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The paper discusses methods of data mining for prediction of air pollution. Two tasks in such a problem are important:
generation and selection of the prognostic features, and the final prognostic system of the pollution for the next day. An
advanced set of features, created on the basis of the atmospheric parameters, is proposed. This set is subject to analysis and
selection of the most important features from the prediction point of view. Two methods of feature selection are compared.
One applies a genetic algorithm (a global approach), and the other—a linear method of stepwise fit (a locally optimized
approach). On the basis of such analysis, two sets of the most predictive features are selected. These sets take part in
prediction of the atmospheric pollutants PM10, SO2, NO2 and O3. Two approaches to prediction are compared. In the
first one, the features selected are directly applied to the random forest (RF), which forms an ensemble of decision trees.
In the second case, intermediate predictors built on the basis of neural networks (the multilayer perceptron, the radial basis
function and the support vector machine) are used. They create an ensemble integrated into the final prognosis. The paper
shows that preselection of the most important features, cooperating with an ensemble of predictors, allows increasing the
forecasting accuracy of atmospheric pollution in a significant way.
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1. Introduction

An important task in providing the proper quality of our
life is protection of the environment from air pollution
(Bhanu and Lin, 2003; Brunelli et al., 2007; Grivas, 2006;
Perez and Trier, 2001). This problem is strictly associated
with early prediction of air pollution, concerning the level
of SO2, NO2, O3 and particulate matters of diameters
up to 10 μm (PM10). Actually, PM is of special
importance for a European policy (the new European
Air Quality Directive EC/2008/50) defining restrictions
for yearly and 24 h average PM10 concentrations. To
respect the short term limit values defined by these
restrictions and diminish dangerous concentration levels,
emission abatement actions have to be planned at least
one day in advance. Moreover, according to EU
directives, public information on the air quality status
and on the predictable trend for the next days should
also be provided. Hence, one day ahead forecasting is
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needed. The paper will discuss the numerical aspects
of the air pollution prediction problem, concentrating on
the methods of data mining used for building the most
accurate model of prediction.

There are two main tasks to be solved. The first one
is generation of the best prognostic features influencing
the prediction, and the second—building the structure of
the predicting system which provides the most accurate
forecast. There are a number of papers devoted to
this problem (Bhanu and Lin, 2003; Brunelli et al.,
2007; Grivas, 2006; Agirre-Basurko et al., 2006; Mesin
et al., 2010). However, most of them take into account
only primary atmospheric variables (temperature, wind,
humidity, etc.), on the basis of which the forecast is made.
The derivatives of these variables, like the gradient, the
estimated trend of their changes, the forecast made on the
basis of such trends, etc., have not been used up to now,
although their application might improve the quality of
prediction. On the other hand, including all of them in
the set of features increases the size of input attributes
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and may lead to decreasing the generalization ability
of the prognostic system. Therefore, special methods
of detection of the most important factors influencing
the prognosis are necessary. This task is known as the
feature selection problem (Guyon and Elisseeff, 2003; Tan
et al., 2006).

Various sets of potential features might be formed
from the parameters measured by meteorological stations
(temperature, wind, humidity, insolation) at different
hours of the day. The contents of these sets should be
analyzed to detect the features which are most important
from the prediction point of view (Siwek et al., 2011;
Osowski et al., 2009). In this paper, an analysis and
comparison of two approaches to the feature selection will
be presented. One applies a genetic algorithm (nonlinear
approach) and the other—a linear method of stepwise fit.
The former represents a global and the latter a local
optimization method. Both the approaches determine the
contents of the sets of input variables, treated as the most
influential features in the prediction process. Because of
different principles of operation the contents of both the
sets are usually not the same.

The results of feature selection provide the input
information to the system responsible for predicting the
average level of air pollution on the next day. Two
different systems of prediction will be studied here. In
the first one, the features selected are applied to the
random forest (RF) of decision trees, which performs
two functions at the same time: regression (made by the
individual decision trees) and integration (averaging the
results of outputs of many decision trees).

In the second approach, the features selected create
the inputs to the individual predictors, built on the
basis of neural networks: the multilayer perceptron
(MLP), the radial basis function (RBF) network and the
support vector machine (SVM) of the Gaussian kernel.
The universal approximation ability of these networks
(Haykin, 2000; Scholkopf and Smola, 2002) will be
exploited in this approach. All of them have the reputation
of very good universal approximators. Their results are
combined together in an ensemble providing the final
prognosis of an increased accuracy. The numerical results
of prediction of different air pollutants (PM10, SO2, NO2
and O3) will be presented and discussed.

2. Potential set of features

To build a numerical predictive model of any process
it is necessary to define the set of input features (also
called explanatory variables) on the basis of which the
forecasting will be made (Sumi et al., 2012). This choice
is made based a detailed analysis of the problem. It
is known that the factors influencing the pollution level
on the next day include atmospheric variables, such as
temperature, wind, humidity, pressure, insolation and also

the state of pollution following from the previous day.
These primary variables form a natural set of parameters
on the basis of which the secondary set, well associated
with prediction of the pollution level on the next day, will
be formed. This selected set of features may be created
in a different way, using known mathematical operations,
such as the derivative, the gradient, estimation of the trend
of their change, extreme values, etc.

