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The definitions and conditions for fault isolability of single faults for various forms of the diagnostic relation are reviewed.
Fault isolability and unisolability on the basis of a binary diagnostic matrix are analyzed. Definitions for conditional
and unconditional isolability and unisolability on the basis of a fault information system (FIS), symptom sequences and
directional residuals are formulated. General definitions for conditional and unconditional isolability and unisolability in
the cases of simultaneous evaluation of diagnostic signal values and a sequence of symptoms are provided. A comprehensive
example is discussed.
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1. Introduction

With the increasing complexity of contemporary technical
systems, ensuring safety and reliability of industrial
processes has become increasingly important. Methods
of fault detection and isolation (FDI) allow us to swiftly
detect and isolate faults, thus enabling us to prevent
undesirable consequences.

Undeniably there have been published numerous
papers considering various issues of FDI methods. Two
major approaches have emerged: model-based and
model-free. In this work we focus on model-based
techniques. We obtain the residuals using balance
equations and by comparing modeled signals with the
corresponding measured process outputs. Models can
include information about faults or not. Both the
situations are covered in this paper.

Fault isolability obtained in a diagnostic system is
closely related to the nature of diagnostic signals, i.e.,
outputs of detection algorithms, and the form of notation
used for describing the relation between diagnostic signal
values and faults. Three types of diagnostic signals may
be distinguished: binary, multi-valued (e.g., three-valued:
−1, 0, +1) and continuous.

In order to formulate diagnosis, the knowledge of the
relationship between faults and diagnostic signal values
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is necessary. A symptom is the appearance of such a
value of a diagnostic signal which indicates the presence
of a fault in the monitored part of a diagnostic process.
It is usually assumed that the zero value corresponds
to a faultless state, while other values indicate faults.
Therefore, the relation between diagnostic signal values
and faults will be referred to as the faults–symptoms
relation. This relationship takes various forms depending
on the available type of diagnostic signals. The binary
diagnostic matrix (BDM) is primarily used (Chen and
Patton, 1999; Gertler, 1998; Isermann, 2006; Korbicz
et al., 2004; Patton et al., 2000; Bartyś, 2013). Another
solution is a fault isolation system (FIS) (Korbicz et al.,
2004; Kościelny, 1999; Kościelny et al., 2006), which
assumes the use of multi-valued diagnostic signals. From
the BDM, other forms of notation can be derived, such
as logic functions, IF–THEN rules, fault trees (Korbicz
et al., 2004). They correspond to rows and columns
of the initial matrix. Analogous rules can be derived
from the FIS. Those secondary forms of notation do not
change fault isolability. The relation between faults and
continuous diagnostic signals is described by regions in
the residual space (Isermann, 2006; Korbicz et al., 2004),
vectors of directions in the residual space (Chen and
Patton, 1999; Gertler, 1998; Patton et al., 2000) and
sequences of symptoms (Kościelny et al., 2013).

The above relations are determined based on

{jmk,m.syfert,k.rostek,a.sztyber}@mchtr.pw.edu.pl
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1. process modeling with fault influence, i.e., built on
derived residual equations in internal form (Gertler,
1998);

2. learning, i.e., creating regions in the diagnostic signal
space that correspond to individual faults, applying
process data registered during faulty process states
(Koivo, 1994; Patton et al., 1999);

3. expert knowledge (Kościelny, 1999; Syfert and
Koscielny, 2009).

There are also successive works in the area of
data-driven fault diagnosis (e.g., Yin and Huang, 2015;
Yin et al., 2016; 2015). In the work of He et al. (2013)
a novel method of residual matching (RM) is proposed to
isolate and estimate faults.

The model of a diagnosed process, utilizing the
relation between inputs, outputs and faults (and possibly
disturbances and measurement noise), is available only in
the first case. Also, the majority of publications in the field
of fault isolation relate only to the first case (Ossmann and
Varga, 2015). Isolability definitions given in the overview
works by Basseville (1997; 1999) and Ding (2008) also
refer to the first case. They assume the knowledge of the
process model accommodating fault influence.

Fault isolability has been usually defined in the
context of the adopted diagnostic method, in particular,
the form of the notation of faults–symptoms relation.
Most often, fault isolability was analyzed in the case of
the BDM (incidence matrix) derived from the structure
of linear equations of residuals in internal form (Gertler,
1998).

Faults isolability obtained on the basis of the BDM
and the FIS derived from expert knowledge was analyzed
in the works of Korbicz et al. (2004) and Kościelny
et al. (2006). In the case of multiple-valued and
continuous diagnostic signals, it is not always possible to
determine subsets of unisolable faults. Then, a conditional
isolability is considered. Also, when analyzing isolability
in the residual space, conditional isolability of regions
corresponding to given faults is used (Korbicz et al.,
2004).

