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A CONNECTIONIST COMPUTATIONAL METHOD FOR FACE RECOGNITION
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In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced.
First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial
graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of
the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining
each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and
the recognition process are performed by using a similarity function that takes into account both the geometric and texture
information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our
proposal when compared with other state-of the-art methods.
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1. Introduction

In recent years, there has been intensive research carried
out to develop complex security systems involving
biometric features. Automated biometric systems
are being widely used in many applications such
as surveillance, digital libraries, forensic work, law
enforcement, human computer intelligent interaction, and
banking, among others. For applications requiring high
levels of security, biometrics can be integrated with other
authentication means such as smart cards and passwords.
In relation to this, face recognition is an emerging research
area and, in the next few years, it is supposed to be
extensively used for automatic human recognition systems
in many of the applications mentioned before.

One of the most popular methods for face recognition
is elastic graph bunch matching (EBGM), proposed by
Wiskott et al. (1997). This method is an evolution of the
so-called dynamic link architecture (DLA) (Kotropoulos
and Pitas, 1997). The main idea in elastic graph matching
is to represent a face starting from a set of reference or
fiducial points known as landmarks. These fiducial points
have a spatial coherence, as they are connected using a
graph structure. Therefore, EBGM represents faces as
facial graphs with nodes at those facial landmarks (such
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as eyes, the tip of the nose, etc.). Considering these nodes,
geometric information can be extracted, and both distance
and angle metrics can be defined accordingly.

This algorithm takes into account that facial images
have many nonlinear features (variations in lighting,
pose and expression) that are not generally considered
in linear analysis methods, such as linear discriminant
analysis (LDA) or principal component analysis (PCA)
(Shin and Park, 2011). Moreover, it is particularly robust
when out-of-plane rotations appear. However, the main
drawback of this method is that it requires an accurate
location of the fiducial points.

Artificial neural networks (ANNs) are one of the
most often used paradigms to address problems in
artificial intelligence (Bańka et al., 2014; Kayarvizhy
et al., 2014; Tran et al., 2014; Kumar and Kumar,
2015). Among the different approaches of ANNs, the self
organizing map (SOM) has special features for association
and pattern classification (Kohonen, 2001), and it is one of
the most popular neural network models. This technique
is suitable in situations where there is an inaccuracy or a
lack of formalization of the problem to be solved. In these
cases, there is no precise mathematical formulation of
the relationship between the input patterns (Azorı́n-López
et al., 2014).

The SOM makes use of an unsupervised learning

{fpujol,hmora}@dtic.ua.es, jags20@alu.ua.es


452 F.A. Pujol et al.

process where the distribution of a set of patterns is
learned without any class information (Loderer et al.,
2014). This network is able to emulate the ability of
the human brain to project the input data to a position in
the map using a neighborhood of neurons (En-Naimani
et al., 2014). That is, the topographic order of training
samples can find clusters if the dimensionality of the
network is smaller than the number of training samples.
The neighborhood of neurons can map similar features
to nearby positions in the feature map. This fact can be
especially useful when applied to a set of face landmarks,
as in the EBGM method.

Consequently, in this paper we will use a
connectionist model to improve the efficiency of the
EBGM algorithm. To do this, an SOM is applied
in the construction of the database of facial graphs in
an adaptive learning process. First, the fiducial points
will be extracted automatically and, after that, faces
will be grouped (or clustered) into M classes, each
one corresponding to a different person. The main
contributions of our paper can be summarized as follows:

• A modified version of the original EBGM method
is introduced. In this work, fiducial points are
obtained automatically by using an edge detector.
The similarity function is composed of weighted
geometric and texture distances.

• A self-organizing map framework for the recognition
process is presented. The SOM will deal with the
facial graphs obtained from the feature extraction
process, will cluster similar facial graphs from the
training set, and then will recognize new input
images from the test database. There is no
previous work that combines EBGM with an SOM
framework.

• An RGB fuzzy skin detector is applied for the
face detection process. Each color plane is
modeled using fuzzy sets. This detector achieves
very good detection rates and proves to be a
suitable technique for segmenting skin in various
environment conditions.

This paper is organized as follows. Section 2
describes the EBGM method and summarizes some
related work. Section 3 considers the design of an RGB
fuzzy system for detecting faces. Section 4 explains a
modified proposal of an EBGM-based face recognition
method and the formal framework to define it. Section 5
introduces the neural network approach with a self
organizing map for recognition. Section 6 describes the
experiments carried out. Finally, conclusions and some
future works are discussed in Section 7.

2. EBGM algorithm and related work

In this section, the EBGM algorithm is described and,
afterwards, some recent, related works are discussed.

2.1. Elastic bunch graph matching method.
Elastic bunch graph matching is a feature-based face
identification method. It derives a bunch of jets for each
training image and uses the jets to represent the graph
node. To form a bunch graph, a collection of facial
images is marked with node locations at defined positions
of the head. These node locations are called landmarks
and are obtained by a semi-automatic process. When
matching a bunch graph to an image, the jet extracted from
the image is compared with all jets in the corresponding
bunch attached to the bunch graph, and the best matching
one is selected.

Jets are defined as Gabor coefficients in a landmark
location computed by convolving a set of Gabor wavelet
filters around each landmark location. The jets of all the
training images are collected in a data structure called
a bunch graph. The bunch graph has a node for every
landmark on the face and every node is a collection of
jets for the corresponding landmark. The main steps for
face recognition by EBGM are outlined below (Rattani
et al., 2006):

1. Select the landmarks on the training face images to
create the face models. The selection is performed
manually.

2. Convolve these points with a Gabor wavelet to
construct the Gabor jets J . The local appearance
around a fiducial point �x will be coded by using the
convolution of the input image I(�x) with a Gabor
filter ψm(�x) so that

ψm(�x) =
‖�km‖
σ2

exp

(
‖�km‖‖�x‖

2σ2

)

×
[
exp

(
i�km�x

)
− exp

(−0.5σ2
)]
,

(1)

where the width of the Gaussian is controlled by the
parameter σ = 2π and �km is the wave vector:

�km =

(
kmx

kmy

)
=

(
kν cosϕμ

kν sinϕμ

)
,

kν = 2−
ν+2
2 π, ϕμ = μ

π

8
.

