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In this paper, we consider a nonparametric Shewhart chart for fuzzy data. We utilize the fuzzy data without transforming
them into a real-valued scalar (a representative value). Usually fuzzy data (described by fuzzy random variables) do not have
a distributional model available, and also the size of the fuzzy sample data is small. Based on the bootstrap methodology,
we design a nonparametric Shewhart control chart in the space of fuzzy random variables equipped with some L2 metric,
in which a novel approach for generating the control limits is proposed. The control limits are determined by the necessity
index of strict dominance combined with the bootstrap quantile of the test statistic. An in-control bootstrap ARL of the
proposed chart is also considered.
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1. Introduction

Statistical process control (SPC) is very important in that
it is proven to bring processes into control and maintain
the control condition (cf. Wetherill and Brown, 1991).
Control charts are principle tools that have been designed
and applied for the purpose of SPC, and Shewhart control
charts are the most popular and widely applied SPC tools
(cf. Nelson, 1985; Wetherill and Brown, 1991).

Typically, a control chart consists of a centre line
(CL) and two control lines, referred to as the upper
control limit (UCL) and the lower control limit (LCL).
The centre line represents an estimate of the process level,
while the two control limits denote the boundaries of
normal variability, and are specified in such a way that
the majority of the observations lie within their bounded
range when the process is under control. Samples drawn
from the process are plotted as points on the control chart.
The control charts are constructed concurrently with the
statistical hypotheses testing process. Essentially, the
control chart tests the hypothesis that the process remains
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in the state of statistical control. Accordingly, a plotted
data point falling within the control limits confirms the
hypothesis of statistical control, while a point falling
outside of the control limits indicates a rejection of this
hypothesis (cf. Wetherill and Brown, 1991).

It is well known that control charts are based on data
representing one or several quality-related characteristics
of the product or service. If these characteristics
are measurable and represented by real-valued numbers
or vectors of numbers, variable control charts are
used. If the quality-related characteristics cannot be
easily represented in a numerical form, attribute control
charts such as the p-chart or c-chart are useful (cf.
Wetherill and Brown, 1991). However, when SPC
is applied in areas such as economic quality control
or acceptance samplings for attributes with data based
on imprecise observations and measurements, the key
process characteristics sometimes may be much more
complicated. For instance, sample data collected from the
evaluation of the color-intensity of produced pictures or
screens are affected by imprecision, and can be described
using interval-valued or vague data. Also the vague
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data may come from judgments reflecting humans’ partial
knowledge or subjectivity while evaluating categories
or attributes of inspected items, and such judgments
may be expressed in some verbal form which cannot
be appropriately expressed on a numerical scale. For
instance, when the process quality characteristics are
sense based attributes such as appearance, hardness,
softness, color, taste, style, etc., results of observations
are usually not numerical, but may be expressed by the
linguistic terms like “very good”, “good”, “medium”,
“poor”, etc. Control charts for attributes that are designed
for the control of such processes, when the conventional
binary classification into conforming and nonconforming
is applied, might not be appropriate as the quality of
a product does not change abruptly from perfect to
worthless, and there might be a number of intermediate
levels, e.g., such as “perfect”, “good”, “medium”, “poor”,
“bad”. There also exists the concept of user based
quality which emphasizes that for customers the quality
of a product is its suitability, rather than its conformity
to certain standards (Cen, 1996). Customers’ appraisal
on quality is frequently expressed in linguistic terms
involving vague attributes (Cen, 1996).

Therefore, traditional control charts, based on precise
data to monitor processes, have to be expanded in
order to possibly carry out process monitoring tasks in
imprecise or fuzzy environments. The extended attribute
control charts such as χ2-control charts for multi-label
categories or control charts for grouped data may be
suitable for this purpose, but only if the vague data could
be expressed approximately in distinct categorical form
and the distributions of the underlying process variables
are known (Woodall and Tucker, 1997). However, the
uncertainty of the vague data is essentially non-statistical
in nature so that the conditions mentioned above are
usually hardly satisfied.

Fuzzy set theory and possibility theory provide
useful tools for dealing with imprecise data (Zadeh, 1965;
1975). The applicability of fuzzy sets (Zadeh, 1965) for
the description of quality has been explained in many
papers, e.g., by Cen (1996), who proposed to control the
fuzzy suitability quality derived from imprecise opinions
of end-users.

There have been some publications dedicated to
the design of control charts with linguistic or fuzzy
data. In the case of monitoring unique fuzzy quality
characteristics, Wang and Raz (1990) as well as Raz
and Wang (1990) were the first authors who proposed a
control chart for linguistic data (fuzzy data). They pointed
out that linguistic data can provide more information
than the binary classification used in control charts by
attributes. They proposed representative values control
charts with both the probability rule and the membership
function rule, for which the linguistic data (fuzzy data)
are transformed into scalars referred to as representative

values of the fuzzy data, and these representative values
are plotted on an ordinary control chart. In their paper
four kinds of transformation formula have been proposed,
i.e., the fuzzy mode, fuzzy midrange, fuzzy median and
fuzzy average.

Kanagawa et al. (1993) proposed another
representative values chart by using the barycenter of
the fuzzy data, in which the required probability density
function needs to be estimated using the Gram–Charlier
series. This method may be used not only for monitoring
the fuzzy process mean, but also for monitoring the
process variability. The main difficulty of this approach
is the determination of the unknown density function.
Taleb and Limam (2002) discussed various procedures of
the construction of control charts for linguistic data using
representative values of Wang and Raz, based on fuzzy
sets and probability models. They compared fuzzy and
probabilistic approaches using the concept of the average
run length and real-life data. The representative value,
i.e., α-level fuzzy midrange method was also employed

by Senturk and Erginel (2009), who designed ˜X − ˜R and
˜X − ˜S control charts for fuzzy data, which heavily rely
on the properties of the normal distribution. In the case of
monitoring multiple fuzzy quality characteristics, recently
Taleb (2009) proposed a multivariate control chart for
multivariate attribute processes based on representative
values charting methods of Wang and Raz, and presented
some applications of the multivariate attribute control
chart in decorated porcelain production. This work is
an excellent example of successful application of fuzzy
control charts in a real production line.

