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The formulation of a bending vibration problem of an elastically restrained Bernoulli–Euler beam carrying a finite number
of concentrated elements along its length is presented. In this study, the authors exploit the application of the differential
evolution optimization technique to identify the torsional stiffness properties of the elastic supports of a Bernoulli–Euler
beam. This hybrid strategy allows the determination of the natural frequencies and mode shapes of continuous beams,
taking into account the effect of attached concentrated masses and rotational inertias, followed by a reconciliation step
between the theoretical model results and the experimental ones. The proposed optimal identification of the elastic support
parameters is computationally demanding if the exact eigenproblem solving is considered. Hence, the use of a Gaussian
process regression as a meta-model is addressed. An experimental application is used in order to assess the accuracy of the
estimated parameters throughout the comparison of the experimentally obtained natural frequency, from impact tests, and
the correspondent computed eigenfrequency.
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1. Introduction

The study of beam-like components that have cross
section variations along the length and/or carry
concentrated masses and/or springs is often addressed
by means of approximated numerical methods, such as
Rayleigh’s quotient. The accuracy of such an approach
depends on the chosen shape function, according to
Rayleigh’s theorem (Meirovitch, 2001). The objective
of the present work is to develop an accurate model for
generic physical systems, as illustrated in Fig. 1, in order
to replicate the experimental natural frequencies in lateral
bending. Thus, an automated procedure to establish
and to solve the symbolic eigenproblem, derived from
classical beam theory, is proposed.

While the rotor itself presents no problem and
can easily be studied as a Bernoulli–Euler beam with
a concentrated mass, the identification of the adequate
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linear and torsional stiffness properties associated with
the end supports remains a challenge. Note that the
term ‘torsional’ is related to a constraint of the angular
displacement in the x-z plane (Fig. 1). In a similar
context, De Rosa et al. (1996) supposed the beam to be
elastically restrained against rotation and translation at
both ends, so that it was possible to study all the common
boundary conditions. They showed that trigonometric
functions work slightly better than the static deflections
and highlighted the accuracy of Rayleigh’s quotient to
the true frequencies. Several authors present exact
solutions for the frequency equation of a Bernoulli–Euler
beam restricting the stiffness coefficients, in order to
reproduce some particular cases, and accounting for the
rotation inertia of attached discs and their eccentricity
(De Rosa and Auciello, 1996; Auciello, 1996; Grossi and
Albarracı́n, 2003; Maiz et al., 2007). Similar problems are
treated by Nallim and Grossi (1999) as well as Albarracı́n
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Fig. 1. Generic beam model with h intermediate discontinuities.

et al. (2004), who consider intermediate supports.

Wu and Chen (2003) studied the bending vibrations
of wedge Bernoulli–Euler beams with any number of
point masses, verifying that the mass distribution on
the beam affects the dynamical behaviour more than
the mass addition itself. The works of Biondi and
Caddemi (2005; 2007) treat beams with discontinuities
in the curvature or in the slope functions, allowing
the adoption of different materials or different cross
sections in the model. The formulation for multi-stepped
discontinuities on Bernoulli–Euler beams is presented by
Bashash et al. (2008) and Vaz (2008), the latter giving a
useful explanation for the computational implementation
for the bending vibration problem of beams with a
infinite number of geometrical discontinuities. Elishakoff
and Pentaras (2006) worked on the free vibration
of non-homogeneous Bernoulli–Euler beams using a
polynomial approach for the mode shape of the natural
frequency of interest. The developed formulation does not
require numerical modelling and provides a useful tool to
the design phase. The above referred papers deal with
slender beams, typically those with a length-to-diameter
ratio greater than 10, l/D > 10. As a consequence,
the inertial rotation energy of an infinitesimal element
dx is negligible compared with its translational energy,
justifying the applicability of the Bernoulli–Euler beam
theory. Otherwise, the problem has to be treated using
the Timoshenko beam theory (Posiadała, 1997; Lin and
Hsiao, 2001).

