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A queueing system of the M/G/n-type, n ≥ 1, with a bounded total volume is considered. It is assumed that the volumes
of the arriving packets are generally distributed random variables. Moreover, the AQM-type mechanism is used to control
the actual buffer state: each of the arriving packets is dropped with a probability depending on its volume and the occupied
volume of the system at the pre-arrival epoch. The explicit formulae for the stationary queue-size distribution and the loss
probability are found. Numerical examples illustrating theoretical formulae are given as well.
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1. Introduction

Queueing systems with bounded buffer capacities are
natural models for in-depth investigation of various
types of engineering, economic and transport phenomena.
They are especially widely used in the analysis of
processes occurring in nodes of packet telecommunication
networks, and, in consequence, are one of the
main analytic tools in network performance evaluation.
Theoretically, single and batch arrivals are usually applied
as models of the input packet flow. A kind of
generalization of classical batch arrivals is an arriving
process in which the incoming packets occur individually
but have different volumes randomly distributed. In
this model the notion of a “finite buffer” stands for a
certain nonrandom maximal buffer capacity V, not for the
maximal number of packets being allowed for waiting for
service in the waiting room (Tikhonenko, 1991; 2005;
Tikhonenko and Kempa, 2012; 2013; 2015). It seems such
a model can be better adjusted to real-life packet-oriented
networks modeling, in which the volume of the buffer
measured in bytes (not in packets) is deterministic.

Due to finite resources of network switches (like,

∗Corresponding author

e.g., Internet routers), buffer overflows may occur, and
some packets can be lost and must be retransmitted by
the source host. Because of a complex nature of the
Internet traffic, where the phenomena of, e.g., burstiness
and self-similarity can be observed (Klemm et al., 2003),
packets can be lost in series. In practice, to reduce the
risk of overflows in routers’ input/output buffers, active
queue management (AQM) mechanisms are used. The
main idea of AQM is preventive probabilistic packet
dropping even when the buffer is not saturated. In
consequence, the queue of waiting packets is reduced
and, in a long-term perspective, the arrival intensity is
decreased and adjusted to transmission possibilities, as
a reaction of the TCP protocol to packet losses. In the
work of Floyd and Jacobson (1993), the first AQM-type
algorithm, called random early detection (RED), was
introduced. The RED approach defines a dropping
function “filtering” the input flow and rejecting an
incoming packet with a probability depending usually on
the average or instantaneous queue size at the pre-arrival
epoch. In the literature, different analytic forms of
dropping functions were proposed: linear (Bonald et al.,
2000), doubly linear (GRED algorithm) (Floyd, 2000),
exponential (REM algorithm) (Athuraliya et al., 2001; Liu
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et al., 2005) and quadratic (Zhou et al., 2006). One can
find different results devoted to theory and applications
of active queue management in the works of Chydziński
(2010), Chydziński and Chróst (2011), Domańska et al.
(2014), Floyd (2001), Hao and Wei (2005), Rosolen et al.
(1999), Sun and Wang (2007), Suresh and Gol (2005), and
Xiong et al. (2005). In particular, Chydziński and Chróst
(2011) obtained a compact-form representation for the
steady-state queue-size distribution in the M/G/1 system
with a finite waiting room and an input flow controlled
by a general-type dropping function, and Chydziński
(2010) discussed the problem of stability of AQM-type
models. New results on transient and equilibrium
stochastic characteristics of queueing models with finite
waiting rooms can also be found, e.g., in the work of
Rusek et al. (2014), where the MAP-type arrival process
is assumed, and in the paper by Woźniak et al. (2014),
where, additionally, a cost-optimization problem of the
GI/M/1/N -type model with single server vacations was
solved via an evolutionary approach.

Kempa (2011) considered a Markovian model with
a finite waiting room and a general-type dropping
function, separately for the case of single and batch
arrivals. The representations for different steady-state
stochastic characteristics were found there, namely, the
queue-size distribution, the number of packets (batches
of packets) lost consecutively, and the time between
two accepted arrivals. In the work of Tikhonenko and
Kempa (2012), the formula for the queue-size distribution
was obtained for a stationary M/M/1/N -type system
with the above-mentioned generalized arrival process, in
which the incoming packets have generally distributed
volumes and the total system capacity is bounded. An
extension of results obtained by Tikhonenko and Kempa
(2012) for the case of a multi-channel model is included
in their further work (Tikhonenko and Kempa, 2013).
New results for time-dependent queue-size distributions
in finite AQM-type models were obtained by Kempa
(2013a; 2013b; 2013c).

In the article we generalize results of Tikhonenko and
Kempa (2012; 2013) to the case of a multi-server system
with Poisson arrivals but generally distributed service
times. We replace the classical dropping function by an
“accepting” function that qualifies the arriving packet with
a probability that depends on the actual occupied volume
of the system at the pre-arrival instant, and on the volume
of the arriving packet.

Thus, the remaining part of the paper is organized
as follows. In Section 2 we give the mathematical
description of the queueing model considered, present the
Markov process describing its evolution, and introduce the
necessary notation. In Section 3 we present results for
the “classical” M/G/n/m-type system without packet
dropping. Section 4 contains the main result. In
this section we build the system of Kolmogorov-type

equations for the stationary queue-size distribution and
find its solution. Section 5 contains numerical examples
illustrating theoretical results, and in the last section some
concluding remarks can be found.

2. Model and auxiliary results

Let us consider a multi-server queueing system in which
successive packets arrive according to a Poisson process
with intensity a, and are characterized by their volumes
which are generally distributed positive random variables
with a distribution function L(·). Packets are served
individually with a general-type distribution function
B(·), independently of their volumes. Sequences of
successive inter-arrival and service times as well as
volumes of the arriving packets are supposed to be totally
independent. The total volume of the system, i.e., the
sum of the volumes of all packets present in the system
at an arbitrary time instant, is bounded by a non-random
value V. The system contains n identical servers working
independently and one waiting room with m places.
Therefore, the total number of packets present in the
system is bounded by m+n. In some cases we can assume
that m = ∞; then, it is possible that the number of
packets can be unlimited, while their total volume remains
bounded by V .