There is a parallel approach to fault diagnosis
developed by the computer science and artificial
intelligence community called DX. This approach uses
consistency-based logical methods derived from Reiter’s
theory (De Kleer et al., 1992; Reiter, 1987). In recent
years there has been a substantial effort to combine FDI
and DX techniques (Travé-Massuyès, 2014).

In the DX approach, diagnoses are deduced from sets
of conflicts. The conflict is a set of system components
where the assumption that all these components are
healthy is inconsistent with the system description. The
diagnoses are hitting sets of the conflicts sets. It should be

noted that diagnosis is defined as a set of components, so
multiple faults are considered.

In the original approach the conflicts were calculated
on-line (off-line extensions were proposed by Górny and
Ligęza (2002) or Pulido and González (2004)). Therefore,
in the classic DX approach there is no form of the notation
for the faults–symptoms relation and the definition of
isolability.

To combine and compare DX and FDI results, new
definitions were necessary. Bridging techniques are
based on the concept of an analytical redundancy relation
(ARR), which is a consistency relation. The set of all
ARRs leads to the signature matrix (FS) which is an
equivalent of the BDM used in this paper. In the work of
Cordier et al. (2004) definitions of ARR-d-completeness
and ARR-i-completeness were proposed. The former
is related to fault detectability. The latter means that
all multiple faults are isolable, which is a very strong
requirement. When these properties are fulfilled, the
equivalence of FDI and DX approaches can be shown.

In FDI works, ARR-exoneration (Cordier et al.,
2004) is often assumed. Under this assumption, if some
ARR is satisfied by observation, then any component in
its support is considered normal. We will also use that
assumption in this paper.

Other important definitions are related to the
structural system description. Structural detectability
and isolabilty are widely used in diagnosablity analysis
(Düştegör et al., 2006; Frisk et al., 2012) and sensor
placement algorithms (Krysander and Frisk, 2008). The
main advantage of these definitions is their close
relation to dedicated computational schemes. On the
other hand, they are limited to structural or analytical
system descriptions. Multi-valued diagnostic signals and
symptom sequences cannot be handled.

A definition of isolabilty was also proposed by
Travé-Massuyes et al. (2006). It is related to definitions
using the residual space (Isermann, 2006). It should
be noted that in this approach conditional isolabilty
is not symmetric. This definition allows us to
consider multi-valued diagnostic signals but not symptom
sequences.

There are also methods to account for noise and
uncertainty in a diagnostic process. For example, in
the work of Eriksson et al. (2013) the Kullback–Leibler
divergence is used to measure fault distinguishability.
Unfortunately, it requires an analytical model of the
diagnosed process.

The definition of isolability is a crucial concept in
fault diagnosis, but there exists no solution covering all
different approaches. The presented definitions are not
complete, since distinct faults may be characterized by a
specific sequence of symptom occurrence.

The purpose of this paper is to show the
dependence between the source of knowledge about
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the faults–symptoms relation, its notation form and
the achieved fault isolability. The results of different
approaches to the diagnosis process are compared.
Moreover, new and more general definitions of fault
isolability are presented. The extension comes from
accommodating not only the signatures specified by the
values of individual diagnostic signals, but also the
symptom sequence. In this work, only single faults are
analyzed. The results of our research can be used during
the design of the FDI system. The designer of such
a system needs to be able to compare results obtained
with different forms of notation of the faults–symptoms
relation to choose the one most suitable for his or her
needs.

In Section 2 definitions of fault isolability for a
binary diagnostic matrix are given. In Section 3 analysis
of fault isolability with sequential residuals is discussed.
Fault isolability in respect of this method is defined. In
Section 4 the FIS is introduced along with corresponding
definitions of fault isolability. Conditional fault isolability
is defined. In Section 5 definitions of isolability for
directional residuals are presented given. Section 6 gives
generalizations of the presented isolability definitions.
Section 7 consists of a short summary.

2. Fault isolability based on a binary
diagnostic matrix

2.1. Binary diagnostic matrix. A model of a linear
object often used for fault diagnostics is a set of equations
defining the dependence of outputs on object inputs and
faults (Gertler, 1998):

y(s) = G(s)u(s) +H(s)f(s) , (1)

where y is the vector of inputs, u is the vector of inputs, f
is the vector of faults, G(s) is the matrix of input-output
transfer functions, H(s) is the matrix of fault-output
transfer functions.

This model describes both the linear and non-linear
systems in the neighborhood of a selected operating point
on the static characteristic (this point usually corresponds
to the nominal or average operating conditions of the
system).

A BDM is the most widely used form of description
of the faults–symptoms relation. It can be obtained with
all methods.