The methodology of fuzzy statistical tests proposed
by Kruse and Meyer (1987) was first applied for the
construction of the Shewhart control chart and the EWMA
(exponential weighted moving average) control chart
with fuzzy data by Höppner and Wolff (1995) as well
as Höppner (1994). Kruse and Meyer (1987) used
the concept of a fuzzy random variable first proposed
by Féron (1976) and further developed by Kwakernaak
(1978; 1979), according to which a fuzzy random variable
is a fuzzy perception of an original crisp random variable
with a known distributional model. Grzegorzewski and
Hryniewicz (2000) were the first authors who presented
a Shewhart control chart with fuzzy random variable
of Féron–Kwakernaak–Kruse and Meyer for which the
degree of fuzziness was taken into account using the
necessity index of strict dominance (NSD) for the design
and operation purposes.

Gülbay and Kahraman (2006; 2007) not only
explained why we require fuzzy control charts, but also
carefully discussed the charts with the fuzzy random
variable of the Féron–Kwakernaak–Kruse and Meyer
model relying on the normal distribution with respect
to the fuzzy mode, fuzzy midrange, and fuzzy median.
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They took under consideration the α levels of fuzzy
sets, showing that the inspection will becomes tighter as
the α-level is set to higher values. Also without any
defuzzification they propose a direct fuzzy approach for
constructing a fuzzy c-chart, in which they calculate the
percentage of the area under the membership function
which shows that the fuzzy sample statistic remains inside
the fuzzy control limits. In their approach a decision
on whether the process is in control is made according
to preferences of operators. This direct fuzzy charting
is a completely novel reasonable method in the area of
SPC. However, it is somewhat complicated for practical
applications due to the computations of the area under the
membership function which depends on the shape of this
membership function and the selected α-level.

Faraz and Shapiro (2010) proposed a Shewhart chart
for trapezoidal fuzzy data using a more general definition
of the fuzzy random variable proposed by Puri and
Ralescu (1986), in which under the given significance
level the fuzzy in-control region (FIR) is first determined,
and then a proper fuzzy inclusion operator is selected
in order to determine the degree to which fuzzy sample
groups are excluded from the FIR. This work provided
another direct fuzzy approach for constructing control
charts in a fuzzy environment, and here the normal
distribution of the “normally distributed” fuzzy random
variables is indeed concerned with the underlying process
variable according to Gil et al. (2006). Shu and Wu
(2011) presented a fuzzy X chart and R chart using
an expanded fuzzy dominance approach based on the
resolution identity of a fuzzy number.

It should be pointed out that most of the
aforementioned works considered the Shewhart chart with
representative values of fuzzy data, and only few works
considered the Shewhart chart, c-chart and EWMA chart
for fuzzy data for which the representative values methods
have not been used, and in nearly all of them it was
assumed that, as Faraz and Shapiro (2010) pointed out,
the underlying process variable was normally distributed.

A representative value of fuzzy data may result in
losing important information included in original data
and the effectiveness of the representative value charts
is also reduced (Gülbay and Kahraman, 2007; Faraz and
Shapiro, 2010), so the direct fuzzy way of establishing
control charts with fuzzy data is expected to be developed
and improved. In most of the existing control charts
with fuzzy data established under a fuzzy direct way
(cf. Gülbay and Kahraman, 2007; 2006; Shu and Wu,
2011; Faraz and Shapiro, 2010) the underlying processes
variables were assumed to be normally distributed,
and there is no report considering the case where the
probability distribution of an underlying process variable
may be non-existing or unknown. We may recall the work
of Cheng (2005), who proposed a fuzzy regression method
for generating fuzzy data based on experts’ score from

evaluating product quality, and constructed a control chart
using exclusively the fuzzy approach based on possibility
theory, where no probability distribution models were
considered for the underlying process variable, and
therefore some randomness probably implied in the data
considered was ignored. In this paper, we will establish
a sort of distribution-free Shewhart control chart for the
case where the probability distribution of the underlying
quality variable is unknown or does not exist.

The rest of the article is organized as follows. In
Section 2, some preliminary knowledge on fuzzy random
variables and related concepts such as the L2-distance
between two fuzzy sets (also for fuzzy numbers), Aumann
expectation, Fréchet variance and covariance, support
function of a bounded convex set, LR-fuzzy random
variable, etc. are presented. In Section 3, a novel,
and completely distribution-free, Shewhart mean chart is
proposed for fuzzy random variables using a bootstrap
approach. In Section 4, some simulation examples are
presented for explaining the performance of the proposed
chart. Finally, conclusions are formulated.

2. Some statistics based on fuzzy data

2.1. Fuzzy sets on R
d. A fuzzy set ũ of R

d is
equivalent to its membership function ũ : R

d →
[0, 1], where the number ũ(x) represents the degree of
membership that x belongs to ũ. By F (Rd) we denote
the collection of all normal, convex and compact fuzzy
sets on R

d, i.e., for ũ ∈ F (Rd), (i) there exists x0 ∈ R
d

such that ũ(x0) = 1, (ii) the α−cut of ũ, ũα := {x ∈ R
d :

ũ(x) ≥ α}, α ∈ (0, 1], is a convex and compact set of Rd,
(iii) ũ0 := cl{x ∈ R

d : ũ(x) > 0}, the support of ũ, is
compact.

Zadeh’s extension principle (cf. Zadeh, 1975) allows
us to perform addition and scalar multiplication on
F (Rd):

(ũ⊕ ṽ)(x) = sup
s+t=x

min(ũ(s), ṽ(t)), x ∈ R
d,

(a� ũ)(x) =

{

ũ(xa ), a �= 0,

0, a = 0,

and, for any a, b ∈ R

(ab)� ũ = a� (b � ũ),

a� (ũ⊕ ṽ) = (a� ũ)⊕ (a� ṽ).