(2)

A jet J will have 40 coefficients, where ν =
0, 1, . . . , 4 correspond to 5 different frequencies and
μ = 0, 1, . . . , 7 are 8 different orientations of the
Gabor kernels.

3. Create a data structure called the bunch graph
corresponding to facial landmarks that contains a
bunch of model jets extracted from the face model.
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4. Then for every new image to be recognized:

(a) Estimate and locate the landmark positions
with the use of the bunch graph.

(b) Calculate the new jets displacement from the
actual position by comparing it with the most
similar model jet.

(c) Create a new facial graph containing each
landmark position and jet values for that
landmark position.

5. Similarly, for each new image, estimate and locate
the landmarks using a bunch graph. Then the features
are extracted by convolving with the Gabor filters
followed by the creation of the facial graph. The
matching score is calculated on the basis of the
similarity between the facial graphs of the images in
the database and the one in a new input image.

2.2. Related work. EBGM has been used for face
recognition in the last few years. Most of the methods
based on EBGM use Gabor wavelets for feature extraction
(Shen and Bai, 2006). These features are represented by
a grid of points geometrically adjusted to the features
extracted. The recognition is based on the wavelet
coefficients, which are calculated for the nodes of a
2D elastic graph representing the grid containing the
landmarks. This method combines a local and a global
representation through the processing of a Gabor filter
with several scales and several directions (jets), of a point
set called fiducial points located in specific regions of
the face. The location of the fiducial points is the most
complex task of this method. These points depend on
the lighting conditions, the expression and the pose of the
face.

An alternative method proposed by Monzo et al.
(2010) is the application of the histogram of orientation
gradients (HOG) instead of using Gabor filters to locate
features. The HOG descriptor is a statistic measure
where the orientations of all the image gradients around
a reference point are taken into account. This algorithm
provides invariance in terms of location and orientation.

Recently, a combination of EBGM with PCA and
soft biometrics is used to conduct a study on the influence
of age variations in face recognition (Guo et al., 2010).
Additionally, some new versions of EBGM focus on fast
versions of the algorithm in order to make it feasible
for real conditions; thus, a parallel version of EBGM
for fast face recognition using the MPI (message passing
interface) is presented by Chen et al. (2013). Khatun
and Bhuiyan (2011) proposed a neural network based face
recognition system using Gabor filter coefficients, where
the recognition used a hybrid neural network with two
networks, a bidirectional associative memory (BAM) for

dimensionality reduction and a multilayer perceptron with
backpropagation algorithm for training the network.

In the work of Mitra et al. (2011), a data mining
approach to improve the performance of EBGM when
using a large database was proposed, based on an
entropy decision tree with the most important features
in the face recognition process. Finally, Sarkar (2012)
combined skin detection with EBGM so as to obtain
an accurate recognition, since skin segmented images
remove background noise and reduce errors in identifying
Gabor features.

As mentioned before, calculating the precise location
of the fiducial points is not straightforward. In the
original EBGM algorithm, a fixed number of features
were established. They corresponded to specific face
characteristics, such as the pupils or the corners of the
mouth. As a result, a facial model graph is obtained and
the fiducial points are manually selected for each image in
the database. Another way to locate the features is based
on a uniformly distributed grid of points that deforms
and conforms to a pattern, such as the contours identified
by an edge detector (Canny, Sobel, MLSEC, etc.) (Espı́
et al., 2008; González-Jiménez and Alba-Castro, 2007).

Some advances have been made recently for the
detection of the fiducial points in faces. Among
others, Belhumeur et al. (2011) used a Bayesian model
with very accurate results, whereas a method based
on regression forests that detects 2D facial feature
points in real-time was presented by Dantone et al.
(2012). Moreover, Baltrusaitis et al. (2012) proposed
a probabilistic landmark detector that learns non-linear
and spatial relationships between the input pixels and the
probability of a landmark being aligned. Finally, Jin
et al. (2013) developed a Hough voting-based method
to improve the efficiency and accuracy of fiducial points
localization.

To sum up, from this revision, two conclusions
emerge: first of all, there is still a great interest among
many research groups in using and improving the original
EBGM method for face recognition; moreover, most of
these investigations are focused on adapting EBGM to be
used in real-time conditions with an accurate location of
the landmarks or fiducial points for faces. It is clear that
there is still much to be done in this field, and no previous
works on the explicit application of self-organizing maps
to EBGM have been found.

3. Skin-color face detection

Before our recognition algorithm is applied, faces must
be located using some detection method. Many recent
proposals are based on the underlying idea of representing
the skin color in an optimal color space (such as RGB,
YIQ or HSV) by means of the so-called skin cluster (Yang
et al., 2004). Thus, color information is an efficient tool
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for identifying facial areas if the skin color model can
be properly adapted for different lighting environments.
Moreover, as color processing is much faster than
processing other facial features, it can be used as a
preliminary process for other face detection techniques
(Hsu et al., 2002). Another advantage of skin color
detection is that color is invariant to partial occlusion,
scaling, rotations, translation, and face orientation. This
fact is particularly useful in face detection techniques.

