
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 2, 277–283
DOI: 10.1515/amcs-2016-0019
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Fractional descriptor reduced-order nonlinear observers for a class of fractional descriptor continuous-time nonlinear sys-
tems are proposed. Sufficient conditions for the existence of the observers are established. The design procedure for the
observers is given and demonstrated on a numerical example.
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1. Introduction

Fractional linear systems were considered in many papers
and books (Kaczorek, 2012b; 2013; 2011a; 2011b;
Oldham and Spanier, 1974; Ostalczyk, 2008; Podlubny,
1999; Vinagre et al., 2002). Positive linear systems
consisting of n subsystems with different fractional orders
were proposed by Kaczorek (2011a; 2011b). Descriptor
(singular) linear systems were investigated by Dodig and
Stosic (2009), Cuihong (2012), Dai (1989), Fahmy and
O’Reill (1989), Gantmacher (1960), Guang-ren (2010),
Kaczorek (2012a; 2012b; 1992), Kucera and Zagalak
(1988), Lewis (1983), Luenberger (1978; 1977), Podlubny
(1999) and Van Dooren (1979). Eigenvalue and invariant
assignments by state and input feedbacks were addressed
by Fahmy and O’Reill (1989), as well as Kaczorek (2004;
2015). The computation of Kronecker’s canonical form of
a singular pencil was analyzed by Van Dooren (1979).

A new concept of perfect observers for linear
continuous-time systems was proposed by Kaczorek
(2001; 2015). Observers for fractional linear systems were
addressed by Kaczorek (2008), Kociszewski (2013) and
Vinagre et al. (2002), and for descriptor linear systems
by Kaczorek (2014a). Fractional descriptor full-order
observers for fractional descriptor continuous-time linear
systems were proposed by Kaczorek (2001), along with
reduced-order observers (Kaczorek, 2014b). The stability
of positive descriptor systems was investigated by Virnik
(2008).

In this paper, fractional descriptor reduced-order
observers for a class of fractional descriptor
continuous-time nonlinear systems will be proposed
and sufficient conditions for the existence of the observer
will be established.

The paper is organized as follows. In Section 2, the
basic definitions and theorems of fractional descriptor
nonlinear continuous-time systems are recalled and their
full-order fractional descriptor observers are presented. In
Section 3, reduced-order fractional descriptor nonlinear
observers are proposed and sufficient conditions for
the existence for observers are established. A design
procedure of the reduced-order observers and an
illustrating example are given in Section 4. Concluding
remarks are presented in Section 5.

2. Fractional descriptor systems and their
full-order observers

Consider the fractional descriptor continuous-time linear
system

E
dαx

dtα
= Ax+Bu, x0 = x(0), (1a)

y = Cx, (1b)
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where dαx/dtα is the fractional α-order derivative
defined by Caputo,

0D
α
t x(t)

=
dαx(t)

dtα
=

1

Γ(n− α)

∫ t

0

dnx
dτn

(t− τ)α−n+1
dτ,

n− 1 < α < n ∈ N, (2)

and

Γ(x) =

∫ ∞
0

e−ttx−1 dt

is the gamma function, while x = x(t) ∈ R
n, u = u(t) ∈

R
m, y = y(t) ∈ R

p are the state, input and output vectors,
E,A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n. It is assumed that
detE = 0 and

det[Eλ−A] �= 0 (3)

for some λ ∈ C.
Let U be the set of admissible inputs u(t) ∈ U ⊂ R

m

and X0 ⊂ R
n be the set of consistent initial conditions

x0 ∈ X0 for which Eqn. (1) has a solution x(t) for u(t) ∈
U.

The solution of Eqn. (1a) for x0 ∈ X0 has been
derived by Kaczorek (2014a).

Definition 1. The fractional descriptor linear system (1)
is called asymptotically stable if limt→∞ x(t) = 0 for any
finite x0 ∈ X0 and u(t) = 0.