But there holds only for ab ≥ 0, a, b ∈ R, that

(a+ b)� ũ = (a� ũ)⊕ (b� ũ).

This indicates that (F (Rd),⊕,�) is not a linear space.
With Minkowski’s sets operation, we have

(ũ⊕ ṽ)α = ũα ⊕ ṽα, α ∈ (0, 1],
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(a� ũ)α = a� ũα, α ∈ (0, 1].

A support function of ũ ∈ F (Rd) is defined as

Sũα(x) =

⎧

⎨

⎩

sup
t∈ũα

{x · t}, α ∈ (0, 1],

0, α = 0.

with x ∈ Sd−1 = {x : ‖x‖ = 1}, where · denotes
the inner product in the Euclidean space R

d. For ũ, ṽ ∈
F (Rd) and a ∈ R, we have

Sũ⊕ṽ = Sũ + Sṽ,

Sa�ũ(x) =

{

aSũ(x), a > 0,

−aSũ(−x), a < 0.

Thus, we get

S((a�ũ)⊕(b�ṽ))α(x)

=

{

(aSũα + bSṽα)(x), a, b > 0,

−(aSũα + bSṽα)(−x), a, b < 0,

where α ∈ [0, 1]. The L2-distance between ũ, ṽ and their
scalar product are defined by (cf. Näther, 2000)

δ2(ũ, ṽ)

:=
(

d

∫ 1

0

∫

Sd−1

(Sũα(x)− Sṽα(x))
2 μ(dx) dα

)1/2

,

(1)

where μ is a normalized Lebesgue measure with
μ(Sd−1) = 1.

2.2. Fuzzy random variables of Puri–Ralescu. The
idea of fuzzy random variables is inspired by the attempt
to treat and model two different types of uncertainty, i.e.,
randomness and fuzziness, simultaneously. Let (Ω,A, P )
be a complete probability space. The mapping X̃ : Ω →
F (Rd) is said to be a fuzzy random variable (f.r.v.) if X̃
is A − B measurable, where B is a σ-algebra induced by
X̃ associated with δ2.

Given a f.r.v. X̃ , SX̃α
is a random element and

E(SX̃α
) = SE(X̃α) (cf. Näther, 2006; Gil et al., 2006)

if the expectation E(X̃α) exists, where E(X̃α) is an
Aumann expectation of (X̃α), α ∈ [0, 1] (cf. Puri and
Ralescu, 1986; Gil et al., 2006).

In the sequel, we assume that any f.r.v. X̃ fulfills the
inequality

E(‖X̃‖) := E(δ22(X̃, {0})) < +∞.

In contrast to the Féron–Kwakernaak–Kruse and
Meyer model of the f.r.v., where the variance is defined as
a simple fuzzy perception of the ordinary crisp variance,

the measures of variability in the Puri–Ralescu model
can be defined in various ways (see the work of Couso
et al. (2007) for more information). In the most popular
approach this variability is measured by the Fréchet
variance of X̃ defined by Körner (1997) as

Var(X̃) := E(δ22(X̃,E(X̃)))

= d

∫ 1

0

∫

Sd−1

Var(SX̃α
(x))μ(dx) dα.

Similarly, the covariance of two f.r.v.’s X̃, Ỹ is defined by

Cov(X̃, Ỹ )

:= d

∫ 1

0

∫

Sd−1

Cov(SX̃α
(x), SỸα

(x))μ(dx) dα.

Note that

Cov((a� X̃)⊕ (b� Ỹ ), c� Z̃)

= acCov(X̃, Z̃) + bcCov(Ỹ , Z̃)

holds only for ac ≥ 0, bc ≥ 0, a, b, c ∈ R.
The independence of f.r.v.’s can be followed by the

independence of the random elements, which is already
defined (cf. Näther, 2000). Thus, obviously, if f.r.v.’s X̃
and Ỹ are independent, then Cov(X̃, Ỹ ) = 0. However, if
Cov(X̃, Ỹ ) �= 0, then they will not be independent. There
is some sense of dependence between them; however, how
to measure the dependencies between f.r.v.’s is still an
open problem.

2.3. Fuzzy number and related statistics. When d =
1, a fuzzy set ũ on R is said to be a fuzzy number. By
F(R) we denote the set of all fuzzy numbers. Note that,
for ũ, ṽ ∈ F(R), we have

2δ22(ũ, ṽ)

=

∫ 1

0

[

(Sũα(−1)− Sṽα(−1))2

+ (Sũα(1)− Sṽα(1))
2
]

dα

=

∫ 1

0

[

(ũ+
α − ṽ+α )

2 + (ũ−
α − ṽ−α )

2
]

dα

= d2∗(ũ, ṽ),

(2)

where the intervals [ũ−
α , ũ

+
α ], [ṽ

−
α , ṽ

+
α ] denote the α level

sets of ũ, ṽ, respectively, d∗ denotes the distance between
two fuzzy numbers proposed by Feng et al. (2001).

The following parametric class of fuzzy numbers,
the so-called LR-fuzzy numbers, are often used in
applications:

ũ(x) =

⎧

⎨

⎩

L
(m− x

l

)

, x ≤ m,

R
(x−m

r

)

, x > m.
(3)
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Here L : R
+ → [0, 1] and R : R

+ → [0, 1] are
given left-continuous and non-increasing functions with
L(0) = R(0) = 1. L and R are respectively called
left and right shape functions, m is the central point of
ũ, and l > 0, r > 0 are respectively the left and right
spreads of ũ. An LR-fuzzy number is abbreviated by
ũ = (m, l, r)LR. Particularly, (m, 0, 0)LR := m. It has
been proven that LR-fuzzy numbers possess some nice
properties for operations:

(m1, l1, r1)LR ⊕ (m2, l2, r2)LR

= (m1 +m2, l1 + l2, r1 + r2)LR,

a� (m, l, r)LR =

⎧

⎪

⎨

⎪

⎩

(am, al, ar)LR, a > 0,

(am,−ar,−al)RL, a < 0,

0, a = 0,

(m1, l1, r1)LR �m2 = (m1 −m2, l1, r1)LR.