For our proposals, the RGB color system has been
chosen. The RGB space corresponds closely to the
physical sensors for colored light such as the cones in the
human eye or red, green and blue filters in most color
charge-coupled device (CCD) sensors. In the work of
Pujol et al. (2008), a fuzzy RGB skin color detector was
proposed. Let us summarize its main features and adapt it
to face detection.

Given a color image I of size W = n × m pixels,
where each pixel is defined by a color vector c in a color
space C, so that c(p) = c1(p), c2(p), . . . , cl(p), ∀p ∈ I ,
the histogram of C,H(C) is defined as a q × l array
H(C) = {f1, f2, . . . , fl}, such that each fi is the
frequency vector on the image I , using q bins, of the color
component ci, for i = 1, 2, . . . , l.

Therefore, the value of each bin is the number of
pixels in image I having the color ci. If H(C) is
normalized byW , thenH(C) takes the color spaceC into
the interval [0, 1]; that is, H(C) represents the probability
distribution of each colour ci to be present in image I .
According to Zadeh’s theory (Zadeh, 1965; Piegat, 2005),
a fuzzy set is a pair (A,m) where A is a set and m:
A → [0, 1]. This can be applied to the color histogram,
where the fuzzy set can be defined as the pair (C,H),
where C is the color space and H : C → [0, 1] is the
normalized histogram. For each c ∈ C,H(c) is the grade
of membership of c, so that c ∈ (C,H) ⇐⇒ c ∈ C
AND H(c) �= 0.

As a result, the membership functions for the skin
color in each RGB plane can be modeled using a Gaussian
function, such that

μSKINi(ci) = βi exp
(
− (ci − αi)

2

2σ2
i

)
, (3)

where i = {R,G,B}; {cR, cG, cB} ∈ [0, 255];βi =
maxH(ci), σ

2
i is the variance of each fuzzy set ci and

αi = argmaxci H(ci).
For the background pixels, i.e., the non-skin pixels

in the image, let us consider a variation of the model
introduced by Murthy and Pal (1990), which identifies the
fuzziness in the transition region between the object (in
this case, the skin) and the background classes. Thus, the
membership value of a point to the object is determined
by applying an S-function and a Z-function to the each
color plane, so that:
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(5)

where the values bSi , bZi are the cross-over points of the
fuzzy sets defined by μS

NSKINi
(ci), μZ

NSKINi
(ci), respectively,

for i = {R,G,B}; i.e., the membership value of ci =
bSi (or bZi ) that is equal to 0.5; {cR, cG, cB} ∈ [0, 255];
aSi = γZi = argmaxci H(ci); aZi = 0.5 γZi ; and γSi =
1.5 aSi .The results for the models of the fuzzy skin and
non-skin classes are shown in Fig. 1; three classes are
found for each color fuzzy set.

Now, given an input image I , for any pixel p ∈
I , its color components are fuzzified, according to the
parameters defined in Eqns. (3)–(5), and using some
of the three color spaces considered above. Then the

Fig. 1. Modeling the skin and non-skin classes for the RGB
color space.
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inferencing system processes each pixel and, by using
the available knowledge in the form of IF-THEN rules,
it identifies and classifies skin color pixels in the output
image. This procedure results in the assignment of one
output fuzzy set for each rule. A total of 12 rules for
each color space were extracted for our system. The
min–max inferencing technique was used, where the
output membership function of each rule is clipped off
at a height corresponding to the rule premises computed
degree of truth. The combined fuzzy output membership
function is built by combining the results of all the fuzzy
rules. If an output fuzzy set is activated by more than
one rule, the maximum of all activations is considered
in the construction of the combined output membership
function.

The Mamdani method was chosen as the
defuzzification procedure, which means that the fuzzy
sets obtained by applying each inference rule to the input
data were joined through the add function; the output
of the system was then computed as the centroid of the
resulting membership function.

After the defuzzying process, the system creates an
output binary image where pixels are segmented as skin or
non-skin pixels. The skin localization process is achieved
by applying an 8-connected blob algorithm (Di Stefano
and Bulgarelli, 1999). Then, after identifying skin
regions, the algorithm detects face regions by applying
the well-known Viola–Jones face detector (Viola and
Jones, 2004). Combining the skin segmentation process
with the Viola–Jones algorithm increases the efficiency of
face detection. Once detected, faces will be normalized to
the same size for the recognition process.

4. Proposal of an EBGM-based face
recognition method

Before developing a connectionist model, in this section
a new version of the original EBGM method described
previously is presented.

4.1. Problem formulation. Let us define first a
conceptual framework of the face recognition problem
to formalize the method proposed in this paper. The
recognition system is restricted to a set of individuals that
compose the collection of subjects of interest. Let H be
the set of users hi where the face recognition process is
performed:

H = {h1, h2, . . . , hn} . (6)

Let F be an ideal facial recognition function. Let I
and γ be an input image containing a face and the set of all
the images in a database, respectively. Therefore, function
F : γ → H∪ {∅} is able to identify, ∀I ∈ γ, if any input
subject of the set H is found or not in image I:

F(I) =

{
hi, if I has a face of person hi ∈ H,
∅, otherwise.

(7)

Artificial face recognition methods try to implement
the above ideal function using computer algorithms to
approximate its behavior. In a general case, the main goal
is to find a function that provides a distance value. This
distance measures the degree of similarity between a new
input face to be identified using some recognition method
and the training set of faces previously learned by the
system. This similarity function is calculated according
to a distance function S:

S : γ ×H → R
+ ∪ 0. (8)

Thus, the following equation defines the
approximation function to the ideal recognition function
F̂ : γ → H ∪ {∅}, so that ∀I ∈ γ:

F̂(I) =

{
hi, if S(I,F(I)) < τ,
∅, if S(I,F(I)) ≥ τ,

(9)

where hi represents a certain user in H and τ is an
acceptance threshold to be determined.