Theorem 1. (Kaczorek, 2011b; Matignon, 1996) The frac-
tional descriptor linear system (1) is asymptotically sta-
ble if and only if the zeros (the eigenvalues of (E,A))
λ1, . . . , λp of the equation

det[Eλ−A] = λp+ap−1λp−1+· · ·+a1λ+a0 = 0 (4)

satisfy the condition

| argλk| > α
π

2
(5)

for k = 1, . . . , p.
The eigenvalues satisfying the condition (5) are

located in the stability region shown in Fig. 1 and denoted
by Sr.

Definition 2. The fractional descriptor continuous-time
linear system

E
dαx̂

dtα
= F x̂+Gu+Hy, (6)

where x̂ = x̂(t) ∈ R
n is the estimate of x(t), and u =

u(t) ∈ R
m, y = y(t) ∈ R

p are the same input and output
vectors as in (1), E,F ∈ R

n×n, G ∈ R
n×m, H ∈ R

n×p,
detE = 0 is called a (full-order) state observer for the
system (1) if

lim
t→∞[x(t)− x̂(t)] = 0. (7)

Theorem 2. (Guang-ren, 2010; Kaczorek, 1992) The frac-
tional descriptor system (1) has a full state observer (6) if
and only if there exists a matrix H such that all eigenvalu-
es of the pair (E,A–HC) are located in the stable region
Sr shown in Fig. 1, i.e.,

σ(E,A−HC) ⊂ Sr, (8)

where σ denotes the spectrum of the pair.

The proof is also given by Kaczorek (2014a).
From Theorem 1 it follows that the design of a

stable observer (6) of the system (1) has been reduced to
finding a matrix H such that the eigenvalues of the pair
(E,A–HC) are located in the asymptotic stability region.
It is well-known (Guang-ren, 2010; Kaczorek, 1992) that
there exists a matrix H such that the eigenvalues of the
pair (E,A–HC) are located in the asymptotic stability
region if and only if the fractional descriptor system (1)
is detectable (Guang-ren, 2010; Kaczorek, 1992), i.e.,

rank

[
Esk −A

C

]
= n (9)

for sk ∈ σ(E,A).
The problem of designing the observer (6) of the

system (1) can be reduced to the procedure of designing a
state-feedback of the form v = −HTx for the dual system
(Guang-ren, 2010; Kaczorek, 1992)

ET dαx

dtα
= ATx+ CT v. (10)

To guarantee that the descriptor state observer is
impulse-free, the matrix H must be chosen so that

deg[det(Es− A+HC)] = rankE. (11)

stability 
region     Sr

Re(�k)

Im(�k )

0
2
��

Fig. 1. Stability region.
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It is well known (Cuihong, 2012; Kaczorek, 1992) that
the finite observers poles (the finite eigenvalues of the pair
(E,A–HC) can be arbitrarily assigned if and only if the
descriptor system (1) is R-observable, i.e.,

rank

[
Es−A

C

]
= n (12)

for s ∈ C.
Therefore, the following theorem has been proved.

Theorem 3. An impulse-free fractional descriptor obse-
rver (6) with an arbitrary prescribed set of poles of the
fractional descriptor system (1) satisfying (3) if and only
exists if the conditions (11) and (12) are met.

Now let us consider the fractional descriptor
continuous-time nonlinear system

E
dαx

dtα
= Ax+ f(x, u), x0 = x(0), (13a)

y = Cx, (13b)

where x = x(t) ∈ R
n, u = u(t) ∈ R

m, y = y(t) ∈ R
p

are respectively the state, input and output vectors, E,A ∈
R

n×n, f(x, u) ∈ R
n is a continuous vector function of x

and u.
It is assumed that detE = 0 and (3) is met.

Definition 3. The fractional descriptor continuous-time
nonlinear system

E
dαx̂

dtα
= F x̂+ f(x, u) +Hy (14)

is called a full-order observer of the nonlinear system (13)
if

lim
t→∞[x(t)− x̂(t)] = 0, (15)

where x̂ = x̂(t) ∈ R
n is the estimate of x ∈ R

n, u ∈ R
m

and f(x, u), y ∈ R
p are the same vectors as in (13).

