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In the field of intelligent crowd video analysis, the prediction of abnormal events in dense crowds is a well-known and
challenging problem. By analysing crowd particle collisions and characteristics of individuals in a crowd to follow the
general trend of motion, a purpose-driven lattice Boltzmann model (LBM) is proposed. The collision effect in the proposed
method is measured according to the variation in crowd particle numbers in the image nodes; characteristics of the crowd
following a general trend are incorporated by adjusting the particle directions. The model predicts dense crowd abnormal
events in different intervals through iterations of simultaneous streaming and collision steps. Few initial frames of a video
are needed to initialize the proposed model and no training procedure is required. Experimental results show that our
purpose-driven LBM performs better than most state-of-the-art methods.
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1. Introduction

During events that attract a large number of enthusiastic
participants, such as sports events, festival celebrations,
and religious activities, despite the implementation of
various precautionary and security measures including
the deployment of security personnel and installation
of video surveillance, unexpected crowd disasters like
deadly stampedes cannot be fully avoided. They seem
to occur relatively frequently (Rodriguez et al., 2011).
Therefore, in recent years, detection of abnormal crowd
events has been among hot topics in the field of computer
vision research. Though most detection methods can
identify abnormal or emergency crowd situations after a
dangerous event has happened, few can predict them in
advance.

In this paper, we propose a method of abnormal
crowd prediction within some time intervals. The crowd
individuals are considered to be made up of a considerable
number of crowd particles. The proposed method
modifies the lattice Boltzmann model (LBM) by adding
a direction selection step to accurately represent the
purpose-driven force of crowd particles. Velocity fields
of the entire crowd can be predicted iteratively; these
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employed the behaviour entropy feature as the criterion
to identify abnormal crowd events.

1.1. Related work. In the field of computer vision,
crowd analysis models can be divided into three classes:
vision-based, physics-inspired, and physics-simulated
approaches.

1.1.1. Vision-based approaches. Vision-based
approaches use basic techniques in computer vision to
analyse crowd events. Some of the important previous
works on vision-based approaches are discussed below.

Sparse representation methods (Cong et al., 2013;
2011) use sparse reconstruction cost (SRC) as detection
criteria. Usually, the value of SRC in the case of
abnormal events is larger than in normal cases. Though
these methods are proved as having higher accuracy for
anomaly detection, a considerably large number of normal
samples are required as training data.

Another common vision-based approach uses the
hidden Markov model (HMM), which can account for
the inherently dynamic nature of observed features (Wang
et al., 2012; Mészáros et al., 2014). In this model, one
HMM is set up for all local areas so that it could work only
for limited kinds of normal behaviour or specific crowded
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scenes. HMMs are dependent on variant behaviour types,
such as running or walking, i.e., when the type is changed,
the model needs to be retrained.

Another vision-based model is the dynamic texture
one, which is a spatio-temporal generative model for
video patterns. It represents video sequences as
observations via a linear dynamical system and exhibits
spatio-temporal stationary properties (Raghavendra et al.,
2011a; Li et al., 2014; Chetverikov and Péteri, 2005;
Xu et al., 2011). Recent research works (Chan and
Vasconcelos, 2008) have shown that dynamic texture is
more suitable for local unusual event detection in crowded
scenes than optical flow. However, as in the case of sparse
representation methods, this model also requires a large
number of samples for normal pattern training.

Yu et al. (2016) proposed an effective automatic
tracking algorithm of large-scale crowded targets; their
technique involves clustering the targets into groups
followed by three steps of group refinement: shrinking,
growing, and merging. Then, a two-dimensional
non-rigid thin-plate splines (TPSs) transform is performed
to describe the mapping between the predictions
and associated observations within the same group.
The method performs well in tracking crowds from
low-continuity videos and outperforms many baseline
Kalman filters as well as multi-target tracking methods.

Alahi et al. (2014) introduced a large-scale dataset
of 42 million trajectories extracted from real-world train
stations. The behavioural signatures of neighbouring
pedestrians were captured using a feature descriptor
called the social affinity map (SAM). With an origin and
destination (OD) prior, the destination of each individual
is predicted.