Another aspect that should be considered is the
dependence of the pollution level on the season of the
year and the type of day. Generally, weekdays would
have more pollution in the air than weekends. The same
is true in the case of seasons, since a higher level of
pollution is observed in winter. Table 1 presents some
comparative statistical results of PM10 pollution (mean
values and standard deviations) corresponding to different
seasons and types of days in Warsaw within the years
2001–2014. This fact was taken into account in the
model by introducing additional features represented by
binary coded types of day and season of the year. As a
result of such extension, the set of the potential features
considered may be quite large and may contain more than
fifty variables.

Table 1. Dependence of PM10 pollution on the season of the
year and the type of day (in µg/m3).

Weekdays Weekends and holidays

Spring 33.89±18.05 32.54±19.20
Summer 27.83±8.99 23.42±8.18
Autumn 36.39±17.67 31.03±14.44
Winter 41.97±33.72 37.82±24.81

On the basis of our experience in this field, various
descriptors created in a different way are generated. The
first subset is composed of environmental parameters
forecast for the next day: the 24-hour average value of the
temperature, wind speed and direction, humidity, pressure
and insolation.

The next one is formed from the known past day
parameters: the average, maximum and minimum values
of temperature and pressure, the past (already known)
average and maximum pollution corresponding to the
previous day, the linear trend of hourly pollution, the
linear prediction of the pollution for the forecast day made
on the basis of this trend, the 2-element binary code of the
season of the year (winter, spring, summer and autumn)
and the binary code of the type of day (weekdays and
weekends).

Additionally, taking into account the influence of the
previous day pollution on the level of future pollution on
the next day, selected hourly values of pollution of the
previous day are also added.

As a result, the set of potential features containing
many variables is created. Not all features are equally
important in forecasting, hence detection of the most
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influential factors is needed. This will be done in our work
by using the genetic algorithm (Vafaie and De Jong, 1992;
Bhanu and Lin, 2003) and the stepwise linear fit applying
the backward and forward selection of variables (Guyon
and Elisseeff, 2003; Matlab, 2014).

3. Feature selection using the GA

In feature selection by using the genetic algorithm (GA),
the notion of the binary chromosome, representing the
selected feature set, is used (Vafaie and De Jong, 1992).
In this approach, the chromosome component value of
one represents inclusion of the particular feature in the
input variable set and the value of zero—deletion of the
particular feature from the actual set. The GA consists of
selecting parents for reproduction, performing crossover
with the parents, and applying the operation of mutation
to the bits representing children (Goldberg, 2013; Cloete
and Zurada, 2000).

Termination 
conditions

Initial population 
of features

STOP

START

Assessment of population 
on the validation data 

(fitness function)

Selection of parents

Crossover operation

Mutation

Learning of SVM 
networks

Yes
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Fig. 1. Illustration of the genetic system of feature selection.

Each chromosome is associated with the input vector
x of the components used as the explanatory variables to
the predictor. Vector x is composed of only the features
represented by the value one in the chromosome. The
zero value of the chromosome component means the lack
of such a feature in the input vector x. The predictor is

trained on the learning data set and then tested on the
validation data. The testing error function defined for
the validation data forms a basis for the definition of the
fitness function. The fitness is defined here as an error
function taken with a negative sign. The error function
is the sum of squares of differences between the real and
predicted values of pollution for the days taking part in
validation. The genetic algorithm maximizes the value
of the fitness function (equivalent to minimization of the
error function) by performing the subsequent operations
of selection of parents, the crossover among the parents
and the mutation. Figure 1 presents the scheme of genetic
operations used in our application for feature selection.

4. Stepwise fit of feature selection

Besides the genetic approach, a traditional linear method,
generally known as the stepwise linear fit (Sprent and
Smeeton, 2007; Matlab, 2014; Zhang, 2009), is also used.
It is a method based on successive linear regression, in
which the operation of adding and removing the candidate
features used as the input attributes to the linear model
of the prediction is performed. In general, two types of
operations are made within this process:

• forward selection, usually starting with no variables
in the model, testing the significance of addition
of each variable, adding the variable which most
improves the model, and repeating this process until
none of the variables improves the designed model
according to the assumed criterion;

• backward elimination, starting with some candidate
set of variables, testing the deletion of each variable
by using a chosen criterion of the model quality,
deleting the variable which improves the model to
the highest extent by being deleted, and repeating this
process until no further improvement is possible.

In practice, both operations interlace each other. At
each stage of the process, after a new variable is added,
a test is made to check if some variables from the
actual set can be deleted without increasing the error of
regression. The procedure terminates when the measure
of the model quality is (locally) maximized, or when
the actual improvement is below some assumed tolerance
value.

The impact of the actually investigated feature on
the modeled process is measured through the value of its
coefficient in linear regression and its statistical change
in the process of adding and removing the next features.
In each step of adding or removing the particular feature,
the F-statistic, is determined, on the basis of which the
decision of leaving or removing the given feature from the
set is made.

Entering and removing the particular variable from
the actual feature set is controlled by two parameters:
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penter and premove (Sprent and Smeeton, 2007). The
parameter penter specifies the maximum p-value for a
variable to be recommended for adding to the model.
The parameter premove specifies the minimum p-value
for a variable to be removed from the set. The
procedure is stopped when adding or removing any feature
does not lead to increasing the accuracy of the linear
model. Contrary to the genetic algorithm, application of
stepwise fit provides only the local optimality of solution.
However, in spite of that, this method has a reputation
of being highly efficient in practical applications (Zhang,
2009).

5. Predicting systems

The features selected in the previous steps are used as
the input attributes to the predicting systems. Predictors
of very high efficiency were applied in the work. One
of such solutions is the random forest of decision trees
as well as neural networks, having the reputation of the
best universal approximators: the MLP, RBF and SVM
(Haykin, 2000; Siwek et al., 2010). They act in an
independent way on the same data sets, and their results
are fused into the final prognosis.