Definition 4. The fractional descriptor nonlinear system
(14) is called a full-order perfect observer of the nonlinear
system (13) if

x(t) = x̂(t) for t > 0. (16)

A design method of full-order perfect observers of
nonlinear systems has been proposed by Kaczorek (2015).

3. Reduced-order fractional descriptor
nonlinear observers

Consider the fractional descriptor nonlinear system (13)
satisfying the assumption (3).

If
rank C = p, (17)

then there exist a permutation matrix P ∈ R
n×n

CP =
[
C1 C2

]
, C1 ∈ R

p×p,

detC1 �= 0, C2 ∈ R
p×(n−p) (18)

and the nonsingular matrix

Q1 =

[
C−11 −C−11 C2

0 In−p

]
∈ R

n×n (19)

such that

C̄ = CPQ1

=
[
C1 C2

]
Q1

=
[
C1 C2

] [ C−11 −C−11 C2

0 In−p

]
=

[
Ip 0

]
.

(20)

Substituting
x = PQ1x̄ (21)

into (13), we obtain

EPQ1
dαx̄

dtα
= APQ1x̄+ f(x, u)

∣∣∣∣
x=PQ1x̄

, (22a)

y = Cx = CPQ1x̄ =
[
Ip 0

] [ x̄1

x̄2

]
= x̄1,

x̄1 ∈ R
p, x̄2 ∈ R

(n−p). (22b)

Premultiplying (22a) by a nonsingular elementary
row operations matrix Q2 ∈ R

n×n, we obtain

Q2EPQ1 =

[
E11 0
E21 E22

]
, E11 ∈ R

p×p,

E21 ∈ R
(n−p)×p, E22 ∈ R

(n−p)×(n−p) (23)

and

E11
dαx̄1

dtα
= A11x̄1 +A12x̄2 + f1(x̄1, u), (24a)

E21
dαx̄1

dtα
+ E22

dαx̄2

dtα
= A21x̄1 +A22x̄2

+ f2(x̄1, x̄2, u), (24b)

where

Q2APQ1 =

[
A11 A12

A21 A22

]
, (24c)

A11 ∈ R
p×p, A12 ∈ R

p×(n−p),

A21 ∈ R
(n−p)×n, A22 ∈ R

(n−p)×(n−p),[
f1(x̄1, u)

f2(x̄1, x̄2, u)

]
= Q2f(PQx̄, u),

f1(x̄1, u) ∈ R
p, f2(x̄1, x̄2, u) ∈ R

n−p.

From (22b) it follows that x̄1 = y, and for given y
the subvector x̄1 is known. Therefore, the reduced-order
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observer of the fractional descriptor system (1) should
reconstruct only the subvector x̄2 = R

(n−p).
From (24) we have

E22
dαx̄2

dtα
= A22x̄2 + f̄2(x̄1, x̄2, u), (25a)

ȳ = A12x̄2, (25b)

where

f̄2(x̄1, x̄2, u) = f2(x̄1, x̄2, u)− E21
dαy

dtα
+A21y

(25c)

and

ȳ = E11
dαy

dtα
−A11y − f2(x̄1, x̄2, u) (25d)

are the new known input and output, respectively.
To find the estimate x̂2 of x̄2, the following full-order

fractional descriptor nonlinear observer for the system
(25) can be applied (Kaczorek, 2014a).

Definition 5. The fractional descriptor continuous-time
nonlinear system

E22
dαx̂2

dtα
= F x̂2 + f̄2(x̄1, x̄2, u) +Hȳ, (26)

where x̂2 ∈ R
n−p, F ∈ R

(n−p)×(n−p), H ∈ R
(n−p)×p, is

called a reduced-order fractional descriptor observer for
the nonlinear system (13) if

lim
t←∞[x̄2(t)− x̂2(t)] = 0. (27)

Applying Theorem 1 to the fractional descriptor
system (25), we obtain the following result.