4.2. Recognition method. From the formulation
above, this work proposes an implementation of function
F in Eqn. (9) based on a modified version of the EBGM
method.

Therefore, faces are represented using a facial graph
that includes both geometric and textural information.
The facial graph is defined as a pair {V,A}, where V
refers to the set of vertices or nodes and A to the set of
edges. Each vertex corresponds to a fiducial point and
encodes the corresponding vector of jets and its location,
that is, Vi = {Ji, Pi(x, y)}. Each edge Aij encodes
information on the distance and angle between the two
nodes (i, j) it connects, so that Aij = {dij , θij}.

For each node, a 2-dimensional histogram histi is
constructed. In this histogram, the information about the
distance D = {di1, di2, . . . , din} and the angle Θ =
{θi1, θi2, . . . , θin} from node i to the other nodes in the
graph will be stored. Consequently, the histogram histi
consists of k bins corresponding to x distance-intervals
×y angle-intervals. Thus, the k bins in histogram histi
are uniformly constructed in a log-polar space. Each pair
(log(dij), θij) increases the corresponding histogram bin.
The procedure to obtain the fiducial points and build the
facial graph is outlined as Algorithm 1.

A graphical example of how the fiducial points are
extracted can be found in Fig. 2.

From the fiducial points of the face obtained by
the previous algorithm, the facial graph is configured.



456 F.A. Pujol et al.

Algorithm 1. Obtaining the fiducial points from faces.
Step 1. Pre-process images: Skin face detection, image
size normalization and grayscale conversion.

Step 2. Apply an edge detector. In this work, the
well-known Canny edge detector (Canny, 1986) is used.

Step 3. Create a grid ofWx×Wy points, where nodes are
uniformly distributed.

Step 4. Adjust each node’s position to the nearest point in
the edges obtained in Step 2.

Step 5. Calculate the distances and angles from each final
node to the rest of nodes.

Figure 3 shows visually how the graph is adjusted from
the initial homogeneous grid according to Algorithm 1.

A Gabor jet J is now constructed. Following
Wiskott’s approach (Wiskott et al., 1997), a vector of
40 complex components will be calculated. A jet J is
then obtained considering the magnitude parts only. The
position of each of the nodes in the two facial graphs
to be compared is known, as each vertex Vi encodes
this information: V1 = {J1, P}, V2 = {J2, Q}, where
P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} are the
vectors with the positions of each of the fiducial points for
both faces.

As a consequence, as in the original EBGM method,
in order to match two facial graphs, G1 = {V1, A1} and
G2 = {V2, A2}, both geometric and texture information
will be used. Thus, three similarity functions are proposed

(a) (b) (c)

(d) (e) (f)

Fig. 2. Process of obtaining the fiducial points: original image
(a), detected face (b), canny edge detector (c), fiducial
points over edges (d), fiducial points over detected face
(e), fiducial points over the original image (f).

(a) (b)

Fig. 3. Facial graph construction for a 5×5 grid: initial position
(a), final position of nodes (b).

in this work: the match cost (MC) function, the norm vec-
tor (NV) function and the Gabor feature match (GFM)
function. These functions are based on the ones proposed
by González-Jiménez and Alba-Castro (2007).

Regarding the geometric information, our goal is to
compute the distance between the two graphs as a sum of
the matching errors between corresponding fiducial points
(MC), together with a term measuring the magnitude of
the aligning transformation (NV).

Taking into account the histograms previously
computed with the geometric information of the nodes, it
is natural to use the χ2 test statistic in order to calculate the
distance between two facial graphs. Consequently, MC is
calculated by adding the matching costs for each node in
the input facial graph G1 with its corresponding node in
the stored facial graphG2:

MC(G1, G2) = MC(P,Q)

=

n∑
i=1

∑
k

[histpi(k)− histqi(k)]
2

histpi(k) + histqi(k)

‖P‖ · ‖Q‖ ,

(10)

where ‖P‖, ‖Q‖ are the norms of vectors P and Q.
The second function, NV, is calculated by adding

the norm of the vector of differences among the matched
nodes:

NV(G1, G2) = NV(P,Q) =
n∑

i=1

‖−−→picP −−−→qicQ‖, (11)

where

cP =

n∑
i=1

pi, cQ =

n∑
i=1

qi.

The texture information given by the Gabor jets from
each node will be used to define the third similarity
function, GFM. Thus, for each node pi ∈ P , a jet Jpi

is calculated. LetR contain the Gabor jets of all the nodes
in a facial graph, R = {Jp1 , Jp2 , . . . , Jpn}. The function
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GFM between two facial graphs is calculated as follows:

GFM(G1, G2) = GFM(R1, R2) =
1

n

n∑
i=1

〈R1i , R2i〉,
(12)

where 〈R1i , R2i〉 is the normalized dot product between
the i-th jet in R1 and the i-th jet in R2. As mentioned
before, only the magnitude of the Gabor coefficients in
the jets is considered.

Finally, from the expressions defined in
Eqns. (10)–(12), the final similarity function (called
the global distortion (GD) function) is defined by
combining the results:

GD(G1, G2) = λ1MC(G1, G2)

+ λ2NV(G1, G2) + λ3GFM(G1, G2),
(13)

where λ1, λ2, λ3 are coefficients to be obtained
experimentally and λ1 + λ2 + λ3 = 1.

The three functions in GD are normalized to the
range [0, 1]. This normalization is performed with the
maximum values for each component function using the
distance between the input facial graph and the facial
graphs stored in the database. Subsequently, the final GD
function will be

GD(G1, G2) =
λ1MC(G1, G2)

max(MC(G1, G2))

+
λ2NV(G1, G2)

max(NV(G1, G2))

+
λ3GFM(G1, G2)

max(GFM(G1, G2))
. (14)

Consequently, facial images belonging to the same
person will result in GD � 0, and facial images of
different people will have a GD close to 1.