Another method called particle advection is used to
find particle trajectories in crowds. As described by Ali
and Shah (2007), trajectories are extracted for crowd flow
segmentation and stability analysis. By adding a chaotic
model in the particle advection method, anomalies in
complicated crowd scenes can be detected and localized
(Wu et al., 2010). After risk positions of a scene are
located, the crowd behaviour at those positions can be
identified using a dynamic system (Solmaz et al., 2012).
In the particle advection method, optical flow is used
to drive the particle’ motion while other attributes of
high-density crowds, such as density and flow, are usually
ignored. Tracking or trajectory based methods can locate
the targets in scenes with a small number of pedestrians
(Kowalski et al., 2014; Dębski, 2014; 2016). However,
tracking accuracies decrease with increasing crowds.

1.1.2. Physics-inspired approaches. Several
physics-inspired models have been proposed for crowd
representation and abnormal event detection.

In the work of Cao et al. (2009), an energy model
is presented, which estimates crowd kinetic energy and

motion directions based on optical flow techniques.
Another energy model, proposed by Xiong et al. (2012;
2011), is based on crowd potential and kinetic energies,
and is designed to detect two typical abnormal activities:
gathering and running. Each individual should be
extracted accurately when using these energy models.
However, it is difficult to extract when the crowd density
is extremely high.

The social force model (SFM), initially proposed by
Mehran et al. (2009), is based on the assumption that
the interaction force is a significant feature for analysing
crowd behaviour. Raghavendra et al. (2011b; 2011a)
introduced particle swarm optimization (PSO) into the
SFM to optimize the interaction force. These methods
are based on the general idea that people in high-density
crowds always try to follow a general trend. They
involve minimizing the interaction force using the PSO
fitness function, aiming to push particles joining the
crowd entity. A velocity-field-based SFM is proposed
by Zhao et al. (2011). It provides better estimation of
interactions using the collision probability in a dynamic
crowd. The dense crowds characteristics of following
a general trend and colliding with each other were
separately considered by different models based on the
social force. However, the two characteristics have never
been considered simultaneously in one model.

Yuan et al. (2015) proposed a method named
online anomaly detection for crowd via structure analysis
(OADC-SA). The work set forth a structural context
descriptor (SCD) to intuitively exploit the context
clues between individuals, which originally introduced
the potential energy function of particles’ interforce.
Then, a three-dimensional discrete cosine transform
(DCT) is utilized to associate the targets in different
frames. This method online detects abnormality through
spatial-temporal analysis of SCD variation.

1.1.3. Physics-simulated approaches. Certain crowd
simulation methods exist that simulate crowd escape
behaviour on the basis of mass and energy conservation.
Lighthill, Witham and Richards (LWR) (Lee et al.,
2011) developed the LWR model, which is based on
a fluid dynamics continuity equation. Using the finite
element method, some researchers have proposed several
improved LWR models (Al-nasur, 2006; Jiang et al.,
2010) as well; these describe crowds evolution using
mass conservation and velocity-density equations. The
disadvantages of the LWR and improved LWR models
include a large scale of computation required.

The cellular automata model (Ahlquist and Breunig,
2012) considers an individual’s socio-psychological
and physical forces. In high-density scenarios, the
movement of individuals is difficult to estimate because of
inappropriate monitoring viewpoints and a high occlusion
occurrence rate. Therefore, the cellular automata model
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is not quite suitable for the description of a high-density
crowd, as it is difficult to describe such crowds using this
model.

Finally, it is important to note that the above methods
focus on detection of abnormal events and not their
prediction.

Johansson et al. (2008) proposed an abnormal
prediction method based on crowd pressure obtained from
the current velocity and density field. It is designed to
calculate the degree of abnormality of events. The method
provides short-term predictions; therefore, forecasting
results are not quite useful.