If matrix H(s) is known then elements of the BDM
can be obtained as

vj,k =

{
0 if Hj,k(s) = 0,

1 if Hj,k(s) �= 0.
(2)

The BDM defines the relation between faults and
binary diagnostic signals. It is a form of notation of a
relationship specified as a subset of the Cartesian product

of diagnostic signal sets S = {sj : j = 1, 2, . . . , J} and
faults F = {fk : k = 1, 2, . . . ,K}:

RF,S ⊂ S × F. (3)

An example of a BDM is shown in Table 1.
A fault signature is defined as a vector of values of

diagnostic signals corresponding to this fault:

V (fk) =
[
v1,k v2,k . . . vJ,k

]T
. (4)

Therefore, the columns of the binary diagnostic
matrix are the signatures of the corresponding faults.

Other forms used for this purpose are logic functions
and rules. They correspond to the columns or rows of
the BDM and are an alternative notation of the same
knowledge about the faults–symptoms relation. There is a
rule for each signature:

If (s1 = v1,k) ∧ · · · ∧ (sj = vj,k)

∧ (sJ = vJ,k) then fk, (5)

while the rows are represented by the following rule:

If (sj = 1) then fa ∨ · · · ∨ fn. (6)

The logic functions are created analogously.

2.2. Definition of isolability. The following defi-
nitions of unisolability and isolability of faults based on
the BDM can be given.

Definition 1. Faults fk, fm ∈ F are unisolable based on
the BDM if, and only if, their signatures are identical,

fkRU|BDMfm ⇔ ∀
sj∈S

[vj,k = vj,m], (7)

where RU|BDM denotes the unisolability relation based on
BDM. Subsequent isolability and unisolability relations,
for other forms of notation, are denoted analogously.

Relation RU|BDM divides the set of faults F into
subsets of unisolable faults.

Definition 2. Faults fk, fm ∈ F are isolable based on
the BDM if, and only if, their signatures are different,

fkRI|BDMfm ⇔ ∃
sj∈S

[vj,k �= vj,m]. (8)

This condition is analogous to the weakly isolating
structure defined by Gertler (1998) as a structure
where each fault response is nonzero and different.
Gertler defined also strong fault isolability for structured
residuals. However, in this work we focus on the basic
understanding of fault isolability.

The maximum number of faults that can be isolated
on the basis of the set of J binary diagnostic signals is
2J − 1. When the process is in a faultless state, values
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Table 1. Binary diagnostic matrix for the two-tanks system with
primary nonlinear residuals.

f1 f2 f3 f4 f5 f6 f7

s1 1 0 1 0 1 1 1
s2 1 1 0 1 0 1 1
s3 0 1 1 1 1 1 1

Fig. 1. Two-tank system. F : input flow to tank 1, L1, L2: water
levels in tank A1, A2: surface areas in tanks 1 and 2.

of diagnostic signals are zero. In practice, the number of
faults distinguished on the basis of such a set is usually
smaller.

The basic method of increasing fault isolability is
the generation of secondary residuals. The method of
designing secondary residuals depends on whether or not
the internal form of primary residuals is known (Gertler,
1998).

Example 1. As an example, we shall analyze the
two-tank system (Fig. 1). It can be described by the
following equations:

A1
d(L1 + f6)

dt
= F + f5

− α1,2 (S1,2 − f1)
√
2g (L1 + f6 − (L2 + f7)), (9)

A2
d (L2 + f7)

dt

= α1,2 (S1,2 − f1)
√
2g (L1 + f6 − (L2 + f7))

− α2(S2 − f2)
√

2g (L2 + f7) , (10)

where α1,2 S1,2 denotes a flow constant between tanks 1
and 2.

There are three measurements: the input flow to
tank 1, F , and the water levels in two tanks, L1, L2. The
faults considered are presented in Table 2.

From Eqns. (9) and (10), we conclude that the

Table 2. Diagnosed faults in an example object.
Fault Description

f1 Clog between tanks 1 and 2
f2 Clog in the output of tank 2
f3 Leak in tank 1
f4 Leak in tank 2
f5 Faulty measurement of F
f6 Faulty measurement of L1

f7 Faulty measurement of L2

residuals are

r1 = F + f5 − f3 −A1
d(L1 + f6)

dt

− α1,2(S1,2 − f1)
√
2g (L1 + f6 − (L2 + f7))

(11)

and

r2 = α1,2 (S1,2 − f1)
√
2g (L1 + f6 − (L2 + f7))

− α2(S2 − f2)
√
2g (L2 + f7)

− f4 −A2
d(L2 + f7)

dt
. (12)

We can also obtain the third residual by combining
r1 with r2:

r3 = r1 + r2

= F + f5 − α2(S2 − f2)
√

2g (L2 + f7)

− f3 − f4 −A2
d(L2 + f7)

dt

−A1
d(L1 + f6)

dt
. (13)

The binary diagnostic matrix describing the system
is shown in Table 1. We assume that a binarized value of
residual ri is a diagnostic signal si.