The identification of structural boundary conditions
is a concern, as the lower frequency dynamical response of
a structure is often dominated by these conditions. Hence,
several authors worked on different approaches in order to
identify the parameters of generic elastic supports. Wang
and Yang (2011) established a direct method to identify
the stiffness parameters of tapered Bernoulli–Euler beams
with an elastically supported end. The identification
process is based on measured static flexibility functions
throughout the application of a weighted least squares
method. As the boundary conditions imposed by
elastic supports depend on the spatial derivatives of the
displacement, Chesne (2012) proposed to identify the
stiffness parameters in Bernoulli–Euler beams elastically

supported at both ends and excited by harmonic loads,
through the estimation of the referred derivatives. The
author approximates the shape function by a truncated
Taylor series, from which the estimated spatial derivatives
are extracted using annihilators, as described in the work
of Mboup et al. (2009). Majkut (2006) approached
the same problem, although the use of singular value
decomposition is addressed in order to compute the
unknown stiffness parameters in a least squares sense.
Modeling a structure by finite elements is an alternative to
its analytical formulation, where the effect of the supports
can be introduced by adding a set of nodal forces at
the boundary nodes. Additionally, the relation between
nodal displacements and nodal forces is given by the
dynamic stiffness matrix. Thus, Ahmadian et al. (2001)
proposed to identify the structural boundary conditions
through the reconciliation of the measured and predicted
modal responses, eliminating the unknown nodal reaction
forces by the introduction of the support stiffness matrix.
Similarly, Yoneyama and Arikawa (2012) proposed
a boundary condition identification method based on
full-field measured displacements.

In the present work, we shall use Rayleigh’s quotient,
with exact shape functions that take into account the
flexibility of the supports and the effect of the mass and
torsional inertia of attached discs, in order to identify
the value of the torsional stiffness of both supports
as proposed by Silva and Maia (2011; 2013). It is
worth mentioning that the computation of the exact
shape functions is fully automated and therefore not
limited to the presented experimental example (Figs. 2
and 3). In order to identify the referred stiffness
parameters, the differential evolution (DE) algorithm
is used to find the optimal stiffness parameters, i.e.,
the ones that minimize the relative difference between
experimental and analytical eigenfrequencies. Due to
the demanding computational effort of evaluating the
eigenproblem hundreds of times, we shall address the use

Fig. 2. System under study (MFS, SpectraQuest, Inc.).



A hybrid procedure to identify the optimal stiffness coefficients of elastically restrained beams 247

of a Kriging predictor as a meta-model, built from several
training evaluations of the eigenproblem. In the following
sections, one can find the theoretical background on the
bending vibrations of Bernoulli–Euler beams on elastic
supports and an experimental example where the accuracy
of the identified optimal solutions is assessed.

2. Theoretical background

To obtain an analytical model that reproduces a generic
physical system, we consider Rayleigh’s quotient, using
the Bernoulli–Euler beam theory to define the shape
functions. In previous works of Silva and Maia (2011;
2013), it was shown that the simplification introduced
by the ideal cases, simply supported and clamped beam
ends, leads to results that are significantly different from
the experimental ones. Therefore, it is proposed to build
a model (Fig. 1) where a Bernoulli–Euler beam can be
elastically restrained and present any kind of intermediate
discontinuities, without taking any specific assumption.

Regarding Rayleigh’s method, the energy dissipation
is neglected and therefore the principle of conservation of
energy holds:

Δ(T + V ) = 0 ⇒ Tmax = Vmax, (1)

where T and V are the kinetic and potential energies,
respectively.

Through the quantification of the work performed by
the elastic forces, in relation to the equilibrium position of
the beam, the potential energy is

V =
1

2

∫ l

0

M(x, t) dθ, (2)

where M(x, t) is the bending moment given by
M(x, t) = ∂2 (E(x)I(x)w(x, t))/∂x2, l is the length of
the beam and θ is the rotation angle given by θ(x, t) =
∂w(x, t)/∂x. E(x) is the Young modulus and I(x) is
the second moment of the area of the beam, while w(x, t)
represents the lateral displacement of the beam in relation
to its equilibrium position.