5.1. Individual predictors. The first system used for
prediction is a random forest of decision trees developed
by Breiman (2001). The RF is a typical ensemble
learning method for classification and regression applying
simultaneously many decision trees. The decision trees
are trained on part of the available data and output either
the class that is the mode of the classes in the classification
problem or the mean prediction of the individual trees
in regression task. The other part of data is used for
out-of-bag testing the trained ensemble of decision trees.

Decision trees forming the RF are of multivariate
form. They use a modified tree learning algorithm that
selects a random subset of the available features (feature
bagging). Thanks to this the correlation of the trees is
reduced. If some features are very strong predictors for
the target variable, these features will be selected in many
of the trees, causing them to become correlated. A random
choice of variables reduces the scale of this problem.
Typically, for a dataset with N features,

√
N features are

used in each split. Moreover, each decision tree is trained
on a different set of randomly chosen observations.

The MLP is a typical multilayer network structure
applying sigmoidal neurons (Haykin, 2000; Cloete and
Zurada, 2000). The information put to the input of the
network is processed locally in each unit by computing
the dot product between the corresponding input vector
and the weighting vector of the neuron. Before training,
the weights are initialized randomly. Training the network
to produce a desired output vector when presented with an
input vector involves systematically changing the weights

of all neurons until the network produces the desired
output within a given tolerance. The procedure is repeated
over the entire training set. Learning is just reduced
to the minimization of the Euclidean error measure over
this set. The most effective learning approach applies
gradient information and uses second order optimization
algorithms, like Levenberg–Marquard or the conjugate
gradient. The gradient vector in the multilayer network is
computed using the backpropagation algorithm (Haykin,
2000).

Radial basis function networks are systems
performing the role of local approximation
(Haykin, 2000). The structure of the network is
similar to the MLP, except the activation function, which
is Gaussian. Its main advantage is great simplification
of the learning algorithm following from association
of the network parameters with the distribution of the
learning data points in the multidimensional space. RBF
networks implement a nonlinear transformation of the
data from the input space to a high dimensional space.
The superposition of the hidden neuron signals with
proper weights helps to obtain an approximation of
multidimensional data with a desired accuracy. Each
output neuron of the RBF network performs a simple
weighted summing operation,

y(x) = w0 +

K∑

j=1

wjφj(x), (1)

where the nonlinear activation functions φj(x) are
Gaussian. The learning problem of the RBF network
is split into two stages. The first one is the choice of
the number of hidden units representing the Gaussian
nonlinear functions and adaptation of parameters of these
functions (centers and widths). These problems are solved
through clusterization of the input data and association of
cluster centers with the centers of the Gaussian function.
In the second step, the synaptic weights of the linear
output neurons are adapted by using singular value
decomposition. There are also algorithms (for example,
the orthogonal least square) which join both the stages in
one common procedure (Haykin, 2000).

The support vector machine is another powerful
neural alike structure developed by Vapnik (Scholkopf
and Smola, 2002). Solution of the prediction problem
needs its application in regression mode (SVR). The
number of hidden units (kernel functions) is automatically
determined in the learning procedure on the basis of
training data. The learning of SVR is to minimize the
weights of the network, while keeping the output signals
as close as possible to their destination values within the
predefined tolerance limit ε (Haykin, 2000; Scholkopf and
Smola, 2002). The regularization constant C is applied
for balancing between the values of weights and the
prediction error on the learning data.
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In practice, the learning procedure is composed
of two stages, the so-called primary and dual tasks.
The optimization problem is finally transformed to the
dual problem of maximization of the quadratic function
defined for a set of Lagrange multipliers. Its solution is
relatively easy and there are many efficient algorithms
leading to a global minimum. Details of the learning
procedures of SVR can be found in many textbooks
(e.g., Haykin, 2000; Scholkopf and Smola, 2002). To
get reliable results of learning, the proper choice of
hyperparameters: ε (assumed tolerance), the width σ of
Gaussian functions and C (user specified regularization
parameter) should be made. Their optimal values are
usually determined in an introductory step of experiments
by using a small percentage of learning data.

5.2. Final predicting systems. Individual solutions
corresponding to the three neural networks (the MLP, RBF
and SVM) are combined with feature sets, selected either
by the genetic algorithm or stepwise fit. They are trained
on the learning data and then tested on a separate testing
set. The results of these predictors are merged together
to produce the final forecasts of pollution on the next
day. The weighted average and random forest applied as
integrators are used in this step. In the weighted average
approach the results of individual predictors are summed
up with the weights proportional to the accuracy of the
corresponding predictor on the learning data. The RF
integrator treats the results of individual predictors as the
input attributes and performs the prediction process on
these data. This approach to prediction of environmental
pollution is summarized in Fig. 2 (left).

Another approach investigated in the paper is direct
application of selected features to the RF, performing the
role of a predicting and integrating system at the same
time. This solution is presented in Fig. 2 (right). The
direct RF system will be supplied by the features selected
by the GA, stepwise fit and a combined set of features
chosen by both the methods.