Using residuals r1, r2 and r3 from Table 1 and
Definitions 1 and 2, the following sets of unisolable faults
can be distinguished: {f1}, {f2, f4}, {f3, f5}, {f6, f7}.
Faults from different sets are isolable.

An alternative form of those residuals can be
obtained by linearization and the Laplace transform:

r1(s) = −L1 (s) +
k1

T1s+ 1
F (s) +

k2
T1s+ 1

L2 (s)

= −f6 (s) +
k1

T1s+ 1
f5 (s) +

k2
T1s+ 1

f7 (s)

+
k3

T1s+ 1
f1 (s)− k4

T1s+ 1
f3 (s) , (14)
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Table 3. Binary diagnostic matrix for the two-tank system with
primary non-linear residuals and secondary residual r4.

f1 f2 f3 f4 f5 f6 f7

r1 1 0 1 0 1 1 1
r2 1 1 0 1 0 1 1
r3 0 1 1 1 1 1 1
r4 1 1 1 1 1 0 1

r2 (s) = −L2 (s) +
k5

T2s+ 1
L1 (s)

= −f7 (s) +
k5

T2s+ 1
f6 (s)− k6

T2s+ 1
f1 (s)

+
k7

T2s+ 1
f2 (s)− k8

T2s+ 1
f4 (s) , (15)

r3 (s) = −L2 (s)− k9s

T2s+ 1
L1 (s) +

k10
T2s+ 1

F (s)

= −f7 (s)− k9s

T2s+ 1
f6 (s) +

k7
T2s+ 1

f2 (s)

− k8
T2s+ 1

f4 (s) +
k10

T2s+ 1
f5 (s)

− k11
T2s+ 1

f3 (s) . (16)

The binary diagnostic matrix and the fault
information system do not require linearization and
can be used as well with non-linear residuals.

By knowing the inner form of primary residuals,
secondary residuals insensitive to chosen faults can be
easily obtained. For example, the following residual is
insensitive to f6:

r4(s) = r1(s) +
T2s+ 1

k5
r2(s)

=
( k3
T1s+ 1

− k6
k5

)
f1(s)

+
k7
k5

f2(s)− k4
T1s+ 1

f3(s)

− k8
k5

f4(s) +
k1

T1s+ 1
f5(s)

+
( k2
T1s+ 1

− T2s+ 1

k5

)
f7(s). (17)

This allows us to isolate f6 from f7, which results
in the following sets of unisolable faults (Table 3): {f1},
{f2, f4}, {f3, f5}, {f6}, {f7}.

Unfortunately, faults {f2, f4} and {f3, f5} cannot be
separated with this technique. Methods described later in
this paper need to be used for that purpose.

�

3. Fault isolability based on sequential
residuals

3.1. Sequences of symptoms and methods of their
determination. The order of symptom emergence is
important information, worth using in the diagnostic
process. A different order of symptom emergence may
be, in fact, the basis for fault isolation. The appearance of
a sequence of symptoms can be determined for each fault
on the basis of the transmittance Hj,k, where

Hj,k(s) =
yj(s)

fk(s)
, k = 1, . . . ,K. (18)

If the transmittance Hj,k is unknown, it is often possible
to use expert knowledge to determine differences in
symptom sequences for some pairs of diagnostic signals
for particular faults.

The times of symptom emergence depend on the
dynamic properties of the tested object, the nature of the
fault (abrupt, linearly increasing, etc.), and on the method
and parameters of the detection algorithm.

Let us assume the occurrence of a single fault fk.
The residual equation becomes

rj(s)|fk = Hj,k(s)fk(s),

fm = 0, m = 1, 2, . . . ,K, m �= k. (19)

The time series of the residual may be determined
with the knowledge of the function fk(t), based on the
inverse Laplace transform:

rj (t)|fk = L−1 rj (s)|fk = L−1[Hj,k(s)fk(s)]. (20)

Assuming a form of the function fk(t) (the step
function being the simplest) and a threshold value for
the residual Aj , one can determine the time after which
the j-th symptom of the k-th fault will appear. This
calculation should be performed for all residuals that are
sensitive to fault fk. For fault functions other than the
simple step function, times of symptoms appearance will
be different, but the order will not change for given Aj .

Let us denote by esj,p(fk) the elementary sequence,
i.e., a sequence of two symptoms j and p for the fault
fk. The sequences are equal if the order of symptoms
in both the sequences is the same. Sequences of some
symptom couples may be defined on the basis of expert
knowledge, without modeling the influence of faults on
the system (Syfert and Koscielny, 2009) or using causal
GP graphs (Sztyber et al., 2015). An example of such a
graph is shown in Fig. 2.