Let η(t) be the number of packets present in the
system at a fixed time instant t. Of course, ν(t) =
min

(
η(t), n

)
denotes the number of packets being served

at this instant. Assume additionally that the packets being
on service at time t are numbered randomly, i.e., if exactly
k packets are being served, then we have k! possibilities
of numbering from 1 to k, each one with the probability
1/k!. This assumption helps us to simplify some future
formulae and has no impact on the approach. Let ξ∗j (t)
be the residual service time of the j-th packet being on
service at time t.

Observe that the well-known “classical”
M/G/n/m-type system is, in fact, a special case of
the system described above when L(x) = 0 for x ≤ 1,
L(x) = 1 for x > 1 and V = m + n. The evolution of
the “classical” system can be described by the following
Markov process:

(
η(t); ξ∗j (t), j = 1, . . . , ν(t)

)
. (1)

For the system considered, with a finite buffer and a
bounded total volume, we need to supplement this process
with additional characterizations. Let ζi(t) be the volume
of the i-th packet present in the system at time t. Then
σ(t) =

∑η(t)
i=1 ζi(t) is the “transient” volume of the system

at time t, i.e., the sum of the volumes of all packets
present in the system at this instant. Now, the system
considered, denoted by M/G/n/(m,V ) (Tikhonenko,
1991; 2005; 2006; Tikhonenko and Kempa, 2012; 2013),
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can be described by the following Markov process:
(
η(t); ζi(t), i = 1, . . . , η(t); ξ∗j (t), j = 1, . . . , ν(t)

)
.

(2)

Here we make the assumption that the waiting packets (in
the case of η(t) > n) are numbered from n + 1 to η(t)
successively as they occur. Of course, if η(t) = 0, then
also σ(t) = 0.

Define the following vectors:

Yk = (y1, . . . , yk),

Y j
k = (y1, . . . , yj−1, yj+1, . . . , yk),

(Yk, z) = (y1, . . . , yk, z). (3)

Assume that there exists a stationary state of the system,
i.e., the following limits exist in the sense of weak
convergence:

η(t) ⇒ η, σ(t) ⇒ σ, ν(t) ⇒ ν,

ξ∗j (t) ⇒ ξ∗j , ζi(t) ⇒ ζi. (4)

In the stationary state the stochastic process (1) can be
characterized by the functions

ŵk(Yl) = P{η = k; ξ∗j < yj , j = 1, . . . , l}, (5)

where l = min (k, n), k = 1, . . . , n + m. Denote by
p̂0 = P{η = 0} the stationary probability that the
system is empty. It is easy to note that other stationary
probabilities for the states of the “classical” M/G/n/m
system are equal to p̂k = P{η = k} = ŵk(∞l), where

∞l = (∞, . . . ,∞
︸ ︷︷ ︸

l

).

Similarly, one can describe the stochastic process (2)
in the stationary state by the following functions:

gk(x, Yl) dx =P{η = k; σ ∈ [x, x+ dx);

ξ∗j < yj , j = 1, . . . , l}, (6)

where l is defined as previously.
Let us note that for the process (2) we can define the

functions

wk(Yl) =

∫ V

0

gk(x, Yl) dx, (7)

having for this process the same probabilistic sense as the
functions ŵk(Yl) for the process (1).

Define also for the process (2) the following
stationary probabilities:

p0 = P{η = 0}, pk = P{η = k} = wk(∞l), (8)

where k = 1, . . . ,m + n, and η stands for the number of
packets present in the system in the stationary state.

Note that the functions gk(x, Yl), ŵk(Yl) and
wk(Yl) are symmetric with respect to permutations of
components of the vector Yl = (y1, . . . , yl), owing to
random enumeration of served packets in the system.

We end this section by introducing the necessary
notation. Let us denote by Ploss the stationary loss
probability, i.e., the probability that the incoming packet
is lost. Besides, let ρ = a/(nμ) be the traffic load
of the system. Lastly, by F

(k)
∗ (·) we denote the k-fold

Stieltjes convolution of any distribution function F (·) of a
non-negative random variable with itself, i.e.,

F
(0)
∗ (y) ≡ 1,

F
(k)
∗ (y) =

∫ y

0

F
(k−1)
∗ (y − x) dF (x), (9)

where k = 1, 2, . . . .

3. Equations for the classical system
without packet dropping

Let us take into consideration the “classical”
M/G/n/m-type queueing system without packet
dropping. Having in mind the notation introduced in the
previous section and allowing for the aforementioned
symmetry, we can write the following system of
differential equations for the unknown functions ŵk(Yl),
where k = 1, . . . ,m+ n and l = min (k, n):

0 = −ap̂0 +
∂ŵ1(y)

∂y

∣
∣∣
y=0

, (10)

− ∂ŵ1(y)

∂y
+

∂ŵ1(y)

∂y

∣
∣
∣
y=0

= ap̂0B(y)− aŵ1(y) + 2
∂ŵ2(y, u)

∂u

∣
∣
∣
u=0

, (11)

−
k∑

i=1

[
∂ŵk(Yk)

∂yi
− ∂ŵk(Yk)

∂yi

∣
∣
∣
yi=0

]

=
a

k

k∑

i=1

ŵk−1(Y
i
k )B(yi)

− aŵk(Yk) + (k + 1)
∂ŵk+1(Yk, u)

∂u

∣
∣∣
u=0

, (12)

where k = 2, . . . , n− 1, and, moreover,

−
n∑

i=1

[
∂ŵn(Yn)

∂yi
− ∂ŵn(Yn)

∂yi

∣
∣
∣
yi=0

]

=
a

n

n∑

i=1

ŵn−1(Y
i
n)B(yi)

− aŵn(Yn) + n
∂ŵn+1(Yn−1, u)

∂u

∣
∣∣
u=0

B(yn), (13)
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−
n∑

i=1

[
∂ŵk(Yn)