5.3. Experimental setup. In this research both
the predicting systems were investigated and compared.
Their performance was checked on the observation data
measured in Warsaw within the years 2001–2014. The
feature selection stage was performed in the first stage of
experiments on a separate set of data, not used further in
the prediction process. Two selection methods applied
results in two separate sets of features. On the basis
of their contents the appropriate features were used in
further experiments as the input attributes to the three
neural predictors (the MLP, RBF and SVM) integrated
into the final system. In training MLP, 12 hidden units
were applied. The RBF network generated the best results
at 300 Gaussian basis functions of the width equal to
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Fig. 2. General diagrams of the investigated predictors in PM10
prognosis: the ensemble system applying the intermedi-
ate neural predictors (left) and the direct application of
the RF in the role of a predictor and an integrator (right).

1. The hyperparameters of the SVM were as follows:
C = 100, ε = 0.01 and the unity width of the Gaussian
function. All of them were selected in the introductory
steps of experiments.

Additionally, the selected features were also applied
directly to the RF predicting system. The RF was
composed of 100 tress. Four variables in each node were
used in splitting the data. Three variants were checked: (a)
the features selected by the GA, (b) those by the stepwise
fit and (c) their combined set.

The prediction experiments were performed 10 times
using randomly selected learning and testing subsets.
Then the average error for the testing data across all 10
trials was computed. The same testing data sets were used
for all individual predictors.

The results of prediction are compared on the basis
of their statistics. The following definitions of errors were
applied;

• the mean absolute error (MAE),

MAE =
1

n

n∑

i=1

| y(i)− d(i) |; (2)

• the mean absolute percentage error (MAPE),

MAPE =
1

n

n∑

i=1

| y(i)− d(i) |
d(i)

· 100%; (3)

• the maximum percentage error (MAX),

MAX = max

{
| y(i)− d̂(i) |

d(i)
· 100%

}
; (4)
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• the root mean squared error (RMS),

RMS =

√√√√ 1

n

n∑

i=1

| y(i)− d(i) |2. (5)

The variables y and d used in these definitions
represent the results of prediction and the real values
of daily mean pollution, respectively. Additionally,
the Pearson correlation coefficient R between the real
pollutions and their predictions made by our systems will
also be given. Only the errors related to the testing
data not taking part in learning in 10 repetitions of the
calculations will be presented.

6. Results of numerical experiments

The numerical experiments were performed for different
air pollutants, including PM10, NO2, SO2 and O3, all
measured in two meteorological stations in Warsaw. The
period considered extended from 2001 to 2014. The
measurements were done every hour and contain the
pollution level of each pollutant as well as the values of
the basic meteorological parameters (temperature, speed
and direction of wind, humidity and insolation). Around
20% of randomly chosen data from the database of the
years 2004–2013 were used in the first stage of feature
generation and selection. The remaining 80% were used
only in the predicting experiments (learning and testing
phases). The data of the year 2014 were left for only
on-line prediction in the last step of the experiments.

6.1. Feature generation and selection. The first
results of experiments are related to the PM10 pollution.
A set of pairs (x, d), x representing the potential input
vector to the neural predictor and d the daily average
of the PM10 pollution, is created. The vector x is
composed of selected normalized features created from
the meteorological data.

The following potential features were defined on
the basis of the 24-hour average and also the minimum
and maximum values of the meteorological parameters
prognosed for the next day: f1, average temperature;
f2, minimum temperature; f3, maximum temperature;
f4, average humidity; f5, minimum humidity; f6,
maximum humidity; f7, mean insolation; f8, average
wind speed in x coordinate; f9, minimum wind speed in
x coordinate; f10, maximum wind speed in x coordinate;
f11, average wind speed in y coordinate; f12, minimum
wind speed in y coordinate; f13, maximum wind speed
in y coordinate. The forecast values were taken from the
database of the Interdisciplinary Center for Mathematical
and Computational Modeling (ICM) in Warsaw.

The next features were based on the historical data
from the previous day. They include f14, average

temperature; f15, maximum temperature; f16, minimum
temperature; f17, the 24-hour average pollution; f18,
maximum pollution; f19, minimum pollution; f20, the
24-hour average humidity; f21, maximum humidity; f22,
minimum humidity.

The other features exploit the hourly linear trend of
pollution observed on the previous day: f23, the value
of the linear trend of change in the pollution estimated
on the basis of succeeding hour measurements; f24, the
predicted value of the average pollution of the next day
following from this linear trend; f25, the linear trend
of the change of temperature; f26, the linear trend of
the change of humidity; f27, the predicted value of
the average humidity for the next day following from
this trend; f28, the linear trend of the change of the
wind speed. The other 24 features (from f29 to f52)
corresponded to 24 hourly values of pollution of the
previous day.

The other two features (f53 and f54) represent the
binary code of the season of the year (winter, 11; spring,
10; summer, 01; autumn, 00) and the last f55—the code
of the type of the day (weekday: 1, weekend: 0). The
normalization of data was made by dividing the real values
of the particular features by their mean.

The randomly selected 20% of the data set was
used in the feature selection process to discover the input
variables having the highest impact on the prognosed
average values of pollution on the next day. The
stepwise fit and genetic algorithm were used in this stage.
Additionally (for comparison purposes), the correlation of
the single feature with the forecast value of the PM10 level
was also checked. The stepwise fit method was applied at
the values of penter = 0.06 and premove = 0.08. They
were chosen as the result of introductory experiments
by setting their different values and choosing the ones
providing the best results of prediction on the learning
data. The following parameters of genetic operations were
used in the experiments: the mutation probability 2%,
probability of crossover 0.8, the roulette rule in selection,
population of chromosomes equal to 70, the initial random
choice of zero or one for chromosome elements in all
populations. This choice of parameters was preceded by
some introductory experiments, aimed at getting the best
fit of the predicted results to the real data.