Theorem 4. For the fractional descriptor nonlinear sys-
tem (13) the reduced-order observer (26) exists if the sys-
tem (25) is detectable, i.e.,

rank

[
E22s−A22

A12

]
= n− p (28)

for sk ∈ σ(E22, A22).

It is well known (Guang-ren, 2010) that the
eigenvalues of (E22, A22) (the finite poles of the observer)
can be arbitrarily assigned if and only if the descriptor
system (25) is R-observable, i.e.,

rank

[
E22s−A22

A12

]
= n− p (29)

for all s ∈ C.
To guarantee that the descriptor observer (26) is

impulse-free, the matrix H should be chosen so that
(Guang-ren, 2010)

deg{det[E22s−A22 +HA12]} = rankE22. (30)

Therefore, the following theorem has been proved.

Theorem 5. The impulse-free reduced-order observer
(26) for the fractional descriptor system (13) satisfying
(3) exists if the conditions (24c), (29) and (30) are met.

Remark 1. If E22 = 0 and detA22 �= 0, then from (25a)
we have

x̄2 = −A−122 f̄2(x̄1, x̄2, u), (31)

and we can find x̄2 without any observer.

Remark 2. If detE22 �= 0, then from (25a) we have

dαx̄2

dtα
= E−122 A22x̄2 + E−122 f̄2(x̄1, x̄2, u), (32)

and the estimate x̂2 of x̄2 can be found using the
classical (standard) fractional observer (Kociszewski,
2013; Kaczorek, 2004).

4. Procedure and examples

To design the reduced-order observer (26) for the
fractional descriptor nonlinear system (13), the following
procedure can be used.

Procedure 1.

Step 1. Find a permutation matrix P and a nonsingular
matrix (19) transferring the matrix C to the form (20).

Step 2. Find the elementary row operations matrixQ2, and
using (23) and (24c) compute the matrices E11, E21, E22,
A11, A12, A21, A22, and f2(x̄1, u), f2(x̄1, x̄2, u).

Step 3. Check the conditions (28) and (30) for some H ∈
R

(n−p)×p.

Step 4. Using
F = A22 −HA12, (33)

find a matrix H such that the pair (E22, F ) has the desired
eigenvalues located in the stability region Sr.

Step 5. Find Eqn. (26) of the desired fractional descriptor
nonlinear observer.

Example 1. Consider the fractional descriptor system
(13) with

E =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣

−1 0 2 1
0 −2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (34)

f(x, u) =

⎡
⎢⎢⎣

x2
2 + u2

x2x4 + 2u
x1x2 + x2

3 + x2u
x2x3 + 2x1u

2

⎤
⎥⎥⎦ ,

C =

[
0 1 0 1
1 0 0 0

]
.
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The system satisfies the condition (3) since

det[Es−A] =

⎡
⎢⎢⎣

s+ 1 0 −2 −1
0 2 0 0
0 0 −1 s
0 0 s −1

⎤
⎥⎥⎦

= 2(s+ 1)(1− s2) �= 0.

(35)

Using Procedure 1, we obtain what follows.

Step 1. In this case the permutation matrix is P = I4 (the
identity matrix)

CP =
[
C1 C2

]
,

C1 =

[
0 1
1 0

]
, C2 =

[
0 1
0 0

]
,

Q1 =

[
C−11 −C−11 C2

0 In−p

]

=

⎡
⎢⎢⎣

0 1 0 0
1 0 0 −1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

(36)

and

C̄ = CPQ1 =

[
0 1 0 1
1 0 0 0

]
⎡
⎢⎢⎣

0 1 0 0
1 0 0 −1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

[
1 0 0 0
0 1 0 0

]
.