∂yi
− ∂ŵk(Yn)

∂yi

∣
∣∣
yi=0

]

= aŵk−1(Yn)− aŵk(Yn)

+ n
∂ŵk+1(Yn−1, u)

∂u

∣∣
∣
u=0

B(yn), (14)

where k = n+ 1, . . . , n+m− 1, and

−
n∑

i=1

[
∂ŵn+m(Yn)

∂yi
− ∂ŵn+m(Yn)

∂yi

∣
∣
∣
yi=0

]

= aŵn+m−1(Yn). (15)

For the system (10)–(15) the following boundary
conditions hold true:

aŵk(Yk) = (k + 1)
∂ŵk+1(Yk, u)

∂u

∣∣
∣
u=0

, (16)

where k = 1, . . . , n− 1, and

aŵk(Yn) = n
∂ŵk+1(Yn−1, u)

∂u

∣∣
∣
u=0

B(yn), (17)

where k = n, . . . , n+m− 1.

4. Queue-size distribution in the original
system with packet dropping

Let us now take into consideration the original
M/G/n/(m,V )-type queueing system with n
independent servers, m places for waiting in the
queue and the total volume of packets in the system
bounded by V. We implement here the AQM algorithm
of packet enqueueing defined as follows. Let r(·) be a
right-hand continuous and nonincreasing function defined
on the interval [0, V ], having the properties r(0) ≤ 1
and r(V ) ≥ 0. Assume that the arriving packet is
characterized by a volume x, while the total volume of
the system at the pre-arrival epoch equals y.

Later on, we shall analyze the following two types
of packet dropping system M/G/n/(m,V ) “behavior”:
(i) the incoming packet is “qualified” for service with the
probability r(x + y) and deleted with the probability 1 −
r(x+y); (ii) the incoming packet is “qualified” for service
with the probability r(y) and deleted with the probability
1 − r(y). Moreover, each packet is lost if x + y > V ,
or if the number of packets present in the system at the
pre-arrival epoch equals m+ n.

If the packet arriving at time t is dropped, in our
notation we have η(t) = η(t−) and σ(t) = σ(t−). In
the case of the acceptance of the arriving packet, we have
η(t) = η(t−) + 1 and σ(t) = σ(t−) + x.

For the steady-state behavior of the first-type
M/G/n/(m,V ) system, we obtain the following
Kolmogorov-type equations:

0 = −ap0

∫ V

0

r(v) dL(v) +
∂w1(y)

∂y

∣
∣
∣
y=0

, (18)

− ∂w1(y)

∂y
+

∂w1(y)

∂y

∣
∣
∣
y=0

= ap0B(y)

∫ V

0

r(v) dL(v)

− a

∫ V

0

g1(x, y)

∫ V−x

0

r(x + v) dL(v) dx

+ 2
∂w2(y, u)

∂u

∣
∣∣
u=0

, (19)

−
k∑

i=1

[
∂wk(Yk)

∂yi
− ∂wk(Yk)

∂yi

∣∣
∣
yi=0

]

=
a

k

k∑

i=1

B(yi)

×
∫ V

0

gk−1(x, Y
i
k )

∫ V −x

0

r(x + v) dL(v) dx

− a

∫ V

0

gk(x, Yk)

∫ V−x

0

r(x + v) dL(v) dx

+ (k + 1)
∂wk+1(Yk, u)

∂u

∣
∣
∣
u=0

,

k = 2, . . . , n− 1, (20)

−
n∑

i=1

[
∂wn(Yn)

∂yi
− ∂wn(Yn)

∂yi

∣
∣
∣
yi=0

]

=
a

n

n∑

i=1

B(yi)

×
∫ V

0

gn−1(x, Y
i
n)

∫ V −x

0

r(x+ v) dL(v) dx

− a

∫ V

0

gn(x, Yn)

∫ V −x

0

r(x + v) dL(v) dx

+ n
∂wn+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn), (21)

−
n∑

i=1

[
∂wk(Yn)

∂yi
− ∂wk(Yn)

∂yi

∣
∣
∣
yi=0

]

= a

∫ V

0

gk−1(x, Yn)

∫ V −x

0

r(x + v) dL(v) dx

− a

∫ V

0

gk(x, Yn)

∫ V−x

0

r(x + v) dL(v) dx

+ n
∂wk+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn),

k = n+ 1, . . . , n+m− 1,
(22)

−
n∑

i=1

[
∂wn+m(Yn)

∂yi
− ∂wn+m(Yn)

∂yi

∣
∣
∣
yi=0

= a

∫ V

0

gn+m−1(x, Yn)

∫ V−x

0

r(x + v) dL(v) dx.

(23)
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The boundary conditions are the following:

a

∫ V

0

gk(x, Yk)

∫ V −x

0

r(x+ v) dL(v) dx

= (k + 1)
∂wk+1(Yk, u)

∂u

∣
∣∣
u=0

, (24)

where k = 1, . . . , n− 1, and

a

∫ V

0

gk(x, Yn)

∫ V−x

0

r(x + v) dL(v) dx

= n
∂wk+1(Yn−1, u)

∂u

∣∣
∣
u=0

B(yn) (25)

for k = n, . . . , n+m− 1.