The results of application of these two dedicated
selection procedures were compared with simple checking
of the correlation of the particular feature with the average
value of pollution for the forecast day.

After selection of the most important features, the
main experiments of prediction using the remaining
80% of data were performed. In these and all further
experiments, one third of these data were left for testing
only, while the remaining data were used for training the
predictors.
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In application of the neural predictors, the training
data set was split into three separate parts, each one used
to train only one of the predictors applied: the MLP,
RBF or Gaussian kernel SVR. However, the testing set
was common to all trained predictors. The experiments
were repeated 10 times at a random choice of training and
testing data.

6.2. Results of experiments for PM10 predic-
tion. The first numerical experiments are presented for
prediction of PM10, the pollutant which is extremely
important because of its direct impact on human health
via inhalation. Application of all features resulted in
very high errors. The best results corresponded to
RF application and the mean absolute percentage error
(MAPE) was 29.82% in this case. The only way to reduce
this error is to reduce the number of features by applying
the proper selection procedure from full set of 55 features.

Table 2 presents the sets of features selected either
by the GA or by the stepwise fit. Column 1 shows the
notation of selected features. Only 24 (out of 55) features
were selected by any of these two methods. The selected
variables (presented in columns 2 and 4) are denoted by
one. The zero value in any of these two columns means no
selection of the feature by the particular selection method.
In the case of stepwise fit the p-values of the t-test (Sprent
and Smeeton, 2007) are also depicted. If the p-value of
the particular feature was below the assumed threshold
of 0.06, the feature was treated as significant (selected
for prediction and denoted by 1 in the second column).
As can be seen, the stepwise fit selected 19 features and
the same population of features was created by the GA.
However, only 14 features were commonly selected by
both the methods. In the last column of the table the values
of the correlation coefficient of the pollution level with
the feature selected either by the genetic algorithm or the
stepwise fit are shown.

In most cases the values of the correlation
coefficients are not compatible with the selected set of
features. This is a confirmation of the observation that
a simple correlation principle is not a good choice for the
feature selection in prediction problems.

The next task of experiments was predicting the
mean value of PM10 for the next day with application
of the features selected by the stepwise fit and by the
genetic approach. The statistical results of prediction for
each selection method and the predictors applied are given
in Tables 3 and 4. All of them refer to the same data
set not taking part in learning (approximately one third
of the population of data taking part in the prediction
experiments). The row denoted by RF refers to the
direct application of the RF working simultaneously as the
predictor and the integrator.

The next rows correspond to the application of
individual neural predictors and their integration using

Table 2. Sets of features selected as the best by the stepwise fit
and genetic approaches in the PM10 prediction prob-
lem.

Feature Stepwise fit p-value Genetic Correlation
selection selection coefficient

f17 1 0 1 0.5998
f18 1 0.0166 0 0.5234
f19 1 0.0594 1 0.5524
f1 1 0.0232 1 -0.2197
f2 1 0 1 -0.2826
f3 1 0 1 -0.1628
f4 0 0.4828 1 -0.0227
f5 0 0.5181 1 0.0105
f6 1 0 0 -0.0789
f27 1 0 1 0.0032
f24 0 0.1460 1 -0.0216
f7 1 0.0145 1 -0.0812
f9 1 0 1 0.2938
f10 1 0.0030 1 -0.2928
f11 1 0.0193 0 0.0144
f12 1 0.0003 1 0.3073
f13 1 0.0001 1 -0.2919
f29 1 0 1 0.6696
f32 1 0.0002 0 0.5938
f51 0 0.9733 1 0.3615
f52 1 0.0001 0 0.3521
f53 1 0 1 0.0560
f54 0 0.1447 1 0.1521
f55 1 0.0060 1 0.1598

weighted averaging (w avg) and application of the RF
for fusion (RF fusion). In the weighted average case
three individual results of neural networks create the input
signal to the integrator. The weighted averaging denoted
by w avg is defined by

y(i) =
3∑

j=1

wjzj(i), (6)

where zj(i) represents the pollution value for the i-th
day predicted by the j-th predictor and wj is the
weight adjusted according to its relative accuracy with
application of the bilinear formula (Osowski et al.,
2009). According to this formula the predictors of higher
accuracy have higher impact on the final forecast.

It can be seen that in both feature selection methods
the prediction accuracy is increased by an ensemble.
However, the direct application of selected features to
the RF integrator resulted in a better average accuracy
(17.83% of the MAPE in comparison with the best result
of 22.73% in the weighted average fusion). In this best
case, the standard deviation of the MAPE results in 10
runs was 1.67%. Another observation is that the weighted
average method of integrating three results of individual
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Table 3. Quality measures of the RF, MLP, RBF, SVM and en-
semble predictions of PM10 with application of the ge-
netic algorithm.

MAPE MAE RMS MAX R
% µg/m3 µg/m3 %

RF 17.92 5.405 8.36 134.17 0.924
MLP 25.43 7.624 10.42 136.26 0.882
RBF 26.37 8.067 13.83 181.90 0.822
SVM 23.57 7.216 10.83 168.21 0.872
w avg 22.68 6.979 10.35 150.06 0.885

RF fusion 23.36 7.269 11.39 116.80 0.858

Table 4. Quality measures of the RF, MLP, RBF, SVM and en-
semble predictions of PM10 with application of the
stepwise fit.