In this paper, we propose a purpose-driven LBM
without a training step. The LBM is used because its
properties can reduce the amount of computation required
(McNamara and Zanetti, 1988). Further, in our method,
the collision process and crowds’ activity of following
a general trend are represented through a collision step
and a purpose-driven streaming step, respectively. The
proposed model can predict the scenes’ next velocity
field and identify an abnormal event with the help of the
behaviour entropy model through iterations.

1.2. Similarities and differences between a gas and
a dense crowd. Crowd state can roughly be considered
a gas. An ideal gas is theoretically composed of many
randomly moving point particles that do not interact with
one another except when they collide elastically; during
these collisions, these particles exchange energy and
momentum. In the equilibrium state, particle velocities
vary within a small range and the distribution of velocity
is nearly unchanged (Mandl, 2008).

To ensure that the dense crowd is an equilibrium
system, the distance between adjacent frames’ velocity
distribution is obtained through K–L divergence
(Mathiassen and Skavhaug, 2002). The velocity field of
each scene is estimated by the optical flow algorithm
(Baker et al., 2011). 38 dense crowd videos of the UCF
crowd dataset (Ali and Shah, 2007) are chosen, from
which 4 typical scenes and their K–L divergence curves
are shown in Fig.1. Most scenes have a flat portion in
the K–L distribution curves, which indicates that velocity
distribution is nearly unchanged in those parts. This
phenomenon shows that an equilibrium state also exists
in dense crowds.

The definition of a crowd equilibrium state
considered here is as follows: if a crowd velocity
distribution tends to remain stable for a time period, the
scene state is recognized to be in equilibrium state during
that time. Similarities and differences between dense
crowds and gases are listed in Table 1.

Gas particles are non-living, and therefore the factors
that affect streaming gases primarily include the boundary,
pressure, and temperature. Because gas particles have
no individual purpose, all the states gas can assume are

considered normal and can be described; for example:
turbulent flow, vortex, or laminar flow. On the other hand,
humans are intelligent agents. Each individual has the
ability to decide on his/her next movement. In addition,
the movement is purpose-driven. Therefore, when crowd
particle velocity distributions change rapidly, the scene
becomes difficult to understand, and abnormal events may
occur, especially in overcrowded places, where people
are huddling or colliding with each other (Johansson
et al., 2008).

1.3. Overview of the proposed method. To predict
crowd abnormal events, we modify the LBM by a adding
a crowd purpose-driven strategy. The flowchart for our
model is shown in Fig. 2.

The model iteratively performs the collision and
streaming steps simultaneously. The purpose-driven LBM
is added in the model’s streaming step by adjusting the
directions of particles inside each node. We denote by
Δt the time required for one iteration. The proposed
model predicts the number of crowd particles in the video
during the time intervals t+mΔt, where m = 1, . . . ,M ;
M is the number of iterations. Then, the velocity field
can be estimated by calculating the average velocity of
each node, and this velocity field can be used to predict
abnormal events using a behaviour entropy model.

1.4. Outline. The remainder of this paper is organized
as follows. Section 2 contains the theoretical basis
of the LBM. In Section 3, the purpose-driven LBM is
introduced. Experiments and comparisons are presented
in Section 4. The last section presents concludes the study.

2. Lattice Boltzmann model

The LBM was originally described for gases. Here a gas
is divided into many small equal lattices that are usually
called nodes (see Fig. 3(a)). The number of particles in
a node changes because of collisions and streaming. To
reduce the required computation, 9 pre-defined velocity
vectors are used to represent all the possible velocities of
particles in the node (see Fig. 3(b)).

It is assumed that the particles in the same direction
have the same velocity (Wolf-Gladrow, 2000). The
velocity of particles in the i-th direction is denoted by �ei,
i = 0, 1, . . . , 8. We have

�ei =

⎧
⎪⎪⎨

⎪⎪⎩

�e0 = (0, 0),
�e1,5 = (±c, 0),
�e3,7 = (0,±c),
�e2,4,6,8 = (±c,±c),

(1)

where c = Δx/Δt; Δx is the distance between the
adjacent lattices in the horizontal direction, and Δt is
the time interval considered for the model (Ahlquist and
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Fig. 1. K–L curves of four crowd scenes of the UCF crowd dataset.