At each undamped natural frequency, the time
variation of w(x, t) can be shown to be harmonic and
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Fig. 3. Model of a beam with elastic torsional supports and a
rigid disc at x = a.

therefore the displacement response is given by the
harmonic variation of a shape function φ(x),

w(x, t) = φ(x) sin(ωt+ ϕ). (3)

From Eqn. (3), w(x, t)max = φ(x), leading to

Vmax =
1

2

∫ l

0

E(x)I(x) (φ′′(x))2 dx. (4)

On the other hand, the kinetic energy is given by

T =
1

2

∫ l

0

ẇ(x, t)2 dm. (5)

From Eqn. (3), ẇ(x, t)max = ωφ(x). As dm =
ρ(x)A(x) dx, where ρ(x) is the density of the material
and A(x) the cross sectional area of the beam, we have

Tmax = ω2 1

2

∫ l

0

ρ(x)A(x) (φ(x))2 dx. (6)

2.1. Rayleigh’s quotient. Rayleigh’s quotient R
results from the application of Eqn. (1) and, therefore,
for a beam with no extra masses and springs, Eqns. (4)
and (6) lead to

R = ω2 =

∫ l

0 E(x)I(x) (φ′′(x))2 dx∫ l

0
ρ(x)A(x) (φ(x))2 dx

, (7)

where the prime denotes differentiation with respect to the
spatial coordinate x.

Rayleigh’s quotient has several interesting properties
from the numerical point of view. One of them is
the upper bound approximation of the natural frequency
value, as long as we provide a shape function φ(x) close
enough to a true mode shape, respecting at least the
geometric boundary conditions of the problem. As a first
order variation on φ(x) corresponds to a second order
variation on ω2, Rayleigh’s quotient has a stationary value
(a minimum in this case) in the neighbourhood of the
true natural frequency. This is satisfied not only for the
fundamental natural frequency, but for all of them, i.e., an
accurate approximation for the n-th shape function φn(x)
leads to an accurate approximation for the n-th natural
frequency ω2

n.
Taking into account the possible existence of

concentrated parameters along the length of the
beam, such as stiffness coefficients and masses and
corresponding inertias, we can rewrite Eqns. (4) and (6).
Therefore, the total maximum value for the potential
energy Vmax will be given by

Vmax = Vb +
∑
i

Vki +
∑
j

Vktj
, (8)

where Vb is the potential energy of the beam itself, given
by Eqn. (4), Vki is the potential energy of each local
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translational stiffness ki, and Vktj
is the potential energy

of each local torsional stiffness ktj , respectively located at
x = xi and x = xj ,

Vki =
1

2
ki φn(x)|2 ,

Vktj
=

1

2
ktj φ′

n(x)|2x=xj
.

(9)

The maximum kinetic energy Tmax will be given by

Tmax = Tb +
∑
r

Tmr +
∑
s

TJs , (10)

where Tb is the kinetic energy of the beam itself, given
by Eqn. (6), Tmr is the kinetic energy of each local mass
mr, and TJs is the kinetic energy of each local inertia Js,
respectively located at x = xr and x = xs,

Tmr =
1

2
ω2mr φn(x)|2x=xr

,

TJs =
1

2
ω2Js φ′

n(x)|2x=xs
.

(11)

Considering Eqns. (8) and (10), recalling Eqn. (1),
the general expression of Rayleigh’s quotient is defined as

Rn = ω2
n

=

[∫ l

0

E(x)I(x) (φ′′
n(x))

2
dx

+
∑
i

ki φn(x)|2x=xi
+
∑
j

ktj φ′
n(x)|2x=xj

⎤
⎦

×
[∫ l

0

ρ(x)A(x) (φn(x))
2
dx

+
∑
r

mr φn(x)|2x=xr
+
∑
s

Js φ
′
n(x)|2x=xs

]−1

.

(12)

2.2. Shape functions. The selection of the shape
function may have a significant impact on the eigenvalue
approximated by Rayleigh’s quotient. The point is how
to choose such an appropriate shape function, which
should at least verify the geometric boundary conditions,
although more accurate results are expected if it satisfies
the natural boundary conditions, too. Moreover, it is also
known that, in general, trigonometric functions provide
better results than polynomial ones or those based upon
static deflections. A possible choice which gives very
good results in many cases would be to take the shape
function that results from the solution of the equilibrium
equation of the Bernoulli–Euler beam theory for free
vibrations,

c2
∂4w(x, t)

∂x4
+

∂2w(x, t)

∂t2
= 0, (13)

where c2 = EI/ρA and w(x, t) = φ(x)T (t).
The shape function φ(x) is given by

φ(x) = C1 sin(βx) + C2 cos(βx)