The last equality can be understood as meaning that the
fuzzy number (m1, l1, r1)LR has a shift from m1 to m2.

Let

L(−1)(α) := sup{x ∈ R|L(x) ≥ α},
R(−1)(α) := inf{x ∈ R|R(x) ≥ α}.

Then for α ∈ [0, 1]

ũ = (m, l, r)LR,

ũα =
[

m− lL(−1)(α), m+ rR(−1)(α)
]

.

Körner (2000) defined a LR-f.r.v. on the probability
space (Ω,A, P ) as a measurable mapping X̃ : Ω →
FLR(R), X̃(ω) = (m(ω), l(ω), r(ω))LR, ω ∈ Ω. In
short, we write it X̃ = (m, l, r)LR, where m, l, r are three
real-valued random variables with P{l ≥ 0} = P{r ≥
0} = 1. In a fuzzy observation on objects of interest,
the outcomes can be viewed as LR-fuzzy data under a
proper assumption, i.e., the data are viewed as realizations
of LR-f.r.v..

Note that, in fact, the three random variables m, l, r
are usually dependent, as they integrate a fuzzy number
(m, l, r)LR together with L(x), R(x), which is affected
by the common factor of the data fuzziness, e.g., if the
data are more fuzzy, then l, r become larger, and if the
data are more crisp, then l, r become smaller, while m is
the center location of the fuzzy data.

For an LR-f.r.v. X̃ , its expectation of the Aumann
type is as follows:

E(X̃) = (E(m),E(l),E(r))LR,

and the Fréchet variance is

Var(X̃) =
1

2

∫ 1

0

(Var(m− lL(−1)(α))

+ Var(m+ rR(−1)(α))) dα.

Let X̃1, . . . , X̃n be a sample of size n from X̃ =
(m, l, r)LR under independent observations. Then the

sample mean X̃ and the sample variance S2
n are defined

by

X̃ :=
1

n

n
∑

i=1

X̃i = (m, l, r)LR, (4)

S2
n :=

1

(n− 1)

n
∑

i=1

δ22(X̃i, X̃), (5)

i.e.,

S2
n

=
1

2(n− 1)

n
∑

i=1

∫ 1

0

[

((mi −m) + (l − li)L
(−1)(α))2

+ ((mi −m) + (ri − r)R(−1)(α))2
]

dα

(6)

and

m =
1

n

n
∑

i=1

mi,

l =
1

n

n
∑

i=1

li,

r =
1

n

n
∑

i=1

ri.

Lemma 1. (Näther, 2000) Let X̃1, . . . , X̃n be a fuzzy
random sample from an f.r.v. X̃ defined on probability
space (Ω,A, P ) and with values in F (Rd). Then

δ2(X̃E(X̃)) →P 0 as n → ∞, (7)

E(S2
n) = Var(X̃),

S2
n →P Var(X̃) as n → ∞,

(8)

where E(X̃)) and Var(X̃) are the Aumann expectation
and the Fréchet variance of the f.r.v. X̃ , respectively, and

S2
n =

1

(n− 1)

n
∑

i=1

δ22(X̃i, X̃)

is the Fréchet sample variance.

In making statistical decisions, there is a need
for a comparison of fuzzy numbers (see the work of
Grzegorzewski and Hryniewicz (2000) for an application
in statistical quality control). For this purpose, we may
employ the necessity index of strict dominance (NSD)
introduced by Dubois and Prade (1983). Let ũ and ṽ be
two fuzzy numbers. The necessity of strict dominance of
ũ over ṽ is calculated from the formula

NSD = Ness(ũ > ṽ) = 1− sup
x,y:x≤y

[min{ũ(x), ṽ(y)}].
(9)
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If there exists some constant c0 ∈ [0, 1] such that
Ness(ũ > ṽ) > c0, then we may say that ũ dominates
ṽ to the degree of c0. The calculation of the NSD index
is simplified when the compared numbers are of the LR
type, defined by (3).

Let ũ = (mu, lu, ru)LR and ṽ = (mv, lv, rv)L′R′

be two fuzzy numbers. Note that the shape curves of the
functions L and L′ (R and R′) may be different. Let z0 be
the solution of the equation

L

(

mu − z0
lu

)

= R′
(

z0 −mv

lv

)

.

Then, we have

Ness(ũ > ṽ)

=

⎧

⎨

⎩

0, mu ≤ mv,

1− L

(

mu − z0
lu

)

, mv ≤ z0 ≤ mu,

(10)

Note that we can also define a necessity index of
inequality (NII) of ũ with ṽ as

NII = Ness(ũ �= ṽ)

= 1− sup
x,y:x=y

[min{ũ(x), ṽ(y)}]. (11)

One possible application of the NII is that it could be
useful for the so-called two-sided fuzzy hypotheses testing
based on the necessity measure.

3. Shewhart chart for fuzzy data

Let us consider the conventional Shewhart control chart
(cf. Nelson, 1985) for monitoring the process mean.
Under the assumption that the process variable obeys
normal distribution N(μ0, σ

2), the well-known Shewhart
chart is given by the following three lines:

UCL = μ0 + z1−δ/2
σ√
m
,

CL = μ0,

LCL = μ0 − z1−δ/2
σ√
m
,

where m is the sample size and z1−δ/2 is the 1 − δ/2
quantile of the standard normal distribution. In practice,
the parameters μ and σ of the model need to be estimated
based on the so-called Phase I samples, and therefore the
control limits of the Shewhart chart are determined not
only by the sample size but also the number of Phase I
samples.