Table 1. Comparison of dense crowds and gases.
Dense crowds Gases

Similarities
Equilibrium Equilibrium
Collisions between moving people Collisions between streaming gas parti-

cles
Moving Streaming

Differences
Purposed-driven Not purpose-driven
Abnormal events can occur No abnormal events occur
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Fig. 2. Flowchart of the proposed method.
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Fig. 3. Fluid area and particle directions of a node.

Breunig, 2012). If the width and height of the node are
equal, then Δy = Δx. Here f(�x, t) denotes the number
of particles in the node in position �x at time t (Fig. 3(a)).
Further, inside a node, the number of particles in the
i-direction is denoted as fi(�x, t) (Fig. 3(b)).

2.1. Collision step. The impact of a collision is
measured by the varying numbers of particles within the
nodes. Before a collision occurs, the number of particles
in node �x in the i-th direction at time t is determined
by fi(�x, t). After a collision, the number of particles is
determined by fi(�x, t +Δt), where Δt is the duration of
the collision.

The collision can be formulated as follows:

fi(�x, t+Δt) = fi(�x, t) + Ωi(�x, t), (2)

where Ωi(�x, t) is the variation in the number of particles
caused by the collision. An approximate expression
to estimate Ωi(�x, t) was presented by Bhatnagar et al.
(1954):

Ωi(�x, t) = − 1

τ
[fi(�x, t)− fi

eq(�x, t)], (3)

where τ is a relaxation parameter, which is determined
based on the collision times in the node; fi

eq(�x, t) is
the number of particles in equilibrium state. In general,
the Maxwell–Boltzmann distribution (Rowlinson, 2005)
is used to represent the equilibrium distribution:

fi
eq(�x, t) = ρ

1

2πRT
exp

(
− (�ei − �u)

2

2RT

)
, (4)

where ρ is the total number of particles in a node, which
is also called the node density; �u is the average velocity of

particles in the node. The two variables can be calculated
as follows:

ρ =

8∑

i=0

fi(�x, t), �u =
1

ρ

8∑

i=0

�eifi(�x, t). (5)

The other two parameters, fluid constant R and
temperature T , depend on the property of fluids. Thus,
the collision function could be summarized as

fi(�x, t+Δt) = fi(�x, t)+
1

τ
[fi

eq(�x, t)− fi(�x, t)]. (6)

2.2. Streaming step. In fluid dynamics, it is
considered that particles simultaneously collide and
stream with each other. After the collision step, the
number of particles in node �x in direction i is given by
fi(�x, t+Δt).

These particles will continue to at move in the i-th
direction and enter into node �x + �eiΔt in time Δt.
Similarly, particles initially located in node �x+ �eiΔt will
continue to move in the i-th direction to node �x+ 2�eiΔt.
Therefore, during the streaming step, all particles will be
displaced by �eiΔt if they do not change their direction.
This process of displacement is shown in Fig. 4.

As shown in Fig. 4, only particles in node �x and
traveling in the i-th direction can reach node �x + �eiΔt in
the i-th direction. Therefore, we just need to assign the
number of particles in node �x in the i-th direction to node
�x+�eiΔt in the i-th direction. Thus, the streaming process
could be summarized as

fi(�x+ �eiΔt, t+Δt) ⇐ fi(�x, t+Δt), (7)

where ⇐ indicates the update of the number of particles
at the location of �x+ �eiΔt.
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The LBM is essentially an iteration procedure
involving a collision step and a streaming step. Through
an expansion, the LBM model is proved to be a
convergence system (Mandl, 2008).

3. Purpose-driven lattice Boltzmann model

As previously mentioned, the similarities and differences
between dense crowds and gases are listed in Table 1.
In order to use the LBM to evaluate dense crowds and
determine state variations, the model is modified by
adding a purpose-driven strategy. With the addition of this
strategy, abnormal events can be predicted. In this paper,
a model is proposed for crowd abnormal predictions
assuming that the moving crowd is a type of fluid.