Let

R(z) =

∫ z

0

r(V − z + v) dL(v). (26)

The function R(z) has the following probability sense:
it is the probability that an arriving packet is qualified
for service if the free space in the buffer equals z at the
pre-arrival epoch. With this notation, the final formulas
for the queue-size distribution will be written directly
using the convolution of the function R(·) (see also (47)).
Inserting (26) into the system (18)–(25), we obtain

0 = −ap0R(V ) +
∂w1(y)

∂y

∣
∣
∣
y=0

, (27)

− ∂w1(y)

∂y
+

∂w1(y)

∂y

∣
∣
∣
y=0

= ap0B(y)R(V )− a

∫ V

0

g1(x, y)R(V − x) dx

+ 2
∂w2(y, u)

∂u

∣
∣
∣
u=0

, (28)

−
k∑

i=1

[
∂wk(Yk)

∂yi
− ∂wk(Yk)

∂yi

∣
∣∣
yi=0

]

=
a

k

k∑

i=1

B(yi)

∫ V

0

gk−1(x, Y
i
k )R(V − x) dx

− a

∫ V

0

gk(x, Yk)R(V − x) dx

+ (k + 1)
∂wk+1(Yk, u)

∂u

∣∣
∣
u=0

,

k = 2, . . . , n− 1, (29)

−
n∑

i=1

[
∂wn(Yn)

∂yi
− ∂wn(Yn)

∂yi

∣
∣
∣
yi=0

]

=
a

n

n∑

i=1

B(yi)

∫ V

0

gn−1(x, Y
i
n)R(V − x) dx

− a

∫ V

0

gn(x, Yn)R(V − x) dx

+ n
∂wn+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn), (30)

−
n∑

i=1

[
∂wk(Yn)

∂yi
− ∂wk(Yn)

∂yi

∣
∣
∣
yi=0

]

= a

∫ V

0

gk−1(x, Yn)R(V − x) dx

− a

∫ V

0

gk(x, Yn)R(V − x) dx

+ n
∂wk+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn),

k = n+ 1, . . . , n+m− 1, (31)

−
n∑

i=1

[
∂wn+m(Yn)

∂yi
− ∂wn+m(Yn)

∂yi

∣
∣
∣
yi=0

]

= a

∫ V

0

gn+m−1(x, Yn)R(V − x) dx. (32)

The boundary conditions (24)–(25) can be rewritten as
follows:

a

∫ V

0

gk(x, Yk)R(V − x) dx

= (k + 1)
∂wk+1(Yk, u)

∂u

∣
∣
∣
u=0

, (33)

where k = 1, . . . , n− 1, and

a

∫ V

0

gk(x, Yn)R(V − x) dx

= n
∂wk+1(Yn−1, u)

∂u

∣∣
∣
u=0

B(yn) (34)

for k = n, . . . , n+m− 1.
From the systems (10)–(17) and (27)–(34), the

following main theorem follows.

Theorem 1. Let the probability p̂0 and the functions

ŵk(Yl), k = 1, . . . , n+m, l = min (k, n),

satisfy the system of equations (10)–(17) and the nor-
malization condition p̂0 +

∑n+m
k=1 ŵk(∞l) = 1, l =

min(k, n), for the classical system M/G/n/m, and C be
an arbitrary real constant. Then the number p0 = Cp̂0
and the functions gk(x, Yl), such that

gk(x, Yl) dx = Cŵk(Yl) dR
(k)
∗ (x), (35)

satisfy the system of equations (27)–(34) for the system
with packet dropping M/G/n/(m,V ).
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Proof. From (35) it follows that

wk(Yl) = gk(V, Yl)

=

∫ V

0

gk(x, Yl) dx

= Cŵk(Yl)R
(k)
∗ (V ).

(36)

Now, we can easily prove that, if we substitute p0 = Cp̂0
and the functions gk(x, Yl), wk(Yl) from the relations (35)
and (36) into the system of equations (27)–(34), we obtain
the equations (10)–(17) for the number p̂0 and functions
ŵk(Yl). �

From Theorem 1 and the normalization condition∑m+n
k=0 pk = 1, the following corollary follows.

Corollary 1. The stationary queue-size distribution pk in
the M/G/n/(m,V ) queueing system with packet drop-
ping can be expressed as

pk = Cp̂kR
(k)
∗ (V ), k = 0, 1, . . . ,m+ n, (37)

where

C =

[
n+m∑

k=0

p̂kR
(k)
∗ (V )

]−1

,

p̂k, k = 0, 1, . . . ,m + n, are stationary probabilities in
the classical M/G/n/m system, and R

(k)
∗ (·) is the k-fold

Stieltjes convolution of the functionR(·) with itself defined
in (9).

Corollary 2. The loss probability Ploss for the system
M/G/n/(m,V ) can be computed as

Ploss = 1− 1

a

[
n∑

k=1

i
∂wk(∞k−1, u)

∂u

∣
∣∣
u=0

+ n

n+m∑

k=n+1

∂wk(∞n−1, u)

∂u

∣
∣
∣
u=0

]

, (38)

where a is the arrival intensity and functions wk(Yl) can
be obtained from the relation (36).

Proof. The formula (38) is a consequence of the stability
condition

a(1− Ploss) =

n∑

i=1

i
∂wi(∞i−1, u)

∂u

∣
∣
∣
u=0

+ n
n+m∑

i=n+1

∂wi(∞n−1, u)

∂u

∣
∣
∣
u=0

.

�

Note that in our investigation it was assumed that
m < ∞. It is clear that, in the same way, we can analyze
M/G/n/(∞, V )-type queueing systems, but only under

the condition that ρ < 1, because the essential point of
our approach is the existence of a stationary queue-size
distribution for the classical M/G/n-type system.

For the second type of system behavior, we have to
replace the system (18)–(25) by the following equations:

0 = −ap0r(0)L(V ) +
∂w1(y)

∂y

∣
∣
∣
y=0

, (39)

− ∂w1(y)

∂y
+

∂w1(y)

∂y

∣∣
∣
y=0

= ap0r(0)L(V )

− a

∫ V

0

g1(x, y)r(x)L(V − x) dx

+ 2
∂w2(y, u)

∂u

∣
∣
∣
u=0

, (40)

−
k∑

i=1

[
∂wk(Yk)

∂yi
− ∂wk(Yk)

∂yi

∣
∣∣
yi=0

]

=
a

k

k∑

i=1

B(yi)gk−1(x, Y
i
k )r(x)L(V − x) dx

− a

∫ V

0

gk(x, Yk)r(x)L(V − x) dx

+ (k + 1)
∂wk+1(Yk, u)

∂u

∣∣
∣
u=0

,

k = 2, . . . , n− 1, (41)