3.2. Definition of isolability.

Definition 3. Faults fk, fm ∈ F are unisolable
(unconditionally unisolable) on the basis of elementary
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Fig. 2. Example GP graph. x: process variables, u1: input,
y: outputs, s1(y1, u1), s2(y2, u1): diagnostic signals
(es1,2(f1) = 〈s1, s2〉, es1,2(f2) = 〈s2, s1〉) .

symptom sequences if, and only if, the corresponding
elementary sequences of symptoms are identical,

fkRU|SEQfm ⇔ ∀
sj ,sp∈S

esj,p(fk) = esj,p(fm). (21)

In many cases, elementary sequences allow us to
distinguish faults which are unisolable on the basis of the
values of diagnostic signals.

Definition 4. Faults fk, fm ∈ F are unconditionally
isolable on the basis of elementary symptom sequences if,
and only if, there exists a pair of symptoms with a different
sequence for those faults,

fkRI|SEQfm ⇔ ∃
sj ,sp∈S

[esj,p(fk) �= esj,p(fm)]. (22)

Definitions 3 and 4 require knowledge about both
esj,p(fk)and esj,p(fm). If only one elementary symptom
sequence is known, then faults are isolable only for some
sequences of symptoms.

Definition 5. Faults fk, fm ∈ F are conditionally
unisolable on the basis of elementary symptom sequences
if, and only if, we are able to determine the elementary
symptom sequence only for one of those faults.

If the internal form of the residuals is known, one
can design (Kościelny et al., 2013) pairs of secondary
residuals that will have a different sequence for certain
pairs of faults, but in addition will have a requested delay
τk,j,p between symptoms. Such an elementary sequence
can be written as

esdj,p(fk, τk,j,p) = 〈sj , τk,j,p, sp〉. (23)

It will be called a delay-designed elementary sequence.
Consequently, we can obtain a pair of secondary

residuals for any faultfk, whose symptoms occur in
a characteristic order and with a specific time delay
(Kościelny et al., 2013).

With the above method, one can design a pair of
residuals for any fault. The same pair of primary residuals
may be used for generating separate pairs of secondary

Table 4. Sequences of symptoms.
f1 f2 f3 f4 f5 f6 f7

r1 1 – 1 – 1 1 2
r2 2 1 – 1 – 2 1
r3 – 1 2 1 2 2 1

residuals for two or more faults detectable by the primary
residuals. In such a case, different time delays between
symptoms should be chosen. Particularly, it can be
assumed that τk,j,p = 0, which means simultaneous
occurrence of symptoms sj and sp.

For delay-designed elementary sequences
esdj,p(fk, τk,j,p), analogous definitions of unisolability
and isolability of faults apply to the sequence esj,p(fk)
(Definitions 3 and 4).

Definition 6. Faults fk, fm ∈ F are unisolable
on the basis of delay-designed elementary sequences
of symptoms esdj,p(fk, τk,j,p) if, and only if, the
corresponding delay-designed elementary sequences of
symptoms are identical,

fkRU|DSEQfm ⇔
∀

sj ,sp∈S
esdj,p(fk, τk,j,p) = esdj,p(fm, τm,j,p). (24)

Definition 7. Faults fk, fm ∈ F are isolable on the
basis of delay-designed elementary symptom sequences
esdj,p(fk, τk,j,p) if, and only if, there exists a pair of
symptoms with a different sequence for those faults,

fkRI|DSEQfm ⇔
∃

sj ,sp∈S
esdj,p(fk, τk,j,p) �= esdj,p(fm, τm,j,p). (25)

It is worth noting that (25) holds when τk,j,p �=
τm,j,p and the order of symptoms is the same, or when
the order of symptoms is different.

Between Definitions 4 and 7 there is a significant
difference, associated with the design of delay of
symptoms. In the case of Definition 7, isolability is also
obtained with an identical order of pair of symptoms but
different delays. Design freedom is therefore greater. The
knowledge of the internal form of residuals is, however,
required.

Example 2. Applying a method of sequential residuals
to the two-tank system given in Section 1 with a known
internal form of primary residuals, we obtain the results
in symptom sequences presented in Table 4.

In this example, it is assumed that a time constant
of the second tank is greater than that of the first tank
(T1 < T2). Numbers indicate the order of symptoms. Two
identical numbers in a signature mean that it is impossible
to determine which symptom would be first.
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Using Definitions 3 and 4, the following sets of
unisolable faults can be distinguished: {f1}, {f2, f4},
{f3, f5}, {f6}, {f7}. Therefore, faults {f6, f7}, which
are unisolable using the BDM with primary residuals, can
be isolated using sequences of symptoms.