First, an image or a scene from a crowd video is
divided into small lattices, with a size of k × k; these
lattices are also called nodes (see also Fig. 3). Then,
the velocity field of the image is obtained using the
optical flow. Similarly to the original LBM model, 9
velocity vectors with fixed directions are used to represent
all the possible velocities of crowd particles in these
nodes. Pixels with non-zero velocity are considered
crowd particles. In addition, pixels with zero velocity are
regarded as the scene background.

3.1. Model initialization. The input for the model is
the number of particles in each node. In this paper, fi(�x, t)
is used to represent the input of the number of particles of
node �x in the i-th direction. It is obtained as follows.

A frame is illustrated in Fig. 5(a); the velocity field
of this frame is extracted using the optical flow method
(Baker et al., 2011) (see Fig. 5(b)). A node is a small
region of the velocity field (Fig. 5(c)). In the node,
the direction and amplitude of the particle velocity are
denoted as θ(x, y) and r(x, y), respectively (Fig. 5(c)),
where (x, y) is the position of a particle in the node,
0 < x < k and 0 < y < k.

The directions of particles are normalized to one of 9

(a) frame of a crowd video sequence
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Fig. 5. Initialization progress.
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pre-defined directions according to

d(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

round
(

8θ(x,y)
2π

)
mod 8 + 1

if r(x, y) ≥ β,

0 if 0 < r(x, y) < β,

(8)

where d(x, y) changes the direction of the particle into an
integer in the range of (0, 8); β is the threshold that is used
to determine whether a particle is regarded as stationary.

The nodes’ initial number of particles in the i-th
direction, fi(�x, t) , is obtained by calculating the number
of particles in the i-th direction using (Fig. 5(d)):

fi(�x, t) = card({(x, y)|d(x, y) = i, x, y ≤ k}), (9)

where i = 0, 1, . . . , 8.

3.2. Crowd collision step. The crowd lattice
Boltzmann model carries on the collision and streaming
steps as a gas Boltzmann model.

In Eqn. (3), to estimate Ωi(�x, t), the number of
particles in a node in an equilibrium state, i.e., fi

eq(�x, t),
is required. In Eqn. (4), R and T can be estimated using
the fluid internal energy formula, which is

1

2
ρ�u2 =

3

2
RT, (10)

where ρ is the fluid the particle density and �u is
particle average velocity. Because we have assumed that
crowd particles satisfy the property of fluid in the given
circumstances, we obtain

fi
eq(�x, t) =

3

2π�u2
exp

(
− 3(�ei − �u)

2

2ρ�u2

)
. (11)

3.3. Crowd streaming step. People try to choose the
least-effort route to reach their goals when they walk in a
crowd. In general, it takes less effort for people to follow
the general trend of movement than to push their own way
through a dense crowd (Silveira Jacques Jr. et al., 2010;
Still, 2000). In this work, the least-effort route is selected
by a purpose-driven strategy.

Route selection involves the following two steps:
Step (i). Finding the main direction of each node.
The main direction of a node, denoted by α, is the
direction that contains the largest number of particles. For
each node, α can be calculated using

α = max
i

{fi(�x, t+Δt)|i = 0, 1, . . . , 8}. (12)

Step (ii). Adjusting the directions of particles that are not
in the main direction or are stationary.
In our model, the particles that move with a uniform
acceleration in each stream (see Fig. 6) have their offset
updated by 1

2 (�ei + �eα)Δt. Here, Δt is the time required

1

( )

2
i
e e tα+ Δ� �

x

�

1

( )

2
i

x e e tα+ + Δ� ��
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e

�
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Fig. 6. Streaming step of a particle.

for each streaming. This time duration is equal to that of
a collision, because the two steps occur simultaneously.

Before the stream stage, the number of particles in
node �x travelling in direction i is given by fi(�x, t + Δt);
however, during this stage, these particles will reach node
�x + 1

2 (�ei + �eα)Δt in direction α. Therefore, the number
of particles in a node is updated as follows:

f ′
α(�x+

1

2
(�ei + �eα)Δt, t+Δt)

= fi(�x, t+Δt) + fα(�x+
1

2
(�ei + �eα)Δt, t+Δt).