−
n∑

i=1

[
∂wn(Yn)

∂yi
− ∂wn(Yn)

∂yi

∣
∣
∣
yi=0

]

=
a

n

n∑

i=1

B(yi)

∫ V

0

gn−1(x, Y
i
n)r(x)L(V − x) dx

− a

∫ V

0

gn(x, Yn)r(x)L(V − x) dx

+ n
∂wn+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn), (42)

−
n∑

i=1

[
∂wk(Yn)

∂yi
− ∂wk(Yn)

∂yi

∣
∣
∣
yi=0

]

= a

∫ V

0

gk−1(x, Yn)r(x)L(V − x) dx

− a

∫ V

0

gk(x, Yn)r(x)L(V − x) dx

+ n
∂wk+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn),

k = n+ 1, . . . , n+m− 1, (43)
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−
n∑

i=1

[
∂wn+m(Yn)

∂yi
− ∂wn+m(Yn)

∂yi

∣
∣∣
yi=0

= a

∫ V

0

gn+m−1(x, Yn)r(x)L(V − x) dx, (44)

a

∫ V

0

gk(x, Yk)r(x)L(V − x) dx

= (k + 1)
∂wk+1(Yk, u)

∂u

∣∣
∣
u=0

,

k = 1, . . . , n− 1, (45)

a

∫ V

0

gk(x, Yn)r(x)L(V − x) dx

= n
∂wk+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn),

k = n, . . . , n+m− 1. (46)

Setting

R(z) = r(V − z)L(z), (47)

we can rewrite Eqns. (39)–(46) in the form of (27)–(34).
Therefore, in this case, we obtain the solution in the form
of (36), (37), where R(z) is determined by the relation
(47).

It is clear that classical AQM is a special case of the
second type of system “behavior”. Indeed, let the numbers
r(i), i = 0, . . . ,m+ n− 1, be accepting probabilities for
an incoming packet, on condition that there are i packets
in the system just before the arriving epoch. In this case,
we have L(x) = 0 for x ≤ 1, and L(x) = 1 for x >
1, V = n + m < ∞. Then Eqns. (39)–(46) take the
following form:

0 = −ap0r(0) +
∂w1(y)

∂y

∣
∣
∣
y=0

, (48)

− ∂w1(y)

∂y
+

∂w1(y)

∂y

∣
∣
∣
y=0

= ap0r(0)B(y)

− aw1(y)r(1) + 2
∂w2(y, u)

∂u

∣
∣
∣
u=0

, (49)

−
k∑

i=1

[
∂wk(Yk)

∂yi
− ∂wk(Yk)

∂yi

∣
∣
∣
yi=0

]

=
a

k

k∑

i=1

wk−1(Y
i
k )r(k − 1)B(yi)

− awk(Yk)r(k) + (k + 1)
∂wk+1(Yk, u)

∂u

∣
∣
∣
u=0

,

k = 2, . . . , n− 1, (50)

−
n∑

i=1

[
∂wn(Yn)

∂yi
− ∂wn(Yn)

∂yi

∣
∣∣
yi=0

]

=
a

n

n∑

i=1

wn−1(Y
i
n)r(n − 1)B(yi)

− awn(Yn)r(n)

+ n
∂wn+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn), (51)

−
n∑

i=1

[
∂wk(Yn)

∂yi
− ∂wk(Yn)

∂yi

∣∣
∣
yi=0

]

= awk−1(Yn)r(k − 1)− awkr(k)(Yn)

+ n
∂wk+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn),

k = n+ 1, . . . , n+m− 1,
(52)

−
n∑

i=1

[
∂wn+m(Yn)

∂yi
− ∂wn+m(Yn)

∂yi

∣
∣
∣
yi=0

]

= awn+m−1(Yn)r(n+m− 1), (53)

awk(Yk)r(k) = (k + 1)
∂wk+1(Yk, u)

∂u

∣
∣
∣
u=0

,

k = 1, . . . , n− 1, (54)

awk(Yn)r(k) = n
∂wk+1(Yn−1, u)

∂u

∣
∣
∣
u=0

B(yn),

k = n, . . . , n+m− 1. (55)

It can be easily proved by direct substitution that the
solution of the system (48)–(55) has the form

p0 = Cp̂0, pk = Cp̂k

k−1∏

i=0

(1 − di), (56)

where k = 1, . . . , n + m, and p̂k, k = 0, . . . , n + m,
are the stationary probabilities in the classical M/G/n/m
system,

C =

[
n+m∑

k=0

p̂k

k−1∏

i=0

(1− di)

]−1

, (57)

and di = 1 − r(i), i = 0, 1, . . . ,m + n − 1, denotes the
“typical” dropping function (Kempa, 2011).

5. Numerical results

In this section we present some numerical results
illustrating theoretical formulae for stationary queue-size
distributions, for various scenarios determined by
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queueing models and accepting functions, and under
different values of the traffic load ρ. Below we consider,
successively, the classical model with a finite waiting
room, single arrivals and a “typical” dropping function,
next we derive results for the single-server M/E2/1/m
system and the M/E2/1/(∞, V )-type model with the
exponential distribution of packet volumes. Finally, we
investigate M/D/2/(∞, V ) under two different traffic
loads and means of exponentially distributed packet
volumes.

5.1. M/D/2/8-type queue with single arrivals
and “typical” dropping. Investigate, firstly, the impact
of the accepting function on the stationary queue-size
distribution in the classical M/G/n/m-type queueing
model with a finite waiting room and single arrivals.
Choose two different types of the accepting function,
a linear and a quadratic one, respectively, defined as
follows:

r1(i) = 1− i

m+ n
,

r2(i) = 1−
( i

m+ n

)2

,

(58)

where i = 0, 1, . . . ,m + n. Of course, now rk(i) =

1 − d
(k)
i , k = 1, 2, where d

(k)
i stands for the appropriate

“typical” dropping function representing the probability
of deleting the incoming packet if the number of packets
present in the system at the pre-arrival epoch equals i
(Kempa, 2011).