5. Improving the EBGM algorithm with
a neural network approach

The self-organizing map (SOM) is a neural network
technique that implements a nonlinear projection from a
high-dimensional space onto a low-dimensional array of
neurons. That mapping tends to preserve the topological
relationship of the inputs and, as a consequence, the visual
image of this map depicts clusters of input information
and their neighbor relationships on the map (Kohonen,
2001; Yin, 2008; Gocławski et al., 2012). This kind
of neural network in unsupervised learning is widely
used to learn better representations of the input. The
effectiveness of SOMs for recognition problems has been
shown in many previous works. Next, we describe the
SOM formalization for the proposed facial identification
process.

An SOM is defined at any time by a collection of
neurons, their position on the map and the weight of each
neuron. The neurons are connected to adjacent neurons by
a neighborhood relation. This fact sets up the topology or
the structure of the map. The topological configurations
of neurons are generally rectangular or hexagonal grids
(Yin, 2008). For an SOM of M neurons, the set
W = {w1, w2, . . . , wM} stores the weight information,
where wi is the weight vector associated to neuron i
and has the same dimension as the input. The set W
evolves according to the self-organizing map algorithm.
The neurons positions, defined by their weight vector,
configure a topological mapping of the input space.

Let X ∈ R
k be the input vector of the SOM. When

applied to EBGM, this vector consists of the Gabor jets
extracted from the face graph. Let Ψ : γ → R

k be the
function that obtains the geometrical and textural features
of the face to construct vector X . Then

∀I ∈ γ,Ψ(I) = X ∈ R
k. (15)

The classification of a new input face is obtained
when running the SOM algorithm on the feature vectors
previously calculated by using Ψ on a face image
database. A clustering process can be applied prior to
the classification process (Costa, 2010). However, the
representation of clusters in a 2D region is usually not
a simple problem, since the input data are usually high
dimensional. Let GΨ = {g1, g2, . . . , gM} be the set of
groups obtained when the clustering process is performed.
Thus,

∀I ∈ γ, SOM(Ψ(I)) = X ∈ GΨ, (16)

where the SOM function is the one that classifies an input
feature vector in the map as one of the groups generated
by the clustering process.

Consequently, the self-organizing map builds the
facial graph database from the training image dataset.
Specifically, a two-dimensional Nx × Ny SOM neural
network was used. The number of neurons of the
map was determined experimentally in order to establish
the minimum size that maximizes the efficiency in the
identification.

To analyze and extract the features from each image,
the facial graph obtained from our modified proposal of
EBGM was taken into account. From these data, the
SOM uses the extracted features, i.e., the facial graphs,
as inputs. A threshold u is then considered. It consists
of the maximum distance that characterizes the clusters
organized into the 2D SOM in the training process. In
this case, the SOM applies a classification process from
the set of training facial graphs and generates the set of
clusters GΨ, where each cluster corresponds to one of the
individuals to be identified.
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As described in Section 4, the facial graph includes
a set of nodes corresponding to the set of facial
landmarks, each of them containing both geometric and
texture information. Figure 4 shows the facial graph
representation of the face image of one individual as
an input matrix array. Each circle represents a fiducial
point. Thus, the geometric information is encoded using
both the position of the i-th fiducial point (Pi(x, y)) and
its corresponding histogram histi. Then, the texture
information is represented by its Gabor jet.

Fig. 4. SOM input data from the facial graphs.

From a practical point of view, the two-dimensional
matrix in Fig. 4 can be arranged as a one-dimensional
vector, just by concatenating all the rows in the
matrix. Algorithm 2 shows the learning algorithm of our
SOM-EBGM approach.

After this training process, a map ofNx×Ny neurons
is obtained. The neurons are organized according to their
similarity with respect to the input data. That is, the
neurons that are near each other and in the same cluster
(gk) have information about user k, as shown in Fig. 5.

Fig. 5. Clustering process for the SOM-EBGM algorithm.

In addition, if the network is properly trained with
images of different facial expressions, each group can

Algorithm 2. Learning algorithm for SOM-EBGM.
Step 1. Randomize the map’s neuron weight vector.

Step 2. Obtain the facial graph bunch by using the
modified EBGM on an input face.

Step 3. Every neuron is examined to calculate the most
similar weights with respect to the input data. The
winning neuron c is obtained as the one with the shortest
distance to the input:

c = arg min
1≤i≤NxNy

{‖wi(t)−X(t)‖} , (17)

where ‖ · ‖ is the Euclidean distance, X(t) and wi(t) are
the input and the weight vector of neuron i at iteration t,
respectively.

Step 4. The radius ρ of the winning neuron is then updated
according to a neighborhood function:

ρ(t) = ρ(0) exp

(
− t

β

)
, (18)

where ρ(0) is the neighborhood radius at the first iteration
and β is a constant.

Step 5. The weights of each neighboring node (found in
the previous step) are adjusted to make them similar to the
input vector according to this learning function:

wi(t+ 1) = wi(t) + α(t) exp

(
−‖rc − ri‖2

2ρ2(t)

)
·

× (X(t)− wi(t)),

(19)

where r is the coordinate position of the neurons on
the map and α(t) is the learning rate, which decreases
monotonically with t.

Step 6. Repeat steps 2–5 for T iterations.

have subgroups for different expressions or poses of
the same individual. For example, the distribution of
the winning neurons (hit histogram) shown in Fig. 6
illustrates this idea: each group concentrates most of
the hits in a few neurons. Note that the other winning
neurons of the group share many of the facial features
of the individual and the position of its fiducial points
(eyes, nose, mouth, etc.). However, they have changes
that represent features corresponding to different facial
expressions.