(13)

The algorithm of a purpose-driven LBM is
summarized as Algorithm 1. At the end of each
iteration, the algorithm estimates the number of particles
in each node for each direction, such as f ′

α(�x, t + Δt).
Then the corresponding velocity field, obtained using
Eqn. (5), is provided as input for the behaviour entropy
model to determine whether an abnormal event will occur.

3.4. Behaviour entropy model. It has been observed
that abnormal situations in high-density scenarios are
often caused by local events. In this work, the behaviour
entropy model (BEM) used to identify local anomalous
events. Behaviour entropy (BE) of node �x is defined as

BE�x = −P�xlog2P�x, (14)

where P�x is a node’s probability of keeping its former
state, and can be calculated using the following equation:

P�x = e−1 + η · (1− e−1), 0 ≤ η ≤ 1, (15)

where η is defined as

η =

|
ki∑

i=1

�ui|
ki∑

i=1

|�ui|
, |�ui| �= 0; (16)

η describes the velocity factor among nodes in a small
neighbourhood around node �x and ki is the number of
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Algorithm 1. Purpose-driven lattice Boltzmann model.

Input: fi(�x, t)(obtained by Eqns. (8) and (9)), the
number of nodes N

Output: f ′
α(�x, t+Δt) of each iteration

for iteration do
Collision step:
while j = 1 to N do

estimate the density and the average velocity of the
node: Eqn. (5)
while i = 0 to 8 do

estimate the equilibrium state: Eqn. (4)
obtain the number of particles in the node’s nine
directions after collision: Eqn. (6)

end while
end while
Streaming step:
while j = 1 to N do

find the main direction of the node: Eqn. (12)
while i = 0 to 8 do

obtain the number of particles in the node’s nine
directions after streaming: Eqn. (13)

end while
end while
value assignment for the next iteration:
fi(�x, t)

[n+1] = f ′
α(�x, t+Δt)[n], n is the label

of the current iteration
end for

nodes in this neighbourhood. The value of η is equal to
1 if all nodes have the same velocity, in which case the
value of P�x is equal to 1. When all nodes have equivalent
values in any two opposite directions, then η equals zero
and P�x becomes e−1; the nodes’ BE attains the largest
value when this takes place. In fact, η represents velocity
consistency of the scope.

The smaller the velocity consistence in a node, the
larger the behaviour entropy. Abnormal events, such
as gathering, running, and regressive walking, usually
contain regions with small velocity consistence; therefore,
the BE will rise when these events occur. Based on a
BE threshold, we can consider nodes to be normal or
abnormal.

4. Experiments and analysis

We apply our purpose-driven LBM to one public
dataset: the UCF crowd dataset (Ali and Shah, 2007).
It is collected from the web (Getty Images, BBC
Motion Gallery, YouTube, Thought Equity) and primarily
designed for crowd behaviour recognition. In this work,
we obtain ground truth labels manually. The dataset has
many dense crowd samples, which are appropriate for
testing the proposed model.

To verify the methods’ performance for abnormal

crowd event prediction, first we conducted accuracy
testing for velocity fields. Then, abnormal prediction
experiments were carried out. The number of input frames
is discussed in Section 4.3.

Experiments were conducted on a computer with a
2 GB RAM and 2.6 GHz CPU. The average computation
time was 7.8× 10−3 s/iteration.

4.1. Predicted and real values for the velocity field.
Experiments using the LBM (Ahlquist and Breunig, 2012)
and the purpose-driven LBM are conducted for each
of five typical dense crowd scenes: blocking, lane,
bottleneck, ring/arch, and fountainhead. These typical
dense crowd scenes were proposed by Solmaz et al.
(2012). Figure 7 shows the corresponding crowd video
frame images chosen from the UCF dataset. Figure
8 shows the velocity fields obtained using the optical
flow method. The velocity fields predicted by the
purpose-driven LBM are shown in Fig. 9 and those of the
LBM in Fig. 10. As presented in Figs. 7–10, the velocity
fields predicted by the purpose-driven LBM are closer to
the original velocity fields, whereas those predicted by
the LBM tend to distribute crowd particles in a relatively
larger area.