(37)

The new state vector is given by

x̄ = P−1Q−11 x =

⎡
⎢⎢⎣

0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

x2 + x4

x1

x3

x4

⎤
⎥⎥⎦ =

[
x̄1

x̄2

]
,

x̄1 =

[
x2 + x4

x1

]
, x̄2 =

[
x3

x4

]
. (38)

Step 2. The matrix of elementary operations is equal to
Q2 = I4 and

EQ1 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 1 0 0
1 0 0 −1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ =

[
E11 0
0 E22

]
,

E11 =

[
0 1
0 0

]
, E22 =

[
0 1
1 0

]
, (39a)

AQ1 =

⎡
⎢⎢⎣

−1 0 2 1
0 −2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 1 0 0
1 0 0 −1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 −1 2 1
−2 0 0 2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

[
A11 A12

A21 A22

]
,

(39b)

A11 =

[
0 −1
−2 0

]
, A12 =

[
2 1
0 2

]
,

A21 =

[
0 0
0 0

]
, A22 =

[
1 0
0 1

]
,

[
f1(x̄1, u)

f2(x̄1, x̄2, u)

]
= f(x, u). (40)

Step 3. The conditions (28) and (30) are satisfied since

rank

[
E22s−A22

A12

]
= rank

⎡
⎢⎢⎣

−1 s
s −1
2 1
0 2

⎤
⎥⎥⎦

= 2

(41)

for all s ∈ C, and for

H =

[
h11 h12

h21 h22

]

we have

deg{det[E22s−A22 +HA12]}

= deg

{
det

[ −1 + 2h11 s+ h11 + 2h12

s+ 2h21 −1 + h21 + 2h22

]}

= 2 = rankE2.

(42)

Step 4. Using (33) we obtain

F = A22 −HA12 =

[
1− 2h11 −2h12 − h11

−2h21 1− 2h22 − h21

]
.

(43)
Let the desired eigenvalues of the pair (E22, F ) be

sd1 = sd2 = −10. Then

det[E22s− F ]

=

∣∣∣∣ 2h11 − 1 s+ h11 + 2h12

s+ 2h21 h21 + 2h22 − 1

∣∣∣∣
= −s2 − (2h21 + h11 + 2h12)s

+ (2h11 − 1)(h21 + 2h22 − 1)

− 2h21(h11 + 2h12)

= −(s+ 10)2 = −(s2 + 20s+ 100)

(44)
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for h11 = −2h12, and

−2h21 = −20,

(2h11 − 1)(h21 − 2h22 − 1)− 4h12h21 = −100.
(45)

Solving (45), we obtain (for example)

h11 = 5.5, h12 = −2.25, h21 = 10, h22 = −9.5.
(46)

Step 5. In this case, from (25c) we have

f̄2(x̄1, x̄2, u) = f2(x̄1, x̄2, u)− E21
dαy

dtα
+A21y

=

[
x1x2 + x2

3 + x2u
x2x3 + 2x1u

2

]
,

ȳ = E11
dαy

dtα
+A11y − f1(x̄1, u)

=

[
x2
2 + u2

x2x4 + 2u

]
. (47)

The desired reduced-order fractional observer of the
system is described by the equation[

0 1
1 0

]
dαx̂2

dtα
=

[ −10 0
20 10

]
x̂2

−
[

x1x2 + x2
3 + x2u

x2x3 + 2x1u
2

]
(48a)

−
[

455 −2.75
10 −9.5

]
ȳ

or

dαx̂2

dtα
=

[ −20 10
−10 0

]
x̂2

−
[

x1x2 + x2
3 + x2u

x2x3 + 2x1u
2

]
(48b)

−
[

10 −9.5
5.5 −2.75

]
ȳ.

�

5. Concluding remarks

Fractional descriptor reduced-order nonlinear observers
for a class of fractional descriptor continuous-time
nonlinear systems have been proposed. A design
procedure for fractional descriptor observers has been
proposed and illustrated on a numerical example.

The discussion can be easily extended to perfect
fractional descriptor reduced-order observers and
fractional descriptor discrete-time linear systems. An
open problem is extension to fractional descriptor 2D
continuous-discrete nonlinear systems.
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