euromicro Conference on Digital Sys-
tem Design, Architectures, Methods and Tools, DSD’09,
Patras, Greece, pp. 605–608.

Minato, S., Ishiura, N. and Yajima, S. (1990). Shared
binary decision diagram with attributed edges for efficient
Boolean function manipulation, 27th ACM/IEEE Design
Automation Conference, Orlando, FL, USA, pp. 52–57.

Murgai, R., Shenoy, N., Brayton, R. and
Sangiovanni-Vincentelli, A. (1991). Improved logic
synthesis algorithms for table look up architectures, IEEE
International Conference on Computer-Aided Design,
ICCAD-91, Santa Clara, CA, USA, pp. 564–567.

Ochi, H., Ishiura, N. and Yajima, S. (1991). Breadth-first
manipulation of SBDD of Boolean functions for vector
processing, 28th ACM/IEEE Design Automation Confer-
ence, San Francisco, CA, USA, pp. 413–416.

Opara, A. (2008). Decomposition Synthesis Methods of Combi-
national Circuits using Binary Decision Diagrams, PhD
thesis, Silesian University of Technology, Gliwice, (in
Polish).

Opara, A. and Kania, D. (2010). Decomposition-based
logic synthesis for PAL-based CPLDs, International
Journal of Applied Mathematics and Computer Science
20(2): 367–384, DOI: 10.2478/v10006-010-0027-1.

Rawski, M., Jozwiak, L., Nowicka, M. and Luba, T. (1997).
Non-disjoint decomposition of boolean functions and its
application in FPGA-oriented technology mapping, 23rd
EUROMICRO Conference EUROMICRO 97: New Fron-
tiers of Information Technology, Budapest, Hungary,
pp. 24–30.

Ray, S., Mishchenko, A., Een, N., Brayton, R., Jang, S. and
Chen, C. (2012). Mapping into LUT structures, Proceed-
ings of the Conference on Design, Automation and Test in
Europe, DATE’12, San Jose, CA, USA, pp. 1579–1584.

Rohani, A. and Zarandi, H. (2009). A new CLB architecture
for tolerating SEU in SRAM-based FPGAs, International
Conference on Reconfigurable Computing and FPGAs, Re-
ConFig’09, pp. 83–88.

Sasao, T. and Butler, J. (1996). A method to represent
multiple-output switching functions by using multi-valued
decision diagrams, 26th International Symposium on
Multiple-Valued Logic, Santiago De Compostela, Spain,
pp. 248–254.

Scholl, C. (2001). Functional Decomposition with Applica-
tion to FPGA Synthesis, Kluwer Academic Publishers,
Norwell, MA.

Scholl, C., Becker, B. and Brogle, A. (2001). The multiple
variable order problem for binary decision diagrams:
Theory and practical application, Proceedings of the De-
sign Automation Conference, Asia and South Pacific, Yoko-
hama, Japan, pp. 85–90.

Tang, W.-C., Lo, W.-H. and Wu, Y.-L. (2007). Further
improve excellent graph-based FPGA technology mapping
by rewiring, IEEE International Symposium on Circuits
and Systems, ISCAS 2007, New Orleans, LA, USA,
pp. 1049–1052.

Thornton, M., Williams, J., Drechsler, R., Drechsler, R. and
Wessels, D. (1999). SBDD variable reordering based on
probabilistic and evolutionary algorithms, IEEE Pacific
Rim Conference on Communications, Computers and Sig-
nal Processing, Victoria, Canada, pp. 381–387.

Vemuri, N., Kalla, P. and Tessier, R. (2002). BDD-based logic
synthesis for LUT-based FPGAs, ACM Transactions on
Design Automation of Electronic Systems 7(4): 501–525,
DOI: 10.1145/605440.605442.

Wan, W. and Perkowski, M.A. (1992). A new approach
to the decomposition of incompletely specified
multi-output functions based on graph coloring and
local transformations and its application to FPGA
mapping, Proceedings of the Conference on European
Design Automation, EURO-DAC’92, Hamburg, Germany,
pp. 230–235.

Wyrwoł, B. and Hrynkiewicz, E. (2013). Decomposition of
the fuzzy inference system for implementation in the
FPGA structure, International Journal of Applied Math-
ematics and Computer Science 23(2): 473–483, DOI:
10.2478/amcs-2013-0036.

Xilinx (1997). XC3000 technical information, xapp024,
www.xilinx.com/support/documentation/
application_notes/xapp024.pdf.

Xilinx (2013). ISE Design Suite 14, UG631,
www.xilinx.com/products/design-tools/
ise-design-suite.html.

Yang, C. and Ciesielski, M. (2002). BDS: A BDD-based
logic optimization system, IEEE Transactions on

http://www.cs.cmu.edu/afs/cs/project/
modck/pub/www/
https://ddd.fit.cvut.cz/prj/Benchmarks/
IWLS93.pdf
www.xilinx.com/support/documentation/
application_notes/xapp024.pdf
www.xilinx.com/products/design-tools/
ise-design-suite.html

222 M. Kubica and D. Kania

Computer-Aided Design of Integrated Circuits and
Systems 21(7): 866–876.

Marcin Kubica received his MSc and PhD de-
grees from the Silesian University of Technology,
Gliwice, Poland, in 2010 and 2014, respectively.
He has been an assistant professor at the Univer-
sity of Bielsko-Biała. His main interests and re-
search areas involve programmable devices and
systems, and logic synthesis.

Dariusz Kania received his MSc and PhD de-
grees from the Silesian University of Technol-
ogy, Gliwice, Poland, in 1989 and 1995, respec-
tively. He initially worked as an assistant lec-
turer (1989–1995) and then as an assistant pro-
fessor (1995–2004). He has been a professor
at the Silesian University of Technology and a
full professor since 2006 and 2014, respectively.
His main interests and research areas involve pro-
grammable devices and systems, logic synthesis

and optimization dedicated to a wide range of programmable logic de-
vices (CPLD, FPGA), and the implementation of digital circuits. He
is also interested in applications of computer posturography in postural
control diagnostics and motor functions rehabilitation.

Received: 6 October 2015
Revised: 1 April 2016
Re-revised: 13 October 2016
Accepted: 24 October 2016