Let us examine numerically the M/D/2/8-type
model in which packets arrive according to a Poisson
process with intensity a and are being processed with
constant service time t0. We start the procedure with
finding the steady-state probabilities p̂k, k = 0, . . . , 10,
for the system without AQM-type dropping. For the
M/D/2-type system with an infinite waiting room and
without packet dropping, stationary probabilities p̃k can
be derived by using the following algorithm (Bocharov
et al., 2004):

p̃0 = −2z1(1− ρ)

1− z1
, p̃1 = 2(1− ρ− p̃0), (59)

where z1 is a negative solution of the equation

z2e2ρ(1−z) − 1 = 0 ⇔ ln z2 + 2ρ(1− z) = 0. (60)

Probabilities p̃k for k ≥ 2 can be obtained using the
recursive formula

p̃2+i =
1

β0

[
p̃i − βi(p̃0 + p̃1)−

i∑

k=1

βkp̃2+i−k

]
, (61)

where i = 0, 1, . . . ,

βj =
(2ρ)j

j!
e−2ρ, j = 0, 1, . . . , (62)

and ρ = at0/2 < 1. Substituting p̃k computed for the
first k = 0, . . . , 10 into (56)–(57), we generate p̂k, k =
0, . . . , 10, for the finite-queue M/D/2/8 model without
AQM, taking r(i) ≡ 1. Next, substituting p̂k again into
(56)–(57) for proper r(·), we find probability distributions
for the case of linear and quadratic dropping separately.

In Table 1 we present stationary probabilities for the
“pure” (without dropping)M/D/2/8-type system and for
the case of linear (r1(·)) and quadratic (r2(·)) accepting
functions, for ρ = 0.75. The case of ρ = 0.99 (critical
loading) is presented in Table 2. Results from Tables 1–2
are visualized in Figs. 1 and 2. As can be noted, using
the accepting function significantly reduces probabilities
of high lengths of the queue of packets. The reduction is
more visible for linear-type dropping.

Table 1. Queue-size distributions in the M/D/2/8 system for
ρ = 0.75 (no dropping, linear dropping, quadratic
dropping).

k none linear (r1(·)) quadratic (r2(·))
0 0.133176 0.173320 0.146221
1 0.236276 0.307498 0.259420
2 0.227400 0.266352 0.247178
3 0.163638 0.153335 0.170756
4 0.102221 0.0670491 0.0970668
5 0.0602224 0.0237008 0.0480362
6 0.0348450 6.85670 × 10−3 0.0208455
7 0.0200941 1.58162 × 10−3 7.69344 × 10−3

8 0.0115877 2.73624 × 10−4 2.26266 × 10−3

9 6.68378 × 10−3 3.15651 × 10−5 4.69836 × 10−4

10 3.85543 × 10−3 1.82079 × 10−6 5.14934 × 10−5

Table 2. Queue-size distributions in the M/D/2/8 system for
ρ = 0.99 (no dropping, linear dropping, quadratic
dropping).

k none linear (r1(·)) quadratic (r2(·))
0 0.0251723 0.0701711 0.0443032
1 0.0643240 0.179312 0.113210
2 0.0928201 0.232874 0.161729
3 0.104896 0.210536 0.175459
4 0.107202 0.150615 0.163178
5 0.105988 0.0893459 0.135518
6 0.103980 0.0438266 0.0997128
7 0.101906 0.0171809 0.0625430
8 0.0998765 5.05159 × 10−3 0.0312615
9 0.0978905 9.90237 × 10−4 0.0110305

10 0.0959457 9.70564 × 10−5 2.05415 × 10−3

5.2. Single-server M/E2/1/9-type queueing model.
Consider now the effect of using the accepting function
in the classical single-server M/E2/1/9-type model, in
which packets occur according to the Poisson process with
intensity a and are being served in time having a 2-Erlang
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Fig. 1. Queue-size distributions in the M/D/2/8 system for
ρ = 0.75 (no dropping, linear dropping, quadratic drop-
ping).
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Fig. 2. Queue-size distributions in the M/D/2/8 system for
ρ = 0.99 (no dropping, linear dropping, quadratic drop-
ping).

distribution with parameter μ. We can derive steady-state
probabilities p̃n, n = 0, 1, . . . , for the corresponding
M/E2/1 system with an infinite waiting room and
without AQM-type dropping using the following method.
Under the stability condition ρ = 2a/μ < 1, it can be
shown (Adan and Resing, 2002) that the equation

(a+ μ)x2 = a+ μx3 (63)

has exactly two different roots xi, i = 1, 2, such that
|xi| < 1 (obviously, the third root x3 = 1). If q̃n
denotes the stationary number of exponential phases of
the service “present” in the system, then we have (Adan
and Resing, 2002)

q̃n = c1x
n
1 + c2x

n
2 , n = 0, 1, . . . , (64)

where

c1 =
1− ρ

1− x2/x1
, c2 =

1− ρ

1− x1/x2
. (65)

Finally, we easily find the steady-state queue-size
distribution as

p̃0 = q̃0, p̃n = q̃2n + q̃2n−1, i = 1, 2, . . . . (66)

Next, using the approach described in the previous
subsection (for the case of the M/D/2/8 queue), we
obtain stationary probabilities for the “pure” M/E2/1/9
model without dropping and for the case of linear and
quadratic accepting functions defined in (59), taking the
same levels of the traffic load, namely, 0.75 and 0.99. The
results are given in Tables 3–4 and also presented in Figs.
3–4, and the interpretation is similar to that in the previous
subsection.