It is possible to further improve isolability by
designing secondary sequential residuals. In the discussed
two-tank system, it is beneficial to introduce the following
residuals:

r1,3/5 =
k10

(T2s+ 1)
r1, (26)

r3,1/5 =
k1

(T1s+ 1)
r3e

−τ3,1s. (27)

Residuals r1,3/5 and r3,1/5 allow us to isolate f5
from f3. If fault f5 occurs, both residuals will react in
the same way, delayed by τ3,1. �

4. Fault isolability based on the information
system

4.1. Information system (FIS). Definitions of the
information system and the rough information system are
very helpful in defining the faults–symptoms relation. The
FIS has been defined (Korbicz et al., 2004; Kościelny,
1999) as an information system in the form of the
following quadruple:

FIS = 〈F, S, VS , q〉, (28)

where F denotes faults, S denotes diagnostic signals,
VS =

⋃
sj∈S Vj is the set of the values of diagnostic

signals, Vj is the set of the values of the j-th diagnostic
signal, q is the projection

q : F × S → Φ(VS), (29)

assigning to each element of the Cartesian product a
subset of values of diagnostic signals:

q(fk, sj) ≡ Vj,k ⊂ Vj (30)

which can appear during the occurrence of fault fk.
For example, Vj = {−1, 0,+1} and Vj,k =

{−1,+1} ⊂ Vj . Furthermore, we assume that the value
of the diagnostic signal vj = 0 corresponds to a state
without faults, and other values are symptoms of faults.

Then, the FIS is a form of notation determining the
pattern of diagnostic signals for individual faults. It is
a generalization of the BDM. If a set of all diagnostic
signal values is identical and equal to Vs = {0, 1} and
Vj,k is a single element set, then the FIS simplifies to the
BDM. Significant extensions of the FIS towards binary
diagnostic matrix are follows:

(a) every diagnostic signal may have assigned its
individual set of values;

(b) a set Vj of values of the j-th diagnostic signal
contains a finite (possibly greater than 2) number of
elements;

(c) any set Vj,k in the FIS may contain one value of the
diagnostic signal as well as a subset of them.

The signature of the k-th fault corresponds to the
column of the FIS. It is a generalization of the signature
defined by the formula (4),

Q(fk) =
[
V1,k V2,k . . . VJ,k

]T
. (31)

A complex signature is equivalent to the rule in the form

If (s1 ∈ V1,k) ∧ · · · ∧ (sj ∈ Vj,k)

∧ (sJ ∈ VJ,k) then fk. (32)

We can define the rules corresponding to the rows of the
FIS. The number of the rules corresponding to one row
of the FIS is equal to the number of the values of the
diagnostic signal v ∈ Vj different from zero,

If (sj = vj,k �= 0), then fa ∨ · · · ∨ fn., (33)

4.2. Definition of isolability. In the work of Kościelny
et al. (2006), definitions of unconditional and conditional
unisolability in the FIS were given.

Definition 8. Faults fk, fm ∈ F are unisolable
(unconditionally unisolable ) based on the FIS, if and only
if, their signatures are identical.

fkRU|FISfm ⇔ ∀
sj∈S

Vj,k = Vj,m. (34)

The signatures of unconditionally unisolable faults
are identical. Therefore, it is impossible to isolate those
faults. In the case of the FIS and other polyvalent forms
of notation, conditional unisolability is possible. Then
faults are unisolable only for some, not all, values of
diagnostic signals. Also, other values of diagnostic signals
are possible, where the same faults are isolable.

Definition 9. Faults fk, fm ∈ F are conditionally
unisolable based on the FIS if, and only if, for every
signal, subsets of its values corresponding to faults fk and
fm have a nonempty intersection and those faults are not
unconditionally unisolable,

fkRCU|FISfm
⇔ ∀

sj∈S
Vj,k ∩ Vj,m �= ∅ ∧ ∃

sj∈S
Vj,k �= Vj,m. (35)

Definition 10. Faults fk, fm ∈ F are uncon-
ditionally isolable based on the FIS if, and only if,
there is a diagnostic signal for which subsets of values
corresponding to those faults are disjoint

fkRI|FISfm ⇔ ∃
sj∈S

Vj,k ∩ Vj,m = ∅. (36)
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In the case of the polyvalent classification of
diagnostic signals, it is not possible to determine
isolability in an explicit way. It depends on a combination
of values of those signals. In some combinations the
obtained isolability is bigger, in others it is smaller.

The maximum number of failures that can be isolated
on the basis of a set of trivalent diagnostic signals is 3J −
1. In the general case, the maximum number of isolable
faults does not exceed the product of the powers of sets
Vj for all diagnostic signals, i.e.,

∏
sj∈S |Vj |. In practice,

the number of isolated faults is usually much lower. This
results from physical dependencies in the process.