MAPE MAE RMS MAX R
% µg/m3 µg/m3 %

RF 17.83 5.381 8.39 142.11 0.924
MLP 27.11 8.240 12.78 143.12 0.822
RBF 26.64 8.526 16.81 204.14 0.783
SVM 23.66 7.109 12.82 179.31 0.816
w avg 22.73 7.114 10.95 159.88 0.869

RF fusion 23.04 7.277 11.77 133.97 0.847

neural predictors was better than integration made by the
RF.

Table 5. Quality measures of an ensemble of predictors of
PM10 at fusing the genetic algorithm and stepwise fit
selection results.

MAPE MAE RMS MAX R
% µg/m3 µg/m3 %

RF 18.87 5.66 8.67 149.07 0.918
w avg 22.39 6.944 10.39 222.91 0.883

RF fusion 23.42 7.369 12.38 156.83 0.835

The features resulting from the stepwise fit and the
genetic algorithm were merged in the last step. In the
first approach they were input directly to the random
forest, performing the role of predictors and integrators
(the results denoted in the tables by RF). In the second
approach the results of three neural predictors supplied by
the features selected either by the genetic or by stepwise
fit were combined together. In the latter case six series of
prediction results taking part in an integration were used.

The results of such data processing are depicted in
Table 5. The row denoted as RF presents the results
of the direct application of the merged features to the
RF network and the next rows—the results of weighted
average and RF integration of six predictions made by
neural networks.

As can be seen, the direct application of all selected
features as an input to the RF also generated the most
accurate results (smaller prediction errors and a higher

value of correlation between the predicted and real values
of pollution levels). However, the results are slightly
worse than in the previous cases. Increasing the number
of input signals to the predictor by combining the unique
features chosen by the genetic algorithm and stepwise fit
together did not improve the performance of the systems.

The obtained results are also compared to the naive
method of prediction (Tan et al., 2006). The numerical
experiments showed absolute superiority of our approach.
The improvement of results related to the MAPE was
more than three times.

Figure 3 presents the estimated and real distribution
of pollution for the tested days in a graphical way. They
correspond to the best method checked in investigations.
In most cases the results of an automatic predicting system
are close to the real values, preserving well the trend for
most days. The instantaneous prediction errors defined
as the difference between the real and estimated values,
shown in the lower subimage of Fig. 3, confirm limited
values of mispredictions.

Fig. 3. Estimated and real distribution of PM10 pollution in
µg/m3 (top) and the prediction error (bottom) for the
days taking part in testing.

Figure 4 presents the histogram of the testing errors
for PM10. As can be seen, only a small number of samples
were predicted with the errors above 50 μg/m3. The curve
resembles the normal distribution of the center located at
zero.

The presented results of experiments were obtained
in 10 runs using the data arranged in a random way. This
was done to assess the prediction properties of the system
in the most objective way. The next tests were made on a
separate data set corresponding to the year 2014, arranged
chronologically by using the previously trained predicting
systems. The prediction of the daily mean pollution
for the next day was done on-line, applying the data
of the previous days and using the forecast atmospheric
parameters. No repetition of experiments was applied in
this case. The best results of the quality measures are
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Fig. 4. Histogram of percentage prediction errors for the testing
data of PM10 not taking part in learning.

presented in Table 6. The errors are on a similar level as in
the best results in the previous experiments and fall inside
the range of one standard deviation. This means that the
developed system is able to work on-line in forecasting the
pollution level from day to day with satisfactory accuracy.

Table 6. Quality measures of an ensemble of predictors of
PM10 at fusing the genetic algorithm and stepwise fit
selection results in on-line testing for the data of 2014.

MAPE MAE RMS MAX R
% µg/m3 µg/m3 %

RF 19.96 6.04 9.17 138.42 0.933
w avg 23.93 7.44 11.13 172.81 0.885

RF fusion 23.64 7.59 11.81 147.20 0.872

It is interesting to compare the proposed method with
the solutions reported by other authors. Unfortunately,
there is no standard database available on Internet.
Therefore, the comparison is made for different data
sets. An objective interpretation of this comparison needs
to take this into account. For example, Grivas (2006)
reported the correlation coefficient between the predicted
and real values of pollution, changing from 0.70 to 0.82
(depending on the year). Our best result is 0.92.

Most papers do not declare the values of the MAPE,
the basic universal measure of prediction quality, which is
independent of the level of pollution in the investigated
region. Instead, they concentrate on the MAE. The
relation of the MAE to the mean of PM10 reported by
Grivas (2006) was changing from 0.213 to 0.255. In our
case this ratio was 0.138.

6.3. Results of experiments for other air pollutants.
Similar experiments were conducted for other pollutants:
SO2, NO2 and O3. In the first phase of experiments the
significant features were selected from the whole set of 55
elements. The genetic algorithm and the stepwise fit of

feature selection were applied. Each algorithm selected a
limited number of them.

In the case of SO2 the genetic algorithm chose 13
features (f1, f2, f3, f6, f7, f8, f11, f12, f17, f18,
f23, f27, f30) while stepwise fit only 12 (f1, f2, f3,
f7, f11, f18, f19, f23, f27, f29, f41, f47).

According to the genetic algorithm, the most
important features for NO2 prediction included f1, f2,
f3, f7, f8, f9, f12, f16, f18, f19, f22, f23, f24, f27
and f50 (15 features) and according to stepwise fit the set
of f1, f2, f6, f7, f8, f9, f12, f13, f16, f18, f19, f23,
f24, f27, f28 and f50 was selected (16 features).