Table 3. Queue-size distributions in the single-server
M/E2/1/9 system for ρ = 0.75 (no dropping,
linear dropping, quadratic dropping).

k none linear (r1(·)) quadratic (r2(·))
0 0.254533 0.326808 0.283243
1 0.226694 0.291063 0.252263
2 0.166105 0.191944 0.182992
3 0.116059 0.107290 0.122743
4 0.0800062 0.0517729 0.0769992
5 0.0549348 0.0213293 0.0444109
6 0.0376754 7.31406 × 10−3 0.0228434
7 0.0258295 2.00574 × 10−3 0.0100230
8 0.0177063 4.12485 × 10−4 3.50413 × 10−3

9 0.0121374 5.65504 × 10−5 8.64730 × 10−4

10 8.31990 × 10−3 3.87641 × 10−6 1.12623 × 10−4

Table 4. Queue-size distributions in the single-server
M/E2/1/9 system for ρ = 0.99 (no dropping,
linear dropping, quadratic dropping).

k none linear (r1(·)) quadratic (r2(·))
0 0.0751184 0.178256 0.123162
1 0.0927732 0.220151 0.152109
2 0.0961712 0.205393 0.156103
3 0.0960421 0.164094 0.149658
4 0.0950501 0.113679 0.134782
5 0.0938565 0.0673510 0.111795
6 0.0926255 0.0332338 0.0827467
7 0.0913976 0.0131173 0.0522558
8 0.0901827 3.88289 × 10−3 0.0262962
9 0.0889833 7.66248 × 10−4 9.34073 × 10−3

10 0.0877995 7.56055 × 10−5 1.75113 × 10−3

5.3. Single-server M/E2/1/(∞, 10)-type model.
Investigate now the reduction of the queue in the
M/E2/1/(∞, V ) model with an infinite waiting room
and the total capacity bounded by V = 10, under the
assumption that volumes of the incoming packets are
exponentially distributed, i.e., we have

L(x) = 1− e−αx, x ≥ 0. (67)

Below we present through numerical examples different
scenarios of the operation of such a system. We
investigate separately two types of the theoretical model
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Fig. 3. Queue-size distributions in the M/E2/1/9 system for
ρ = 0.75 (no dropping, linear dropping, quadratic drop-
ping).
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Fig. 4. Queue-size distributions in the M/E2/1/9 system for
ρ = 0.99 (no dropping, linear dropping, quadratic drop-
ping).

introduced in Section 4, with functions R(·) defined
in (26) (Type I) and (47) (Type II), respectively, and
compare the results with these obtained for the system
without packet dropping. In computations we use the
algorithm for finding the stationary queue-size in the
“pure” M/E2/1 model described in (63)–(66) and then
the formula (37) from Corollary 1. We analyze separately
cases of ρ = 0.75 and ρ = 0.99, and also consider two
different values of the parameter α, namely, 1 and 2 (i.e.,
two different means of packet volumes, 1 and 0.5). As an
accepting function, we introduce the linear one defined as

r(x) =
V − x

V
, x ∈ [0, V ]. (68)

The results of simulations are shown in Tables 5–8 and
also presented in Fig. 5–8 (for k = 0, . . . , 10). As can be
noted, the reduction of the queue size is more visible in
the case of the II type system, in which the function R(·)
is defined in (47).

5.4. Two-server M/D/2/(∞, V )-type model.
Let us consider now the M/D/2/(∞, V )-type model
with deterministic processing times and investigate the
behavior of the system under the same parameters as
previously: V = 10, exponential service times (with
means 1 and 0.5), two levels of the traffic load ρ = 0.75

Table 5. Queue-size distributions in M/E2/1/(∞, V ) for ex-
ponential packet volumes with mean 1 and ρ = 0.75
(no AQM, I type AQM, II type AQM).

k no AQM I type AQM II type AQM

0 0.250000 0.435020 0.438790
1 0.222656 0.348698 0.390779
2 0.163147 0.187363 0.137435
3 0.113992 0.0264491 0.0285465
4 0.0785813 2.32380 × 10−3 4.00924 × 10−3

5 0.0539564 1.39224 × 10−4 4.06995 × 10−4

6 0.0370044 6.03553 × 10−6 3.11450 × 10−5

7 0.0253695 1.97587 × 10−7 1.85290 × 10−6

8 0.0173909 5.04706 × 10−9 8.78290 × 10−8

9 0.0119212 1.03235 × 10−10 3.38519 × 10−9

10 8.17173 × 10−3 1.72707 × 10−12 1.07938 × 10−10

Table 6. Queue-size distributions in M/E2/1/(∞, V ) for ex-
ponential packet volumes with mean 1 and ρ = 0.99
(no AQM, I type AQM, II type AQM).

k no AQM I type AQM II type AQM

0 0.100000 0.317415 0.325239
1 0.0123502 0.352816 0.401660
2 0.0128026 0.268202 0.199850
3 0.0127854 0.0541142 0.0593311
4 0.0126534 6.82564 × 10−3 0.0119629
5 0.0124945 5.88094 × 10−4 1.74643 × 10−3

6 0.0123306 3.66863 × 10−5 1.92311 × 10−4

7 0.0121671 1.72860 × 10−6 1.64670 × 10−5

8 0.0120054 6.35552 × 10−8 1.12352 × 10−6

9 0.0118457 1.87123 × 10−9 6.23320 × 10−8

10 0.0116882 4.50610 × 10−11 2.86083 × 10−9
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Fig. 5. Queue-size distributions in M/E2/1/(∞, V ) for expo-
nential packet volumes with mean 1 and ρ = 0.75 (no
AQM, I type AQM, II type AQM).

and ρ = 0.99, and linear accepting function r(·) defined
in (68). The appropriate results for the “pure” system and
for I and II type AQM dropping are given in Tables 9 and
10 and visualized in Figs. 9–12 (for k = 0, . . . , 10).
Steady-state probabilities for the “pure” M/D/2-type
model with an infinite waiting room are derived based on
the algorithm given in (59)–(62). Next, the appropriate
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Table 7. Queue-size distributions in M/E2/1/(∞, V ) for ex-
ponential packet volumes with mean 0.5 and ρ = 0.75
(no AQM, I type AQM, II type AQM).

k no AQM I type AQM II type AQM

0 0.250000 0.402116 0.434776
1 0.222656 0.340227 0.387222
2 0.163147 0.213869 0.140446
3 0.113992 0.0386566 0.0317024
4 0.0785813 4.68979 × 10−3 5.14244 × 10−3

5 0.0539564 4.12635 × 10−4 6.41602 × 10−4

6 0.0370044 2.76104 × 10−5 6.40216 × 10−5

7 0.0253695 1.45222 × 10−6 5.24157 × 10−6

8 0.0173909 6.15608 × 10−8 3.58652 × 10−7

9 0.0119212 2.14547 × 10−9 2.08032 × 10−8

10 8.17173 × 10−3 6.24877 × 10−11 1.03474 × 10−9

Fig. 6. Queue-size distributions in M/E2/1/(∞, V ) for expo-
nential packet volumes with mean 1 and ρ = 0.99 (no
AQM, I type AQM, II type AQM).