However, sometimes the distributional models of
the process variables are unknown, especially when
the observations are vague. In such cases one may
employ non-parametric statistical methods to estimate
the process model and the parameters concerned, and

then design a non-parametric Shewhart control chart
(see, e.g., Liu and Tang, 1996). As mentioned in
the previous sections, we consider the case where
the underlying process variable is an f.r.v. which is
distribution-free. Thus, for such a case the construction
of a Shewhart chart using a nonparametric method has
to be proposed. Recalling that the previous charts
with fuzzy data (see the Introduction) are based on
the assumption that the examined underlying process
quality variable is normally distributed, i.e., though the
observational linguistic or score results indirectly appear
as fuzzy data (human perception), behind them there
exists a normally distributed random variable which
can be taken to be a model for statistical testing and
inference. If now the underlying variable becomes
completely fuzzy, then there may be no distributional
models behind the observation fuzzy data, so that no
models can be employed. For example, suitability quality
(Cen, 1996) could be considered a fuzzy quality because
it is proposed based on fuzzy information (or linguistic
information) from a collection of all opinions expressed
linguistically or scores provided by end-users. A sort
of fuzzy regression method for generating an LR-fuzzy
number from the expert’s opinions has been proposed by
Cheng (2005).

When fuzzy random data are generated according
to the fuzzy Puri and Ralescu model, there exist
serious problems with the construction of statistical tests,
since such data are usually distribution free. These
problems can be overcome well by applying statistical
bootstrap techniques, as proposed by Efron and Tibshirani
(1993), Montenegro et al. (2004) or Liu and Tang
(1996). In the case when the underlying process
variable is a (crisp) random variable, bootstrap sampling
consists in taking (with replacement) bootstrap random
samples {X�

1 , X
�
2 , . . . , X

�
m} of size m from a bootstrap

population {X1, X2, . . . , XM} consisting of M indepen-
dent observations. Suppose that the bootstrap population
is generated from a probability distribution F with mean
μ and finite variance, and its empirical distribution is
denoted by FM . Now, let X̄�

m be random variable that
describes the mean value of the bootstrap sample, and
X̄m be the random mean of the bootstrap population. If a
sufficiently large number B of bootstrap samples is taken,
then we have (Liu and Tang, 1996) that, almost surely,

P (
√
m(X̄�

m − X̄M ) ≤ x|FM )

= P (
√
m(X̄m − μ) ≤ x|F ). (12)

The fundamental bootstrap equation (12) allows
using the empirical distribution of

√
m(X̄�

m − X̄M ) (a
histogram of resulting B terms of

√
m(X̄�

m− X̄M )) as an
approximation of the unknown distribution of

√
m(X̄m −

μ). Thus, this bootstrap distribution can be used for the
construction of the Shewhart X̄ control chart. To this



A fuzzy nonparametric Shewhart chart based on the bootstrap approach 395

end, for the given significance level α, we calculate lower
and upper quantiles, τα/2 and τ1−α/2, of the bootstrap
histogram, such that

P (
√
m(X̄�

m − X̄M ) ≤ τα/2|FM ) = α/2 a.s. (13)

and

P (
√
m(X̄�

m − X̄M ) ≤ τ1−α/2|FM ) = 1− α/2 a.s.
(14)

Hence, the lower and upper limits of the bootstrap-based
Shewhart X̄ control chart are computed using the
following formula (Liu and Tang, 1996):

LCL = X̄M +
τα/2√
m

, (15)

UCL = X̄M +
τ1−α/2√

m
. (16)

Following the bootstrap-based (crisp) X̄ chart
described above, we now consider the construction of
its fuzzy counterpart. In the case when the underlying
process variable is a distribution-free f.r.v. X̃ , and if
a sequence of independent observations X̃1, . . . , X̃n

on X̃ is generated, then according to Körner (2000)
it follows that the random variable

√
nδ2(

¯̃Xn, E(X̃))
converges in distribution, as n tends to ∞, to a Gaussian
random element. This conclusion can be used for the
approximation of a sampling distribution model of the
distance variable. In order to design the chart, we assume
that at Phase I we can determine the “in-control” target
value of the process mean in the following way. Under
the “in-control” state inspectors draw independently n
samples of size m from the observed fuzzy process. Each
sample element is a term evaluated by score or linguistic
form that can be transformed into fuzzy numbers with the
method of Cheng (2005). Thus, all available observations
are now described by fuzzy numbers x̃i1, . . . , x̃im, i =
1, 2, . . . , n. Naturally, we would take the target value as
the fuzzy mean

μ̃0 := X̃ =
1

mn

n
⊕

i=1

m
⊕

j=1

x̃ij . (17)

Moreover, we can evaluate the variability of our fuzzy
observations as the average value of n within-group
sample variations

s :=
1

n− 1

n
∑

i=1

√

√

√

√

1

m− 1

m
∑

j=1

δ22(x̃ij , x̃i), (18)

where

x̃i :=
1

m

m
⊕

j=1

x̃ij

is the within-group mean of the i-th group, i =
1, 2, . . . , n, and δ22(·) is the distance between two fuzzy

numbers, calculated according to (2). Based on the mn
fuzzy observations x̃i1, . . . , x̃im, i = 1, 2, . . . , n from
the process under the “in-control” state, we can form a
bootstrap population made of n independent fuzzy sample
means {x̃1, · · · , x̃n}. Then from this population we take
a bootstrap sample of B elements denoted by

x̃∗b

:= {x̃∗b

1 , x̃∗b

2 , . . . , x̃∗b

k }, b = 1, . . . , B, (19)

and for each b we denote the sample mean of each
bootstrap element by

x̃∗b :=
1

k

k
⊕

j=1

x̃∗b

j ,

where 1 ≤ k ≤ n. In the next step of our procedure
we build the bootstrap distribution (bootstrap histogram)
of distances between the fuzzy target value μ̃0 and the
sample means of the bootstrap elements, defined as

u∗b

:=
√
kδ2(x̃∗b, μ̃0), b = 1, 2, . . . , B. (20)

According to Liu and Tang (1996) as well as Körner
(2000) the distance variable u∗b

may be approximated
by a Gaussian random element of a Hilbert space
which follows the ω2-distribution. Thus, we denote by
uα/2 and u1−α/2, respectively, the two-sided empirical

quantiles of the bootstrap distribution of u∗b

. The fuzzy
bootstrap-based Shewhart control chart can be defined by
analogy to (15)–(16) as follows:

˜LCL = μ̃0 +
uα/2√

k
, (21)

ŨCL = μ̃0 +
u1−α/2√

k
. (22)

The users who are accustomed to traditional description
of the Shewhart control chart can rewrite (21) and (22) as

˜LCL = μ̃0 + u′
α/2

s√
k
, (23)

ŨCL = μ̃0 + u′
1−α/2

s√
k
, (24)

where u′
α/2 = uα/2/s and u′

1−α/2 = u1−α/2/s.
Note that in the case considered the control limits

are given as fuzzy numbers ˜LCL, ŨCL, and the observed
sample means x̃ are also expressed as fuzzy numbers.
Therefore, in order to make decisions we have to
compare fuzzy observations (¯̃x) with fuzzy control limits
˜LCL, ŨCL. For this comparison we may use the

methodology proposed by Grzegorzewski and Hryniewicz
(2000), which is based on the NSD index defined by (9)
as well as the NII defined by (11).

Let ξ be the required level of the necessity, such
that Ness(¯̃x �= μ̃0) ≥ ξ, and

[

(x̃)−1−ξ, (x̃)
+
1−ξ

]

be the
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(1 − ξ)-level set of the fuzzy mean value x̃ calculated
from the sample taken from a process. The definition of
a possibilistic confidence interval (cf. Kruse and Meyer,
1987; Hryniewicz, 2006) implies that for the assumed
value ξ the monitored process should be regarded as being
fully in the “in-control” state if the following requirement
is fulfilled:

[

(x̃)−1−ξ, (x̃)
+
1−ξ

] ⊂ [

˜LCL
−
1−ξ, ŨCL

+

1−ξ

]

, (25)

where

˜LCL
−
1−ξ = (μ̃0)

−
1−ξ +

uα/2√
k
, (26)

ŨCL
+

1−ξ = (μ̃0)
+
1−ξ +

u1−α/2√
k

, (27)

and
[

(μ̃0)
−
1−ξ, (μ̃0)

+
1−ξ

]

is the (1−ξ)-level set of the fuzzy
central area μ̃0.

Otherwise, the process may be considered either
to be only partially in the “in-control” state or to be
completely out of control. The degree β to which
the process considered can be regarded as being in the
“in-control” state can be evaluated from the following
formula:

β :=
‖[(x̃)−1−ξ, (x̃)

+
1−ξ

] ∩ [

˜LCL
−
1−ξ, ŨCL

+

1−ξ

]‖
‖[ ˜LCL−

1−ξ, ŨCL
+

1−ξ

]‖
, (28)

where ‖A‖ denotes the length of an interval A, and

the case
[

˜LCL
−
1−ξ, ŨCL

+

1−ξ

] ⊂ [

(x̃)−1−ξ, (x̃)
+
1−ξ

]

is
excluded.

Remark 1.
(i) The decision procedure described above can be
interpreted according to the possibilistic interpretation of
fuzzy statistical tests proposed by Hryniewicz (2006).
Let

[

(μ̃0)
−
1−α, (μ̃0)

+
1−α

]

be the (1 − α)-level set of the
fuzzy number μ̃0. Then the interval [C−, C+] forms a
confidence interval of level 1− α , where

C− := (μ̃0)
−
1−α + uα/2/

√
k

= (μ̃0)
−
1−α + u′

α/2

s√
k
,

(29)

C+ := (μ̃0)
−
1−α + u1−α/2/

√
k

= (μ̃0)
−
1−α + u′

1−α/2

s√
k

(30)

and such an interval [C−, C+] can be used for the
construction of the test for the fuzzy hypothesis

H0 : X̃ = μ̃0. Following the way of reasoning
introduced by Hryniewicz (2006), we can claim that if the
(1−α)-level set of the fuzzy number μ̃0 is included in the
interval [C−, C+] then Ness(¯̃x �= μ̃0) ≥ α, which means
that α can be the required necessity level, and C−, C+

can be the lower and upper control limits denoted by
LCL,UCL, respectively, in the decision stage when using
the fuzzy Shewhart control chart defined by (21) and (22)
(or by (23) and (24)). Thus, the required necessity index
ξ can be replaced by α in the decision rule described by
the formulas (25)–(27).

(ii) From the possibilistic interpretation of fuzzy statistical
tests proposed by Hryniewicz (2006), the level value α
can be viewed as a significance level used in hypotheses
tests, the required necessity level for fuzzy decision and
the confidential level as well as a membership value for
a fuzzy set based on the definition of the possibilistic
confidence interval, though the meanings of these notions
remain different. The reason may be that the level value
α is always given by experts in decisions making.

(iii) The required necessity level ξ is usually given
by experts and used only for the comparison of fuzzy
numbers. However, the notion of the significance level
plays an important role in statistical hypotheses tests.
Sometimes we may be allowed to use the significance
level only. Then it may be reasonable to determine the
required necessity level value from the given significance
level α by the bootstrap approach if we really need it.
Such a necessity level value is denoted by ξα and obtained
from the following bootstrap equality:

#{x̃∗b : Ness(x̃∗b �= μ̃0) ≤ ξα}
B

= α, (31)

where #{·} denotes the number of elements in the set {·}.

We can now briefly summarize the whole procedure
proposed above.

Step 1. Set the target value (17) based on nm fuzzy
numbers generated from the experts’ evaluation.

Step 2. Set the bootstrap population made of n
independent fuzzy sample means (x̃1, · · · , x̃n).

Step 3. Take the bootstrap sample (19), and for each of its
elements calculate the value of the bootstrap statistic
according to (20).

Step 4. For the assumed value of the probability of false
alarm α find the lower (of order α/2) and upper (of
order 1 − α/2) empirical quantiles of the bootstrap
statistic (20).

Step 5. Set the lower control limit (29) and the upper
control limit (30).

Step 6. Make the decision according to (25)–(27) with ξ
replaced by α.
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The efficiency of a control chart is usually measured
by the average run length (ARL). For the bootstrap-based
control chart we can formulate the following proposition.