Therefore, with an accurate training and a complete
set of test images, the proposed method can be robust
against expression variations. This trained map will be
used for face recognition.

The calculation of the winning neuron is performed
by using the similarity function defined in Eqn. (14). The
neuron that minimizes the result of the GD function is the
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Fig. 6. Hit histogram detail.

winning neuron, and then the cluster where this neuron
is located indicates who is the person to whom the face
belongs.

The computational complexity of this approach can
be analyzed from various points of view: on the one hand,
the cost of training the SOM network and, on the other
hand, the cost of recognition once the network has been
trained. The time cost of network training is proportional
to the number of faces that are used for training. However,
a training delay does not affect the recognition complexity
since that processing can be performed offline. On the
other hand, regarding the computational complexity of
the recognition function, the procedure consists of finding
which neuron in the SOM is closest to the face to be
recognized. In this process, the search is performed only
with the excited neurons of the SOM. This way, the
proposed method compacts the information of the user
faces and, consequently, the size of the database of the
registered faces is reduced considerably. Therefore, the
amount of facial comparisons in the recognition process
is no greater than the size of the SOM. The time cost
of each comparison will be the time to compute the GD
function for each pair of facial graphs. To do this, the
histograms and facial graph of the input face must be
first obtained using the described methods. This cost is
similar to individual matching using the standard EBGM
algorithm.

As the self-organizing map has been built and
trained, the following section describes the results of some
experiments completed for our model and compares them
with other existing methods.

6. Experiments

6.1. Experimental setup. The recognition scheme
was tested with three different databases:

• FERET database (Phillips et al., 2000). The version
used in this work is Color FERET. It contains 11,338
pictures of 994 different individuals. Images are
distributed into different sets: fa, fb, fc, dup1 and
dup2. Images stored in fb were taken a few moments
of time after the ones in fa, so in most cases some
changes in the expression of the model can be

noticed. Images in fc pictures were taken on the
same day as fa pictures but with different cameras
and illumination. Then, dup1 pictures were taken
on different days than fa pictures but within a year.
Dup2 pictures were taken at least one year later than
fa pictures.

• Extended Yale B database (Georghiades et al., 2001)
(more precisely, the cropped Extended Yale B
version (Lee et al., 2005)) was taken into account.
The database consists of 2,414 frontal-face images
of 38 subjects captured under 64 different lighting
conditions, which were manually aligned, cropped,
and then resized to 168 × 192 pixels.

• Labeled Faces in the Wild (LFW) database (Huang
et al., 2007). It contains 13,233 images of 5,749
different individuals. Of these, 1,680 people have
two or more images in the database. The database
is designed as a benchmark for the problem of
unconstrained automatic face verification with face
images containing large variations in pose, age,
expression, race and illumination.

A subset of 200 users extracted from the set fa of
the FERET database were used to train the model, find
the best value of the parameters and configure the SOM
to maximize the recognition rate (tests 1, 2 and 3). Once
the SOM had been configured, the recognition rate of the
method was obtained by using the other sets of images and
has been compared with other methods (test 4). Figure 7
shows this process.

Fig. 7. SOM-EBGM recognition process.

The tests were performed using Matlab R© with a 2
GHz Intel Core i5 and 8 GB memory. The training process
had been run until the improvement in the recognition rate
between two iterations was insignificant.

6.2. Results on face detection. In order to use our
fuzzy skin detector, first the normalized histogram for
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the RGB color space for the training set, H(C) =
{fR, fG, fB}, must be calculated. The training was
performed using the set of 200 images from the Color
FERET database mentioned before, extracting only the
skin information, and using different ethnic groups and
changing lighting conditions.

As mentioned in Section 3, after defining a skin
color detection system, we will need to determine if the
resulting pixels belong to a face or not. To do this,
the Viola–Jones detector is used. Some examples of the
results of the skin face detector are shown in Fig. 8.

Fig. 8. Results on face detection. From left to right: original
image, fuzzy RGB skin detector, face detection.

A comparison of our detector with other related
works is shown next. Thus, the Viola–Jones method
(Viola and Jones, 2004) is selected first. Then, recent
Sarkar’s proposal (Sarkar, 2012) is considered, where
a skin face color detector is proposed, but the HSV
color system is used instead of RGB. The results on the
detection for all the three methods can be seen in Fig. 9,
where some images from the FERET and LFW databases
are considered.

In addition, the three methods have been compared
by calculating the detection rate (DR), the false positive
rate (FPR) and the false negative rate (FNR), defined as
follows:

DR(%) =
NS

NF
× 100, (20)

FPR(%) =
NFP

NNF
× 100, (21)

FNR(%) =
NFN

NF
× 100. (22)

In these equations, NF is the total number of skin
color pixels, NS is the number of correctly detected
skin color pixels, NNF is the total number of non-skin

Fig. 9. Comparison of face detectors. From left to right: orig-
inal image, Viola and Jones detector, Sarkar’s detector,
fuzzy RGB skin detector.

color pixels, NFP is the number of non-skin pixels that
are detected incorrectly as skin color, and NFN is the
number of skin color pixels that are detected incorrectly as
non-skin color pixels. Table 1 shows the results of these
measures using the three methods considered.

Table 1. Comparison of some face detection methods.
Method DR FPR FNR

Viola–Jones 94.8 10.7 7.9
Sarkar 87.5 18.8 13.3

Fuzzy skin 96.7 5.1 4.8

According to this comparison, our method leads to
very accurate segmentation of face images and improves
the results of the Viola–Jones face detector, which is the
actual standard in many applications of face detection.
Consequently, we believe that the developed fuzzy skin
detector is a reliable face detector.