In the case of O3 the optimal set of features
according to the genetic algorithm contained f2, f3,
f4, f8, f9, f10, f11, f12, f14, f15, f16, f19, f23,
f24, f27, f30, f35 and f42 (18 features). Stepwise fit
also selected 18 features (f1, f2, f3, f7, f8, f9, f10,
f11, f14, f15, f16, f17, f19, f23, f24, f27, f30,
f34). The number and contents of the selected features
were slightly different for each pollutant and the selection
method applied.

The selected feature sets were used as the input
attributes to the predicting systems and then took part
in the numerical experiments for predicting the daily
average pollution level of each pollutant. Tables 7 and 8
show the quality measures (MAPE, MAE, RMS, MAX
and R) characterizing the prediction quality for each
pollutant with application of the genetic and stepwise fit
algorithms. The results refer to the testing data not taking
part in learning (approximately one third of the extracted
population of data) and present the average of 10 runs of
the prediction processes.

In all cases better results were obtained in the direct
application of the selected features to the RF. Similarly
to the PM10 case, the results of predictions related to
all three neural predictors supplied by the feature sets
selected by both the genetic and the stepwise fit algorithms
(six individual solutions of predictors) were combined
together. The results of such integration for these three
pollutants with application of the weighted average and
RF are depicted in Table 9.

The results show that increasing the number of
input signals to predictors leads to a decrease in the
prediction accuracy. This was observed for all pollutants.
The histograms presenting the statistical distribution of
prediction errors for each pollutant (Fig. 5) confirmed the
good quality of prediction. Most errors are located close
to zero. Only single cases were forecast with higher error
values.

Our best results for all pollutants were compared
with the standard ARX linear model implemented in
Matlab (Matlab, 2014). The comparison was made on the
same data sets and in the same organization of calculations
as in our basic models. The optimal parameters of ARX
were chosen after a series of introductory experiments:
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Table 7. Quality measures of the RF, MLP, RBF, SVM and en-
semble predictions of the SO2, NO2 and O3 levels with
application of the genetic algorithm.

Pollutant Predictor MAPE MAE RMS MAX R
% µg/m3 µg/m3 %

RF 22.75 1.914 2.795 160.13 0.904
MLP 29.60 2.419 3.406 191.31 0.829
RBF 32.31 2.748 4.194 218.82 0.741

SO2 SVM 25.64 2.323 3.456 200.11 0.828
w avg 26.79 2.308 3.403 238.27 0.830

RF fusion 27.64 2.364 3.377 243.14 0.832
RF 18.40 3.98 6.117 148.84 0.928

MLP 29.95 6.439 9.115 247.12 0.839
RBF 31.52 6.674 9.696 252.92 0.823

NO2 SVM 25.72 5.916 8.911 250.91 0.851
w avg 26.78 5.852 8.583 312.11 0.861

RF fusion 27.50 5.986 8.603 231.33 0.860
RF 20.19 8.648 11.91 197.33 0.846

MLP 27.53 10.311 13.41 255.71 0.770
RBF 26.45 10.624 13.78 257.52 0.743

O3 SVM 22.64 9.278 12.34 257.33 0.797
w avg 23.81 9.446 12.18 211.71 0.801

RF fusion 24.44 9.689 12.73 214.51 0.784

Table 8. Quality measures of the RF, MLP, RBF, SVM and en-
semble predictions of the SO2, NO2 and O3 levels with
application of the stepwise fit.

Pollutant Predictor MAPE MAE RMS MAX R
% µg/m3 µg/m3 %

RF 18.35 1.572 2.379 165.31 0.932
MLP 29.09 2.488 3.566 170.91 0.811
RBF 31.19 2.744 4.447 183.52 0.731

SO2 SVM 26.93 2.368 3.435 207.33 0.830
w avg 27.43 2.397 3.561 162.15 0.815

RF fusion 28.01 2.385 3.445 179.25 0.825
RF 18.27 3.944 6.059 161.51 0.931

MLP 30.65 6.542 9.352 250.13 0.833
RBF 36.50 8.602 10.99 237.92 0.715

NO2 SVM 27.10 6.157 9.291 223.17 0.836
w avg 29.10 6.555 10.98 213.52 0.777

RF fusion 29.73 6.417 9.153 202.71 0.839
RF 17.31 7.501 10.59 152.25 0.882

MLP 24.36 9.536 12.60 265.85 0.778
RBF 27.80 11.45 13.91 255.91 0.745

O3 SVM 25.20 10.23 13.94 222.22 0.757
w avg 23.91 9.579 13.56 204.64 0.749

RF fusion 24.97 9.617 12.59 216.81 0.785

input-output delay equal to 0, orders of polynomials A(z)
and B(z) equal to 8 and 3, respectively. Table 10
presents this comparison for all investigated pollutants.
The advantage of our approach is evident. All quality
measures of our best solution are superior to ARX.

Our research is also well compared with other
results presented in different publications. For example,
Agirre-Basurko et al. (2006) reported the average

Table 9. Quality measures of an ensemble of predictors of SO2,
NO2 and O3 after fusing the genetic algorithm and the
stepwise fit selection results.