To measure the similarity between the velocity fields
predicted by our purpose-driven LBM and the original
velocity of these videos, structural similarity index
measurement (SSIM), which is often used to measure
the similarity of video frames (Wang et al., 2004), was
adopted. If two frames are exactly similar, then the value
of SSIM is 1. The results obtained using the LBM were
considered a basis for comparison showing the better
results obtained using our method. In this work, each
predicted velocity field is made up of two component
matrices: a horizontal component matrix u and a vertical
component matrix v. The structural similarity indices of
the two matrices in each scene are presented in Figs. 11
and 12, respectively.

As shown in the figures, the structural similarity
index curve for the purpose-driven LBM is always closer
to 1 than that of the LBM. This indicates that the velocity
field of the purpose-driven LBM is closer to the ground
truth. The purpose-driven model tends to guide more
crowd particles following the general trend of the scene.
Moreover, its streaming step could effectively avoid the
diffusibility of the LBM.

The fact that the lines in Figs. 11 and 12 tend to be
stable with time indicates that the purpose-driven LBM
maintains the convergence of the LBM perfectly.

4.2. Abnormal event prediction. Several selected
state-of-the-art methods were involved in the following
contrast experiments. However, due to the lack of
prediction methods at present, most of the contrast
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Fig. 7. Five typical high-density crowd scenes.
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Fig. 8. Velocity fields of original video sequences: t = 20 s (a), t = 30 s (b), t = 200 s (c), t = 90 s (d), t = 180 s (e).
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Fig. 9. Velocity fields obtained by the purpose-driven LBM: t = 20 s (a), t = 30 s (b), t = 200s (c), t = 90 s (d), t = 180 s (e).
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Fig. 10. Velocity fields obtained by the LBM: t = 20 s (a), t = 30 s (b), t = 200 s (c), t = 90s (d), t = 180 s (e).
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Fig. 11. Structural similarity index curves of the u component in predicted velocity fields.
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Fig. 12. Structural similarity index curves of the v component in predicted velocity fields.
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Fig. 13. ROC curves of different methods in abnormal event de-
tection.

methods involved are for detecting abnormal events.
We compare the purpose-driven LBM with the sparse

(Cong et al., 2013), MPPCA (Wu et al., 2010) and
Adam (Adam et al., 2008) approaches, the social force
(SF) (Raghavendra et al., 2011b), the particle advection
method (Ali and Shah, 2007), the LBM (Wolf-Gladrow,
2000), and OADC-SA (Yuan et al., 2015).

Figure 13 shows the ROC curves of the methods. As
can be seen, the ROC curve of the purpose-driven LBM is
higher than that of the others.

Table 2 lists the area under the ROC curve (AUC),
the equal error rate (EER), and the rate of detection (RD)
for all the evaluated methods. In general, the larger the
AUC of a method, the higher its accuracy in detecting
abnormal events. The AUC of the purpose-driven LBM
is also higher than that of the others.

The sparse method (Cong et al., 2013) requires many
normal crowd samples to train a dictionary. However,
some scenes of the dataset do not contain sufficient normal
samples. Thus, with an incomplete dictionary, the sparse

method cannot perform well.
Further, the particle advection method (Ali and

Shah, 2007) does not perform well, either. Although
optical flow fields preserve particle velocity, the method
considers the particle movement directly without any
further processing. Therefore, it cannot characterize the
physical properties of a crowd, such as following a general
trend or adjusting the movement direction momentarily.

The MPPCA (Wu et al., 2010) and Adam (Adam
et al., 2008) methods use dynamic texture to represent
video sequences and exhibit spatio-temporal properties.
Dynamic texture is suitable for local unusual event
detection in crowded scenes, but does not perform well
in the case of global events.