Polyvalent evaluation of residual values may, but
does not need to, lead to increased fault isolability in
comparison with binary evaluation. Usually, taking the
sign of a residual (three-valued evaluation) into account
increases the obtained fault isolability.

In the case of continuous diagnostic signals,
described by regions in the residual space, analogous
definitions for conditional and unconditional isolability
can be given.

Example 3. For the two-tank system described in
Section 1 and by considering the direction of a change
in residuals, the FIS presented in Table 5 can be obtained.
Sensor faults (f5, f6 and f7) can be both in a positive and
a negative direction. Applying Definitions 8–10 results
in the following conclusions: {f6, f7} are unconditionally
unisolable, {f3, f5} are conditionally isolable. All other
faults are unconditionally isolable.

�

5. Fault isolability based on directional
residuals

5.1. Vectors of fault directions in the residual space.
This method is referred to as directional residuals. In
order to obtain fault isolation, a set of residuals is designed
in such a way that the occurrence of individual faults is
characterized by a particular position in the residual space
(called the parity space). Each fault therefore corresponds
to an individually designed directional vector (Chen and
Patton, 1999; Gertler, 1998). This is illustrated in Fig. 3.

Primary directional residuals are derived from the
system of equations of residuals in the internal form (9).
After replacing the transfer functions Hj,k(s) by gains of
the particular residuals for faults cj,k(s)

cj,k(s) =

{
0 if Hj,k(s) = 0,

lim
s→0

Hj,k(s) if Hj,k(s) �= 0,
(37)

a vector of gains of residuals corresponding to a
given fault fk k = 1, . . . ,K defines a direction
wk = [c1,k, . . . , cj,k, . . . , cJ,k] in the residual space,
characteristic for the fault. A given fault, after the

Fig. 3. Direction characteristic for faults in the residual space.

disappearance of transient states, always manifests itself
in this direction. This is the basis of the directional
residuals method (Chen and Patton, 1999; Gertler, 1998;
Patton et al., 2000).

Fault isolation occurs after the assessment of the
coincidence of the direction of the residual vector with the
direction specific to individual faults as in Fig. 3.

Vectors of fault directions in the residual space are
designed on the basis of object modeling, including fault
influence. In theory, vectors can also be determined with
learning, but this requires testing faulty objects and is
almost feasible. Experts are also usually not able to
determine the directional vectors for the individual faults.

5.2. Definition of isolability. The following definition
of fault isolability can be formulated based on the vectors
of fault directions in the residual space: Faults are isolable
if directions in the residual space corresponding to them
are different. Such a definition is not relevant in practice,
because a small difference in directions makes faults
impossible to be isolated.

In practice, it is not necessary to examine directions
in the space of all residuals. A sufficient condition of
isolability for any pair of faults is that corresponding
directions in the plane defined by any two residuals differ
by more than a predetermined angle.

Directional fault vectors fk and fm in the plane
defined by the residuals rj and rp have the form wk =
[cj,k, cp,k] and wm = [cj,m, cp,m]. The angle between
them is determined by the formula

α = arccos
(cj,kcj,m + cp,kcp,m

|wk| |wm|
)
. (38)

In the work of Kościelny and Łabęda-Grudziak
(2013) double fault distinguishability for linear systems
was analyzed.

Example 4. Continuing the example from Section 1,
the direction corresponding to faults is the residual space
spanned by primary residuals (29). From the analysis
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Table 5. FIS for the two-tank system.
f1 f2 f3 f4 f5 f6 f7 Vj

r1 +1 0 −1 0 −1,+1 −1,+1 −1,+1 −1, 0,+1
r2 −1 +1 0 −1 0 −1,+1 −1,+1 −1, 0,+1
r3 0 +1 −1 −1 −1,+1 −1,+1 −1,+1 −1, 0,+1

Table 6. Fault directions in the three-dimensional space of pri-
mary residuals.
f1 f2 f3 f4 f5 f6 f7

r1 k3 0 −k4 0 ±k1 −1 ±k2
r2 −k6 k7 0 −k8 0 ±k5 −1
r3 0 k7 −k11 −k8 ±k10 0 −1

of the inner form of residuals, Table 6 can be obtained.
Here transient states are omitted and only static behavior
is considered.

Each fault has a different direction in the residual
space. For example, using this previously unisolable
method, faults f2 and f4 can be easily isolated since they
have opposite directions.

6. Generalization of the definitions of fault
isolation

Generalization of the above definitions of fault isolability
can be achieved after putting together adequate conditions
regarding the values of diagnostic signals (residuals)
with the conditions determining symptom sequences.
The condition for fault unisolability while using
simultaneously two or more faults–symptoms relations
may be formed as a logic product of unisolability
conditions for individual forms of notation of the
faults–symptoms relation, whereas the condition of
isolability is a logic alternative to partitive conditions.