Proposition 1. For a given value α ∈ (0, 1) of the proba-
bility of a false alarm and the aforementioned control lim-
its of the chart, the fraction of inspections while the pro-
cess remains in control is bounded from below by approx-
imately 1−α, and the bootstrap based in-control average
run length ARL∗b

0 is smaller than 1/α, approximately.

Proof. For the given value α of the significance level
and the required necessity level ξ, we obtain the quantiles
uα/2 and u1−α/2 based on the bootstrap procedure. Note
that u1−α/2 > uα/2 > 0 since distance variable takes
nonnegative values. From the definition of the distance δ2
given by (2), we have that

(X̃
−
1−ξ − (μ̃0)

−
1−ξ)

2 + (X̃
+

1−ξα − (μ̃0)
+
1−ξα

)2

2

≤ δ22(X̃, μ̃0).

On the other hand,

1

B
#
{u2

α/2

k
≤ δ22(x̃

∗b, μ̃0) ≤
u2
1−α/2

k

}

= 1− α,

and

δ22(x̃
∗b, μ̃0) ≤ δ22(X̃, μ̃0).

Thus, both

(X̃
−
1−ξ − (μ̃0)

−
1−ξ)

2 + (X̃
+

1−ξ − (μ̃0)
+
1−ξ)

2

2

and δ22(x̃
∗b, μ̃0) are less than δ22(X̃, μ̃0), which means that

there is no big difference between the former two values.
�

Set

B1 :=
{

X̃ :
uα/2√

k
≤ X̃

−
1−ξ − (μ̃0)

−
1−ξ ≤

u1−α/2√
k

}

,

B2 :=
{

X̃ :
u1−α/2√

k
≤ X̃

−
1−ξ − (μ̃0)

−
1−ξ

}

,

C1 :=
{

X̃ :
uα/2√

k
≤ X̃

+

1−ξ − (μ̃0)
+
1−ξ ≤

u1−α/2√
k

}

,

C2 :=
{

X̃ : X̃
+

1−ξ − (μ̃0)
+
1−ξ ≤ uα/2√

k

}

.

The fraction of inspections while the process remains

in control will be

f0

:=
1

B
#
{

X̃ :
[

(X̃)−1−ξ, (X̃)+1−ξ

]

⊂ [

L̃CL
−
1−ξα , ŨCL

+

1−ξα

]

}

=
1

B
#
{

X̃ : (X̃
−
1−ξ − μ̃0)

−
1−ξ ≥ uα/2√

k
,

X̃
+

1−ξ − (μ̃0)
+
1−ξ ≤ u1−α/2√

k

}

=
1

B
#
{

B1C1 ∪B2C1 ∪B1C2 ∪B2C2

}

≈ 1

B

[

#{u2
α/2 ≤ kδ22(x̃

∗b, μ̃0) ≤ u2
1−α/2}

+#{2kδ22(x̃∗b, μ̃0) � u2
α/2 + u2

1−α/2}
+#{u2

α/2 ≤ 2kδ22(x̃
∗b, μ̃0) ≤ u2

1−α/2 + u2
α/2}

+#{u2
α/2 + u2

1−α
5
≥ 2kδ22(x̃

∗b, μ̃0) > u2
1−α/2}

]

= (1 − α) + (1− p1(α)) + (p1(α)− p2(α))

+ (p4(α) − p3(α))

≥ 1− α,

where the probabilities p1(α), p2(α), p3(α), p4(α) satisfy

up1(α) =
u2
α/2 + u2

1−α/2

2
, up2(α) =

u2
α/2

2
,

up3(α) =
u2
1−α/2

2
, up4(α) =

u2
α/2 + u2

1−α/5

2
.

In consequence, we have f0 ≥ 1−α, approximately,
so that

ARL∗b

0 =
1

1− f0
≤ 1

α
,

approximately.

4. Applications and comparisons

In this section, an application of the proposed bootstrap
based fuzzy Shewhart control chart is considered. Let us
consider an artificial example inspired by the real example
described by Taleb (2009). In a porcelain decorating
process control the color appearance condition of the
porcelain is one of the monitored quality characteristics.
Assume that at Phase I we obtained 8 groups of size 5
decorated porcelains whose color appearance conditions
are evaluated by experts with LR-fuzzy data shown in
Table 1, where the membership shape functions are taken
to be L(x) = R(x) = max{0, 1− x}, and for the sample
fuzzy data x̃ij = (mij , lij , rij)LR, i = 1, . . . , 8 and
j = 1, . . . , 5, the within-group mean x̃i = (mi, li, ri)LR,
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we have

δ22(x̃ij , x̃i)

= (mij −mi)
2 +

1

2
(mij −mi)(li − lij + rij − ri)

+
1

6
((li − lij)

2 + (rij − ri)
2).

Let the set of the sample means
{

x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8

}

be the bootstrap
population, from which we randomly take a bootstrap
sample of size 8 with replacement, and repeat this
procedure a large number B of times, where B = 10000.
The above bootstrap samplings and computations were
performed using SAS software.

Assume that the given significance level α and the

Table 1. Eight groups of five-element LR-fuzzy sample data.
j/i 1 2 3

1 (6,10,3) (9,3,6) (8,10,12)
2 (6,8,4) (5,10,12) (7,6,5)
3 (5,7,8) (6,8,7) (7,11,5)
4 (7,4,7) (6,9,5) (5,7,9)
5 (7,8,9) (6,3,4) (4,10,3)
x̃i (6.4,7.4,6.2) (6.4,6.6,6.8) (6.2,8.8,6.8)
δ22(·, ·) 3.453333 12.66667 20.43992

1.186667 7.133333 2.854262
0.686667 0.733333 0.354262
4.35333 2.5 0.435274
2.886667 3.466667 13.07578

j/i 4 5 6

1 (7,6,5) (6,3,4) (10,3,8)
2 (8,3,2) (8,3,8) (9,7,6)
3 (6,5,4) (7,9,10) (5,3,5)
4 (6,9,10) (6,4,3) (4,10,8)
5 (7,9,12) (9,8,7) (6,8,3)
x̃i (6.8,6.4,6.6) (7.2,5.4,6.4) (6.8,6.2,6.1)
δ22(·, ·) 0.414829 3.26 20.93333