+ C3 sinh(βx) + C4 cosh(βx),
(14)

where Cp, p = 1, . . . , 4, are constants and β is related to
the natural frequency through

β4
n =

ω2
n

c2
=⇒ ωn = β2

n

√
EI

ρA
. (15)

If we consider a set of boundary conditions,
Eqn. (14) leads to an eigenproblem, whose eigenvalues
are βnl, n = 1, 2, . . . , N , and the elements of the
respective eigenvectors are the constants C(n)

p . From the
eigenvalues, the natural frequencies are calculated and,
from the eigenvectors, the mode shapes are defined as,

φn(x) = C
(n)
1 sin(βnx) + C

(n)
2 cos(βnx)

+ C
(n)
3 sinh(βnx) + C

(n)
4 cosh(βnx).

(16)

Note that each eigenvector has infinite solutions, being
functions of one of the constants C

(n)
p . Hence, we must

give one extra equation in order to establish a single
solution for the eigenvectors, e.g., satisfy a prescribed
displacement at a given position of the beam.

If a structure presents discontinuities between its
boundaries, such as discs, supports or others, we must
define the shape function of Eqn. (16) as a piecewise
function with h + 1 sections, h being the number of
discontinuities. Hence, Eqn. (16) is recast as

(φn(x))α

= C
(n)
4α−3 sin(βnx) + C

(n)
4α−2 cos(βnx)

+ C
(n)
4α−1 sinh(βnx) + C

(n)
4α , cosh(βnx)

(17)

for x ∈ [xhα−1 , xhα ], with α = 1, . . . , h + 1. Note that,
for α = 1 we have xh0 = 0 and for α = h + 1 we get
xhh+1

= l, i.e., the left and right end sides of the beam,
respectively.

As mentioned above, the shape functions must
satisfy the set of boundary conditions defined for a certain
problem. Moreover, if the shape function is piecewise
one, we must impose a set of continuity conditions as well.
Both boundary and continuity conditions are described in
detail below. Figure 1 gives an illustrative example of a
generic beam model with h discontinuities.

2.3. Boundary conditions. Two types of generic sets
of boundary conditions are presented.
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2.3.1. Generic elastic support. If we do not consider
any assumptions on the stiffness parameters of the
support, we have ki ≥ 0 and ktj > 0, which leads to
the following set of boundary conditions at x = 0:

∂2

∂x2
(E(x)I(x)w(x, t))

∣∣∣∣
x=0

= ktj
∂

∂x
w(x, t)

∣∣∣∣
x=0

,

(18)
∂3

∂x3
(E(x)I(x)w(x, t))

∣∣∣∣
x=0

= −ki w(x, t)|x=0 (19)

and, at x = l,

∂2

∂x2
(E(x)I(x)w(x, t))

∣∣∣∣
x=l

= −ktj
∂

∂x
w(x, t)

∣∣∣∣
x=l

,

(20)

∂3

∂x3
(E(x)I(x)w(x, t))

∣∣∣∣
x=l

= ki w(x, t)|x=l . (21)

From the set of boundary conditions for a generic
elastic support it is possible to derive all the sets of
boundary conditions for supported ends. A specific
application will be given in the experimental application
section.

2.3.2. Generic disc. If we consider a disc attached at
the tip of a beam, we have Js ≥ 0 and mr > 0, which
leads to the following set of boundary conditions at x = 0

∂2

∂x2
(E(x)I(x)w(x, t))

∣∣∣∣
x=0

= Js
∂3

∂x∂t2
w(x, t)

∣∣∣∣
x=0

,

(22)

∂3

∂x3
(E(x)I(x)w(x, t))

∣∣∣∣
x=0

= −mr
∂2

∂t2
w(x, t)

∣∣∣∣
x=0

(23)

and, at x = l,

∂2

∂x2
(E(x)I(x)w(x, t))

∣∣∣∣
x=l

= −Js
∂3

∂x∂t2
w(x, t)

∣∣∣∣
x=l

,

(24)

∂3

∂x3
(E(x)I(x)w(x, t))

∣∣∣∣
x=l

= mr
∂2

∂t2
w(x, t)

∣∣∣∣
x=l

.

(25)

From the set of boundary conditions for a generic
disc it is possible to derive all the sets of boundary
conditions for discs at both the ends of the beam. A
specific application will be given in the experimental
application section.