After the detection is completed, faces are rescaled
to a size of 120× 120 pixels and converted into grayscale
for the recognition process. Note that for the cropped
Extended Yale B database images only need to be resized,
since faces are already detected and in grayscale.

6.3. Results on face recognition. The experimentation
completed has a dual objective: firstly, the best
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configuration for the SOM network, the facial graph and
the weighting coefficients λi is found in order to achieve
higher recognition rates. Afterwards, our proposal is
compared with a set of related, state-of-the-art techniques.

Map test 1: Type and size. Table 2 shows the
recognition rate, whereM is the number of different users
to be recognized in our system. The coefficients λi were
considered as λ1 = 0.25, λ2 = 0.25, λ3 = 0.5.

Table 2. Recognition rate (%): map type and size.
SOM size Rectangular grid Hexagonal grid

M − 10×M − 10 85.6 85.7
M − 5×M − 5 85.1 83.9

M ×M 92.3 95.8
M + 5×M + 5 91.1 91.5

M + 10×M + 10 90.1 91.3

The results show that the optimal size of the map
corresponds to the number of individuals to be identified.
Moreover, a hexagonal distribution of neurons provides
slightly better results than a rectangular grid.

Test 2: Size of the facial graph. In this experiment,
the relation between the size of the facial graph obtained
from the SOM-EBGM method and the recognition rate is
analyzed. Here λi were considered as λ1 = 0.25, λ2 =
0.25, λ3 = 0.5 and the size of the SOM wasM ×M . The
results are shown in Table 3.

Table 3. Recognition rate (%): size of the facial graph.
Size 6× 6 8× 8 10× 10

Recognition rate 91.3 92.1 94.4

Size 12× 12 14× 14 16× 16

Recognition rate 95.2 93.9 90.1

From these results, it must be noticed that increasing
the size of the facial graph increases the accuracy of
the SOM-EBGM system until it reaches the maximum
recognition rate when a 12 × 12 grid is used. However,
adding more fiducial points to the graph reduces
significantly the accuracy of our method. This is due to
the fact that the correspondence between the two facial
graphs to be compared is much less precise as the size of
the graph increases. As a result, a 12 × 12 grid will be
used for the rest of the experiments. If a faster system is
needed, a 10 × 10 grid will be enough, since it reduces
considerably the training cost of the SOM-EBGM method
and the recognition rate only reduces 0.8%.

Test 3: Weighting coefficients λi of the simi-
larity function. This test consists in systematically
testing all combinations of weights and calculating the

correspondence obtained in each case. Table 4 shows only
some of the most representative cases for the following
configurations: (a) cases where only one of the functions
is considered, (b) cases where one of the functions
is excluded from the final calculation, (c) a uniform
weighting case and, (d) cases where a function is weighted
over the others. As mentioned before, λ1 + λ2 + λ3 = 1,
and the size of the SOM was M ×M , with a facial graph
of 12× 12 fiducial points.

Table 4. Recognition rate (%): selection of coefficients.
Case Coefficients λ1, λ2, λ3 Recogn. rate

λ1 = 0, λ2 = 0, λ3 = 1 77.3
(a) λ1 = 0, λ2 = 1, λ3 = 0 60.1

λ1 = 1, λ2 = 0, λ3 = 0 61.0
λ1 = 0.5, λ2 = 0.5, λ3 = 0 70.3

(b) λ1 = 0.5, λ2 = 0, λ3 = 0.5 72.9
λ1 = 0, λ2 = 0.5, λ3 = 0.5 84.3

(c) λ1 = 1/3, λ2 = 1/3, λ3 = 1/3 85.6
λ1 = 0.2, λ2 = 0.7, λ3 = 0.1 83.7
λ1 = 0.7, λ2 = 0.2, λ3 = 0.1 83.5

(d) λ1 = 0.2, λ2 = 0.2, λ3 = 0.6 89.9
λ1 = 0.25, λ2 = 0.25, λ3 = 0.5 96.5

From these results, it becomes clear that a
combination of both textural and geometric information
from the fiducial points gives better results, whereas
taking into account only the Gabor jets (related to
coefficient λ3) or the geometric information (related to
coefficients λ1 and λ2) does not result in a reliable
recognition rate. In particular, when the global distortion
(GD) function has a uniform combination of geometric
features (λ1 = 0.25, λ2 = 0.25) and Gabor features
(λ3 = 0.5), the system achieves a higher accuracy. This
result is consistent with our initial proposal and shows that
all the three functions of similarity defined in Section 4
have great influence on the success of the face recognition
process.

Test 4: Comparison with other methods. Having
chosen the optimal parameters of the SOM-EBGM
algorithm, a set of experiments to compare our method
with other existing algorithms for face recognition must
be completed. This test was performed with the trained
SOM and the test sets of facial images. That is, we
consider closed-set identification to classify a given face
as belonging to one of M identities stored in the gallery.

Note that the LFW database is commonly used for
benchmarking face verification. However, in this work
we consider the closed set identification protocol defined
by Best-Rowden et al. (2014) and Taigman et al. (2015).
Thus, when using LFW, the gallery set includes 4,249
identities, each with only a single example, and the probe
set includes 3,143 faces belonging to the same set of
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identities. The performance is measured by the rank-1
identification accuracy, i.e., by a correct identification.

Firstly, three classical methods were taken into
account: Wiskott’s EBGM (Wiskott et al., 1997) with 12
× 12 nodes, eigenfaces (PCA) (Turk and Pentland, 1991)
with 20 eigenvectors, and Ahonen’s local binary patterns
(LBP) (Ahonen et al., 2004) with a neighborhood of 8
points of radius 4 with respect to the central pixel in the
neighborhood, as in the original paper.