6.290829 3.626667 4.066667
2.640163 4.36 3.133333
3.288163 4.893333 13.43333
6.170829 2.626667 4.6

j/i 7 8

1 (11,3,2) (6,3,4)
2 (10,8,3) (11,5,3)
3 (4,3,5) (12,3,2)
4 (9,8,7) (5,10,12)
5 (8,3,2) (4,5,6)
x̃i (8.4,5,3.8) (7.6,5.2,5.4)
δ22(·, ·) 8.226667 3.053333

1.126667 8.786667
13.22667 19.45333
3.626667 15.52
1.326667 11.58667

x̃ (6.95, 6.375, 6)
s 3.082319

required necessity level ξ take the same value, α =
0.084 = ξ. From the bootstrap experiment we have the
following bootstrap quantiles: u0.042 = 0.1341, u0.958 =
1.9817. Thus, the control limits (26)–(27) for the above in
control 40 fuzzy data are as follows:

˜LCL
−
0.916 = 6.46202, ŨCL

+

0.916 = 8.1586.

By Proposition 1, we see that the corresponding

ARL∗b

0 ≤ 12. In the following we assume that at Phase
II we have 40 porcelains color appearance data which
are grouped into 8 samples of size 5, and the controlling
decisions based on the above obtained control limits are
shown in Table 2.

We see that, under the necessity index based
possibilistic confidence level 1 − ξ = 0.916, only no. 2
and no. 8 groups of porcelains are completely out of
control, no. 4 is in control, and the remaining 5 groups
of porcelains are in the state of partial in-control with
different degrees.

From this example, we can see what follows.

(i) The proposed fuzzy Shewhart control chart is
completely based on the bootstrap method regardless
of the distribution model of the process variable.
Thus, the solution for establishing the control chart
for fuzzy data is completely distribution-free.

(ii) The proposed fuzzy Shewhart control chart is an
extension of the chart proposed by Grzegorzewski
and Hryniewicz (2000). If the distribution of
underlying process variable is known to be the
normal distribution, then it will be reduced to the
chart of Grzegorzewski and Hryniewicz (2000). As
the necessity measure of possibility theory was
applied for determining the control limits, it can be
viewed as a new fuzzy control chart obtained using
the direct fuzzy way (cf. Cheng, 2005; Shu and
Wu, 2011; Faraz and Shapiro, 2010; Gülbay and
Kahraman, 2007; 2006).

(iii) The proposed Shewhart chart is more sophisticated
in design than other fuzzy control charts with known
distributions of the underlying process variable under
a direct fuzzy way, as we have to make an additional
computational effort for doing bootstrapping and
analyzing its results.

5. Conclusions

The f.r.v.’s in the sense of Puri–Ralescu are always
distribution free. A sample from these f.r.v.’s can be
viewed as fuzzy data. We consider the case of one
dimension where fuzzy data may be well expressed by
a LR-fuzzy set form. Using the bootstrap approach
to calculate the quantile of the fuzzy mean statistic,
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Table 2. Eight groups of size five-element LR- fuzzy sample data in Phase II and the control status.
j/i 1 2 3

1 (8.5,3,3.5) (13.6,10,12) (9.2,8,7)
2 (7.8,6,8) (14,9,8) (8.6,9,10)
3 (12.3,4,10) (11,3,7) (16,4,7)
4 (3.2,5,6) (6,5,9) (2,10,11)
5 (2.3,10,3) (6.8,6.2,9) (5,12,8)
x̃i (6.82,5.6,6.1) (10.28,6.64,7.8) (8.16,8.6,8.6)
(x̃i)0.916 [6.35,7.33] [9.72,10.94] [7.44,8.88]
Decision Partial Out of Control Partial
β 0.512 0.424

j/i 4 5 6

1 (6.9,4,8) (6,6,4) (7.4,6.2,5)
2 (7.5,6,8) (7,7,8) (8.1,6.4,8)
3 (8.1,6.3,5.2) (7,4,3) (6.9,6,4)
4 (6.3,5.2,7) (6.4,10,12) (5.9,5,6)
5 (8.2,4.3,6) (6.8,9,13) (6.1,6,4)
x̃i (7.4,5.16,6.84) (6.64,7.2,8) (6.88,5.92,5.4)
(x̃i)0.916 [6.97,7.97] [6.04,7.31] [6.38,7.33]
Decision In Control Partial Partial
β 0.5 0.512

j/i 7 8

1 (1,8,7) (13,8.8,6.7)
2 (2,3,2) (19,5.3,7.8)
3 (3,4,5) (22,4.3,6.9)
4 (9,10,13) (37,16,21)
5 (18,5,6) (32,6,8)
x̃i (6.6,6,6.6) (24.6,8.08,10.08)
(x̃i)0.916 [6.1,7.15] [23.92,25.44]
Decision Partial Out of Control
β 0.406

we propose a fuzzy Shewhart control chart, which has
some advantages over the existing fuzzy Shewhart control
charts. Therefore, our control chart is distribution-free,
i.e., does not depend upon the distributional model of
the underlying process variable. Moreover, the proposed
control chart method can be used for designing the control
chart for d-dimensional fuzzy data if the f.r.v.’s in the
sense of Puri–Ralescu can be expressed in parametric
forms. Some research topics for future study include the
following:

(i) instead of the distance δ2, one can use other more
appropriate distances between fuzzy data in order to
develop other nonparametric control charts for fuzzy
data;

(ii) under the same conditions of the fuzzy data and
the related distance presented in this paper, one
can construct other nonparametric control charts for
fuzzy data, such as, e.g., CUSUM control charts or
EWMA control charts.
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Féron, R. (1976). Ensembles aléatoires flous, Comptes Rendus
de l’Academie des Sciences Serie A 282: 903–906.
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