2.4. Continuity conditions. In the case of
intermediate material or geometrical discontinuities,
the shape function must be defined as a piecewise one

and we must impose a set of continuity conditions or
equations for each discontinuity between beam sections
h and h + 1 at xhα−1 ∈ ]0, l[, with α = 2, . . . , h + 1.
Hence, we have to satisfy

(E(x)I(x)w(x, t))h
∣∣
x=xhα−1

= (E(x)I(x)w(x, t))h+1

∣∣
x=xhα−1

,
(26)

∂

∂x
(E(x)I(x)w(x, t))h

∣∣
x=xhα−1

=
∂

∂x

(
(E(x)I(x)w(x, t))h+1

) ∣∣
x=xhα−1

(27)

and one of the following sets of equations, depending on
the discontinuity type.

2.4.1. Generic elastic support.

∂2

∂x2
(E(x)I(x)w(x, t))h

∣∣
x=xhα−1

+ ktj
∂

∂x
(w(x, t))h

∣∣
x=xhα−1

=
∂2

∂x2
(E(x)I(x)w(x, t))h+1

∣∣
x=xhα−1

,

(28)

∂3

∂x3
(E(x)I(x)w(x, t))h

∣∣
x=xhα−1

− ki (w(x, t))h
∣∣
x=xhα−1

=
∂3

∂x3
(E(x)I(x)w(x, t))h+1

∣∣
x=xhα−1

.

(29)

As mentioned in the case of boundary conditions,
from this set of equations it is possible to derive all the
continuity equations regarding an intermediate support,
from clamped to simply supported, at location x = xhα−1 .

2.4.2. Generic disc.

∂2

∂x2
(E(x)I(x)w(x, t))h

∣∣
x=xhα−1

+ Js
∂3

∂x∂t2
(w(x, t))h

∣∣
x=xhα−1

=
∂2

∂x2
(E(x)I(x)w(x, t))h+1

∣∣
x=xhα−1

,

(30)

∂3

∂x3
(E(x)I(x)w(x, t))h

∣∣
x=xhα−1

− mr
∂2

∂t2
(w(x, t))h

∣∣
x=xhα−1

=
∂3

∂x3
(E(x)I(x)w(x, t))h+1

∣∣
x=xhα−1

.

(31)

From this set of equations it is also possible to
derive all the continuity equations regarding a material
or a geometric intermediate discontinuity at location x =
xhα−1 , e.g., a disc or a rotor with a given mass and inertia
or even an abrupt change in the cross section of the beam.
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3. Experimental application

To consolidate the above presented formulation for the
bending vibration problem of a Bernoulli–Euler beams,
we use the structure of Fig. 2 as an experimental case
study. As can be seen, it is a didactic rotating machine
with a elastically supported shaft carrying a disc between
supports. The material and geometric properties of the
shaft are E = 73 GPa, I = 1.277 × 10−9 m4, ρ =
2766 kg.m−3 and A = 1.2668× 10−4 m2. Note that the
beam is uniform and therefore the following properties
are constants: E(x) = E, I(x) = I , ρ(x) = ρ and
A(x) = A.

The equipment studied has an attached disc between
supports. Hence, it has one intermediate discontinuity,
which leads to h = 1. The referred disc mass and
rotational inertia are m = 3kg and J = 2.8 ×
10−3 kg · m2, respectively.

Summarizing, in the present case study, we consider
that the structure of Fig. 2 can be accurately modelled as
a beam on elastic supports with ktj > 0 and ki = ∞,
carrying a disc at x = xh1 , with xh1 as the coordinate
of the only intermediate discontinuity. Thus, we must
consider φn(x) as a piecewise function with two branches
(Eqn. (17) with α = 1) and impose the following set of
boundary and continuity conditions of Eqns. (32)–(38):

(φn(0))1 = (φn(l))2 = 0, (32)

EI (φ′′
n(x))1|x=0 = kt1 (φ′

n(x))1|x=0 , (33)

EI (φ′′
n(x))2|x=l = −kt2 (φ′

n(x))2|x=l , (34)

(φ(xh1 ))1 = (φ(xh1))2 , (35)

(φ′(x))1|x=xh1
= (φ′(x))2|x=xh1

, (36)