In addition, there are numerous kernel-based
algorithms proposed for the face recognition task (Zheng
et al., 2011; Gao and Fan, 2011; Gao et al., 2012; Li
et al., 2014). For our proposals, the comparison includes
the following relevant works:

• Kernel fuzzy discriminant analysis (KFDA) (Gao
et al., 2013a). This is a novel method for feature
extraction and recognition. The KFDA method
is obtained by combining the advantages of fuzzy
methods in order to obtain a nonlinear model and a
new learning method. A polynomial kernel p = 6 is
selected with QR decomposition.

• Median null(Sw)-based (M-N(Sw)) method (Gao et
al., 2013b): This method proposes a two-stage linear
discriminant analysis for face feature recognition.
According to the experiments performed, this
technique is more robust than the class sample
average based traditional linear discriminant analysis
models. We used 15 discriminant vectors when
comparing it with our method.

• Patterns of oriented edge magnitudes histogram
sequence (POEM-HS) (Vu and Caplier, 2012).
The POEM feature descriptor is a robust and
computationally inexpensive method. According
to the authors, this method outperforms many
other related descriptor-based techniques. For the
experiments, we considered the optimal parameters
defined by the authors: unsigned representation with
three bins, with 10 × 10 pixel blocks, 7 × 7 pixel
cells, and 6 neighbors per cell.

• Statistical local features with robust kernel
representation (SLF-RKR) (Yang et al., 2013).
The model proposed used a multipartition max
pooling technology to enhance the invariance of
local features in face recognition, and a kernel
model, which adopts a robust function to handle
the occlusion in facial images. The number of
histogram bins selected for each sub-block is 16
and the histogram intersection kernel is used as the
kernel function.

• Linear discriminant regression classification (LDRC)
(Huang and Yang, 2013). This approach embeds
discriminant analysis into the linear regression

classification algorithm for achieving an optimal
projection matrix that leads to a high discriminatory
ability for classification.

• Discriminant locality preserving projections (DLPP)
based on L1-norm maximization (Zhong et al.,
2014): this work aims at learning a set of
local optimal projection vectors by maximizing
the ratio of the L1-norm-based locality preserving
between-class dispersion and the L1-norm-based
locality preserving within-class dispersion. For the
experiments, the updating parameter β of DLPP-L1
is set to 0.01.

• Multilinear sparse principal component analysis
(MSPCA) (Lai et al., 2014). The optimal multilinear
sparse principal component vectors are obtained
from an iterative algorithm using singular value
decomposition on tensor data instead of vectors. The
authors claim that this algorithm may outperform the
existing PCA-based subspace learning algorithms.
The dimensionality selected for MSPCA in this case
is 17 × 17.

Finally, some recent variants of EBGM were
considered as well. In particular, both the neural network
face recognition system using Gabor filter coefficients
proposed by Khatun and Bhuiyan (2011) (NN-EBGM)
and a skin detector combined with EBGM (Sarkar, 2012)
(SD-EBGM) were taken into account. 40 Gabor filters
were used in both works instead of the number proposed
by the authors. The results for all the algorithms involved
are shown in Table 5.

Table 5. Comparison between methods. The performance is
measured in each database by means of the rank-1 ac-
curacy (%) for the closed set identification protocol.

Algorithm FERET Yale B LFW

PCA 66.4 78.3 45.6
LBP 74.5 84.7 53.5

EBGM 80.9 82.2 51.1
KFDA 52.1 68.5 47.1

M-N(Sw) 66.8 72.7 58.3
POEM-HS 86.9 94.0 61.6
SLF-RKR 88.5 96.3 61.0

LDRC 89.0 99.0 60.5
DLPP 74.9 90.7 56.8

MSPCA 83.0 91.8 54.6
NN-EBGM 75.3 90.9 55.2
SD-EBGM 88.0 86.4 57.7

SOM-EBGM 90.2 99.2 62.9

From these results, our method achieves the best
results for the FERET database over 90% of correct
recognitions. It is about 1–2% better than other recent
state-of-the art methods and more than 15% better than
the previous neural network system applied to EBGM.
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Regarding the Yale B database, our method achieves over
99% of correct identifications the best total performance
compared with the other methods. This fact shows that
our proposal is robust against illumination variations,
such as the ones found in the Yale B database. Finally,
for the LFW database, the overall results are not as
accurate as in the other two databases, because of the
great difficulty in achieving good identification rates when
using a challenging unconstrained database like LFW.
Nevertheless, our results outperform the other algorithms,
as in the other databases.

As a conclusion, it is proved that our SOM-EBGM
proposal can be used as an alternative of the original
EBGM method for face recognition at a lower
computational cost due to its ability of compacting
face information.

7. Discussion and conclusions

This work presented a modified version of EBGM that
makes use of an SOM to cluster and classify faces. From
the results of the experiments, it was proved that applying
connectionist techniques to build the face database from
the facial graph improved the results compared with many
other recent proposals.

Applying an SOM achieves a much more compact
database than traditional methods do. Thus, in
EBGM-based algorithms, the bunch graph for the
matching process contains information of each graph from
all the input images in the training set. Therefore, the
more images in the training set, the larger the size of
the graph database. In our approach, the information is
compacted. Thus, the map size determines the number of
graphs to be used in the matching phase. Consequently,
the training can be applied to an extensive set of images
without affecting the amount of memory required to store
the whole database during the execution of the recognition
algorithm.

Our future works are aimed at two goals. First,
the experiments are being performed using open-set
identification to verify the suitability of our method for
real-world applications. On the other hand, the SOM
framework proposed is being combined with other recent
recognition methods to investigate more potential uses of
our approach.
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