OADC-SA (Yuan et al., 2015) performs well when
the scene is not too crowded. The first step in
OADC-SA is extracting each target of the crowd using the
state-of-the-art pedestrian detection algorithm proposed
by Dollár et al. (2014). When the scene is overcrowded
like in the case of some scenes in the UCF dataset,
the targets cannot be accurately extracted. Thus, the
algorithm cannot perform well in overcrowded scenes.

Furthermore, the diffusibility in the case of the LBM
(Wolf-Gladrow, 2000) renders it an inefficient method;
this problem is overcome by the purpose-driven LBM by
adjusting particles into nine main directions. This is one
of significant improvements over the LBM that we made
in our purpose-driven LBM.

The purpose-driven LBM does not need advance
training. After initializing the model with the average
velocity field obtained from the first five frames of
the test samples, an anomaly object can be located
beforehand. These objects are not in normal size
and the velocities might lead to a larger behaviour
entropy. The purpose-driven strategy, which considers
the particle’s predisposition of following the general
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Table 2. Comparison of the proposed method with state-of-the-art methods for detection of abnormal events in the UCF dataset.
Method AUC EER (%) RD (%)

Purpose-driven LBM 0.96 20 46
OADC-SA (Yuan et al., 2015) 0.87 25 38
Sparse (Cong et al., 2013) 0.88 25 40
MPPCA (Wu et al., 2010) 0.81 40 18
Adam (Adam et al., 2008) 0.80 38 24
SF (Raghavendra et al., 2011b) 0.78 31 21
LBM (Wolf-Gladrow, 2000) 0.75 30 28
Particle advection (Ali and Shah, 2007) 0.85 42 18

trend, makes the particles of the objects region gather
together gradually over iterations. Thus, abnormal objects
are captured/relatively easier than in the case of other
methods.

4.3. Number of input frames. The input of the
purpose-driven LBM is the velocity field of the first few
frames. It is observed that a small number of frames leads
to a high error rate; however, it cannot be concluded that a
large number of input frames is better. This work chooses
different input frame numbers to find a suitable option.
Fifteen dense crowd videos from the UCF dataset are
chosen to estimate the error rate when different number
of frames are the input into the purpose-driven LBM.

As shown in Fig. 14, the error rate decreases with
increasing the number of input frames; however, it stops
decreasing when the frame number is larger than five.
Therefore, the number of input frames is set to five. The
tick marks of the graph’s horizontal axis indicate the
names of videos of the UCF dataset (see Fig. 14).

4.4. Behaviour entropy curve. Abnormal events
are found by inputting predicted velocity fields into the
behaviour entropy model. Such events lead to high
behaviour entropy values, whereas normal events do not.
The experimental results are presented in Fig.15

As shown in the figure, the behaviour entropy curve
has three parts. In part A, the predicted velocities’
behaviour entropy is considerably small, and therefore the
scene is judged to be normal. Part A is when two groups
of people are walking across the street. The behaviour
entropy of part B grows when the two groups of people are
predicted to meet in the middle of the street. Thus, part B
is judged to be abnormal; in the real scene, a large number
of people gather in a small region of the street, and the
crowd disaster is most likely to occur at this moment. In
part C, the behaviour entropy again decreases to a normal
level; in the real scene, the two groups of people have
passed the dangerous area.

5. Conclusion

Our proposed method predicts abnormal events from
crowd scenes using a purpose-driven LBM. In our
method, the average velocity field of input frames is
transformed into a number of particles in all nodes and
directions. The direction lattice, which contains the
greatest number of particles, is considered the main
direction of that node. Adjusting another in terms of
the main direction leads to particles moving in particular
positions instead of spreading to all directions. The
purpose-driven LBM can thus overcome the diffusivity of
the original LBM, and provide better predictions for the
velocity field in each time interval and better detection
accuracy for local abnormal events. The proposed method
can be used to accurately predict and detect both global
and local level abnormal events. Our experiments to
test the detection accuracy of the proposed method prove
that it is better than that of many of the state-of-the-art
methods that have been previously proposed.
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