Pollutant Predictor MAPE MAE RMS MAX R
% µg/m3 µg/m3 %

RF 19.09 1.626 2.442 119.21 0.928
SO2 w avg 26.38 2.273 3.351 186.11 0.835

RF fusion 27.64 2.364 3.377 198.62 0.832
RF 19.55 4.203 6.351 147.50 0.923

NO2 w avg 27.62 6.121 9.264 199.10 0.837
RF fusion 27.50 5.986 8.603 173.23 0.860

RF 17.70 7.657 10.73 162.53 0.879
O3 w avg 23.34 9.261 12.34 188.72 0.792

RF fusion 24.44 9.689 12.70 201.71 0.784

(a)

(b)

(c)

Fig. 5. Histograms of percentage prediction errors of the best
predictors for testing data representing SO2 (a), NO2
(b), O3 (c).

correlation coefficient R for the predicted NO2 on
the level of 0.6, while the appropriate value in our
experiments was 0.93. In the case of O3, their best average
result was R = 0.62 and our result is 0.88. The reported
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Table 10. Comparative results of our best method (RF) with the
linear ARX model for prediction of PM10, SO2, NO2
and O3.

Pollutant Predictor MAPE MAE RMS MAX R
% µg/m3 µg/m3 %

PM10 RF 17.83 5.381 8.396 142.11 0.924
ARX 29.42 9.221 14.07 267.11 0.757

SO2 RF 18.35 1.572 2.379 165.31 0.932
ARX 31.64 2.743 16.05 285.25 0.800

NO2 RF 18.27 3.944 6.059 161.51 0.931
ARX 31.69 7.061 10.27 241.23 0.780

O3 RF 17.31 7.501 10.59 152.25 0.882
ARX 27.53 12.09 16.05 279.96 0.684

relative average error of prediction of NO2 in the paper
of Perez and Trier (2001) (limited to only some days)
was 35%, and our best result of the MAPE it was equal
18.27%. However, these comparisons might not be fully
objective, since they refer to different regions of the world,
where the mechanisms of pollution creation might present
different degrees of difficulties.

7. Conclusions

The paper presented and compared different solutions of a
system predicting the daily average air pollution of PM10,
SO2, NO2 and O3 for the next day. An important point
in this research is the generation and selection of the
explanatory variables (prognostic features), which play
the most significant role in the prediction process.

The genetic algorithm (the global optimization
approach) and the stepwise fit (the local approach) were
used for such selection. Their results were compared
with the ordinary correlation of the single feature with
the predicted variable. The features selected were used
as the input attributes to the RF and an ensemble of neural
networks working in regression mode.

Three different solutions of such networks, the MLP,
RBF and SVM, were tried. Their choice was dictated by
the need for independence of the forecast results, which
is an important condition in their fusion for getting the
improved final results of prediction.

The experiments showed that a simple application of
the correlation of the feature with the predicted variable
is not a good choice, since it resulted in an unacceptable
level of the prediction errors. The proposed approaches
(the genetic algorithm and the stepwise fit) led to a much
better accuracy of prediction.

The application of several predictors and feature
selection methods allowed integrating their results into
one final forecast. The best results of integration were
obtained in the direct application of selected features to
the RF, performing at the same time the role of regression
and integration. The numerical results presented in the

paper have confirmed the superiority of such an approach
for all pollutants considered.

The developed system is already under tests at the
National Center for Nuclear Research (NCBJ) in Świerk,
Poland, and is used to predict the next day PM10 pollution
in Warsaw. The observed average accuracy of prediction
made in this institution in the last year is on a similar level
as the results presented in the paper.

References
Agirre-Basurko, E., Ibarra-Berastegi, G. and Madriaga, I.

(2006). Regression and multilayer perceptron-based
models for forecast hourly O3 and nO2 levels in the
Bilbao area, Environmental Modelling and Software
21(4): 430–446.

Bhanu, B. and Lin, Y. (2003). Genetic algorithm based feature
selection for target detection in SAR images, Image and
Vision Computing 21(4): 591–608.

Breiman, L. (2001). Random forests, Machine Learning
45(11): 5–32.

Brunelli, U., Piazza, V., Pignato, L. and Sorbello, F.and Vitabile,
S. (2007). Two-day ahead prediction of daily maximum
concentrations of SO2, O3, PM10, NO2, CO in
urban area of Palermo, Italy, Atmospheric Environment
41(14): 2967–2995.

Cloete, I. and Zurada, J. (2000). Knowledge-based Neurocom-
puting, MIT Press, Cambridge, MA.

Goldberg, D. (2013). Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Pearson Education, Upper
Saddle River, NJ.

Grivas, G. and Chaloulakou, A. (2006). Artificial neural network
models for predictions of PM10 hourly concentrations
in greater area of Athens, Atmospheric Environment
40(7): 1216–1229.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable
and feature selection, Journal of Machine Learning Re-
search 3(1): 1158–1182.

Haykin, S. (2000). Neural Networks. A Comprehensive Founda-
tion, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ.

Matlab (2014). Matlab User Manual—Statistics Toolbox,
MathWorks, Natic, MA.

Mesin, L., Taormina, R. and Pasero, E. (2010). A feature
selection method for air quality forecasting, Proceedings
of the International Conference on Artificial Neural Net-
works, Thessaloniki, Greece, pp. 489–494.

Osowski, S., Siwek, K. and Szupiluk, R. (2009). Ensemble
neural network approach for accurate load forecasting in
a power system, International Journal of Applied Math-
ematics and Computer Science 19(2): 303–315, DOI:
10.2478/v10006-009-0026-2.

Perez, P. and Trier, A. (2001). Prediction of NO and NO2
concentrations near a street with heavy traffic in Santiago,
Chile, Atmospheric Environment 35(21): 1783–1789.



478 K. Siwek and S. Osowski

Scholkopf, B. and Smola, A. (2002). Learning with Kernels,
MIT Press, Cambridge, MA.

Siwek, K., Osowski, S. and Sowiński, M. (2010). Neural
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