Fig. 7. Queue-size distributions in M/E2/1/(∞, V ) for expo-
nential packet volumes with mean 0.5 and ρ = 0.75 (no
AQM, I type AQM, II type AQM).

results for the system with packet dropping are found by
applying (37).

As one can observe, the reduction in the queue size
is similar in the cases of systems of the I and II type.
Note that in the case of exponentially distributed packet
volumes the procedure of AQM-type packet dropping
reduces the queue of packets emphatically: the probability
that the queue size will exceed four packets is negligible.

Table 8. Queue-size distributions in M/E2/1/(∞, V ) for ex-
ponential packet volumes with mean 0.5 and ρ = 0.99
(no AQM, I type AQM, II type AQM).

k no AQM I type AQM II type AQM

0 0.100000 0.282505 0.319411
1 0.0123502 0.331456 0.394481
2 0.0128026 0.294770 0.202420
3 0.0127854 0.0761520 0.0653070
4 0.0126534 0.0132634 0.0152083
5 0.0124945 1.67825 × 10−3 2.72876 × 10−3

6 0.0123306 1.61591 × 10−4 3.91816 × 10−4

7 0.0121671 1.22328 × 10−5 4.61704 × 105

8 0.0120054 7.46405 × 10−7 4.54729 × 10−6

9 0.0118457 3.74438 × 10−8 3.79661 × 10−7

10 0.0116882 1.56979 × 10−9 2.71823 × 10−8
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Fig. 8. Queue-size distributions in M/E2/1/(∞, V ) for expo-
nential packet volumes with mean 0.5 and ρ = 0.99 (no
AQM, I type AQM, II type AQM).
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Fig. 9. Queue-size distributions for ρ = 0.75 (exponential
packet volumes with mean 1, linear accepting function).

6. Conclusion

In the article, a queueing model of the M/G/n-type,
n ≥ 1, with a bounded total volume was investigated.
It was assumed that the volumes of the arriving packets
were generally distributed random variables and the
AQM-type mechanism was implemented to control the
actual buffer level. Namely, each of the arriving
packets was dropped with a probability depending on
its volume and the occupied volume of the system at
the pre-arrival moment. Compact-form representations
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Table 9. Queue-size distributions for ρ = 0.75 and ρ = 0.99 (exponential packet volumes with mean 1, linear accepting function).
pk for ρ = 0.75 pk for ρ = 0.99

k I type II type I type II type

0 0.256326 0.263621 0.157032 0.164917
1 0.409291 0.467686 0.361146 0.421403
2 0.288864 0.216047 0.382158 0.291869
3 0.0419972 0.0462171 0.0872551 0.0980540
4 0.00334361 0.00588193 0.0113652 0.0204161
5 0.000171880 0.000512320 0.000980444 0.00298422
6 6.29 × 10−6 0.0000330760 0.0000608005 0.000326672
7 1.73 × 10−7 1.66 × 10−6 2.85× 10−6 0.0000277822
8 3.72 × 10−9 6.60 × 10−8 1.04× 10−7 1.88 × 10−6

9 6.40× 10−11 2.14 × 10−9 3.04× 10−9 1.04 × 10−7

10 9.01× 10−13 5.74 × 10−11 7.27× 10−11 4.73 × 10−9

Table 10. Queue-size distributions for ρ = 0.75 and ρ = 0.99 (exponential packet volumes with mean 0.5, linear accepting function).
pk for ρ = 0.75 pk for ρ = 0.99

k I type II type I type II type

0 0.228995 0.259866 0.133485 0.160239
1 0.385962 0.461046 0.324046 0.409466
2 0.318676 0.219644 0.401152 0.292477
3 0.0593233 0.0510626 0.117275 0.106782
4 0.00652174 0.00750565 0.0210928 0.0256787
5 0.000492347 0.000803488 0.00267226 0.00461317
6 0.0000277939 0.0000676413 0.000255781 0.000658481
7 1.23 × 10−6 4.66 × 10−6 0.0000192318 0.0000770670
8 4.39 × 10−8 2.68 × 10−7 1.17 × 10−6 7.54× 10−6

9 1.29 × 10−9 1.31 × 10−8 5.81 × 10−8 6.25× 10−7

10 3.15× 10−11 5.48 × 10−10 2.42 × 10−9 4.45× 10−8

0 1 2 3 4 5 6 7 8 9 10

No AQM
I type
II type
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0.1
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Fig. 10. Queue-size distributions for ρ = 0.99 (exponential
packet volumes with mean 1, linear accepting func-
tion).

for the steady-state queue-size distribution and the loss
probability were found. Numerical examples were given
as well. In the future, it is planned to consider a model
in which the processing time depends on the size of the
arriving packet; however, as it seems, the solution may
require a significant extension of the theoretical tools or
the development of a new methodology. Moreover, it
would be interesting to analyze the accepting function in
the context of a discrete-time model.

0 1 2 3 4 5 6 7 8 9 10

No AQM
I type
II type

QUEUE SIZE

0.1

0.2

0.3

0.4

PROBABILITY

Fig. 11. Queue-size distributions for ρ = 0.75 (exponential
packet volumes with mean 0.5, linear accepting func-
tion).
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