One can distinguish two main cases of knowledge
about the diagnosed object. First, when models of the
object with fault influence are known, i.e., when the
internal form of residuals is known. The second is
more common in practice and relates to the case when
only the computational form of residuals is known. For
both of these cases, fault unisolability and isolability
conditions can be formulated by using simultaneously
two or more forms of notation for the faults–symptoms
relation. In particular, it is appropriate to combine
signature-based methods specified by the model values of
diagnostic signals (BDM, FIS) with signatures in the form
of sequences of symptoms.

Below one can find examples of such a generalized
definition for the case where both forms of residuals
(internal and computational) are known.

Definition 11. Faults fk, fm ∈ F are unisolable

(unconditionally unisolable) based on delay-designed
sequences of symptoms and the FIS if, and only if, the
conditions which are the conjunction of conditions (34)
and (24) are met

fkRU|FIS,DSEQfm

⇔ [ ∀
sj∈S

Vj,k = Vj,m]

∧ [ ∀
sj ,sp∈S

esdj,p(fk, τk,j,p) = esdj,p(fm, τm,j,p)].

(39)

Definition 12. Faults fk, fm ∈ F are isolable
(unconditionally isolable) based on delay-designed
sequences of symptoms and the FIS if, and only if, the
conditions which are the alternative conditions (36) and
(25) are met

fkRI|FIS,DSEQfm
⇔ [ ∃

sj∈S
Vj,k ∩ Vj,m = ∅]

∨ [ ∃
sj ,sp∈S

esdj,p(fk, τk,j,p) �= esdj,p(fm, τm,j,p)].

(40)

For an analogous case, when only residuals in
computational form are known, the following definitions
can be given.

Definition 13. Faults fk, fm ∈ F are unisolable
(unconditionally unisolable) on the basis of the FIS
and symptom sequences if, and only if, signatures
and sequences of those faults are identical. Thus the
conditions (34) and (21) are met:

fkRU|FIS,SEQfm

⇔ [ ∀
sj∈S

Vj,k = Vj,m]

∧ [ ∀
sj ,sp∈S

esj,p(fk) = esj,p(fm)]. (41)

Definition 14. Faults fk, fm ∈ F are (unconditionally)
isolable on the basis of the FIS and symptom sequences if,
and only if, there is a diagnostic signal for which subsets
of values corresponding to those faults are disjoint or their
elementary symptom sequences are different. This means
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combining the conditions (36) and (22),

fkRI|FIS,SEQfm

⇔ [ ∃
sj∈S

Vj,k ∩ Vj,m = ∅]

∨ { ∃
sj ,sp∈S

[esj,p(fk) = 〈sj , sp〉]

∧ [esj,p(fm) = 〈sp, sj〉]}. (42)

What results from the above definitions is the fact
that utilizing knowledge (usually incomplete) about a
symptom sequence allows increased fault isolability in
comparison to reasoning only on the basis of signatures
defined by sample values of diagnostic signals.

7. Summary

The paper presented formal conditions of fault isolability
and unisolability on the basis of the binary diagnostic
matrix, the knowledge of the sequence of emerging
symptoms and the FIS information. Those relations
between faults and symptoms are designed based on
object modeling, taking into account fault influence,
expert knowledge, and learning.

The primary method for increasing fault isolability
is obviously increasing the number of the measured
signals and the generation of additional residuals as a
consequence. Not always the extension of a set of the
measured signals is possible or economically justified.

Another possibility is designing secondary residuals.
This offers great possibilities when the internal form of
residuals is known and when models with fault influence
are available. There are also some possibilities for
the generation of secondary residuals when the only
computational form is known; however, they are rather
limited. An alternative or complementary method of
increasing isolability can be utilization of polyvalent or
continuous residual evaluation instead of binary one.
Exchanging the BDM with the FIS and utilizing trivalent
residual evaluation is particularly purposeful. This
approach can be used for object modeling including fault
influence, as well as using expert knowledge to determine
the FIS.

An additional possibility for increased isolability
results from including the knowledge on symptom
sequence emergence. A different order of symptom
occurrence, or even the same one, but with a different
delay, allows fault isolation, which is impossible
when analyzing only the values of diagnostic signals.
The knowledge of the sequence of symptoms is
complementary to the knowledge of the signatures of
faults contained in the BDM or the FIS, and the
knowledge of the directions of faults in the residual
space. The conclusion is that the methods of reasoning
about faults based on different forms of notation of the

faults–symptoms relation are worth using. They should
be integrated into diagnostic systems.
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