EI (φ′′
n(x))1|x=xh1

− ω2
nJ (φ′

n(x))1
∣∣
x=xh1

= EI (φ′′
n(x))2|x=xh1

,
(37)

EI (φ′′′
n (x))1|x=xh1

+ ω2
nm (φn(x))1

∣∣
x=xh1

= EI (φ′′′
n (x))2|x=xh1

.
(38)

Finally, Rayleigh’s quotient for this kind of structure
has the following form:

Rn = ω2
n

=

⎡
⎣EI

∫ l

0

(φ′′
n(x))

2
dx+

∑
j

ktj φ′
n(x)|2x=xj

⎤
⎦

×
[
ρA

∫ l

0

φ2
n(x) dx +m φn(x)|2x=xh1

+ J φ′
n(x)|2x=xh1

]−1

,

(39)

with x ∈ [0, l] and xj = [0 l]T .
Several impact tests were performed on the presented

test rig and the obtained experimental fundamental
frequency (f1|X = 38.907 Hz) is used to set the objective
function for the optimization problem, which is a function
of φ1(x), the approximated first mode shape.

Regarding the available experimental data,
concerning the set up of Fig. 2, results for the case
where the disc is placed at the mid-span are presented
in this paper. However, from the theoretical background
(Section 2), other configurations can be considered.

4. Optimal identification of the support
parameters

Considering the complexity of real physical systems,
traditional gradient based optimizations techniques can
easily lead to non-global optimal solutions. This
may be due to non-linear/non-convex design spaces
and thus the use of global optimization approaches,
namely, nature-inspired optimization techniques, should
be addressed.

Within the framework of nature-inspired
optimization methods, one can find techniques such
as genetic algorithms, particle swarm optimization,
ant colonies, or differential evolution, among others
(Eiben and Smith, 2003). Taking into account the DE
performance when compared with other evolutionary
strategies (Das and Suganthan, 2011) and the experience
of the authors in this field (Loja et al., 2010; 2013; 2014;
Silva and Loja, 2013; Loja, 2014), in the present work we
have chosen the use of DE.

4.1. Differential evolution fundamentals. The DE
algorithm was developed by Storn and Price (1997). DE
is a population-based optimization technique (Babu and
Jehan, 2003) that uses difference vectors in order to
generate trial individuals for the next generation. The
referred difference vectors are computed from randomly
selected members of the population. For each population,
the objective function is evaluated for each member,
in order to find the best population member until a
termination criterion is achieved.
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DE congregates characteristics from well-known
global optimization and meta-heuristics algorithms.
Although it is a global search technique, DE preserves a
search direction vector, which gives an important descent
property, and the randomness of populations, which
improves the method’s robustness (Kitayama et al., 2011).
The available algorithmic schemes differ according to
the number of computed difference vectors and whether
the current individual or the global best one will be
used or not as part of the mutation. Hence, it is
usual to designate a DE scheme by the following codes:
DE/Vector/n.Vectors/Cross.Sch., where Vector specifies
the population member to be mutated, n.Vectors specifies
the number of computed difference vectors and Cross.Sch.
specifies the used crossover scheme.

Babu and Munawar (2007) indicated DE/best/1/bin
as one of the most promising DE strategies, although the
best scheme remains problem dependent and the authors
find DE/best/2 more effective for the type of problems
treated in this work. Recent developments regarding DE
optimization techniques and applications can be found
in the works of Price et al. (2005), Chakraborty (2008)
and Martinović et al. (2014). Only few applications of
DE to structural engineering can be found, for instance,
the ones of Savoia and Vincenzi (2008) or Reed et al.
(2013). In the work of Savoia and Vincenzi (2008), DE
is used to identify mass and stiffness properties of civil
structures from dynamical response data. The robustness
of the algorithm to the variability of test responses is also
evaluated, whereas in the work of Reed et al. (2013) a
modified version of the DE algorithm, specifically tailored
to structural identification problems, is proposed. The
authors also compared the recommended algorithm with
the one of Storn and Price (1997) and showed a faster
convergence for the problem of damage identification of
a submerged structure.

In the present work, despite several schemes tried, we
use the DE/best/1 and DE/best/2 optimization strategies,
where best specifies the vector of lowest objective
function value from the current population to be mutated
and 1 and 2 are the number of difference vectors used
for calculation. Note that an adaptive mutation (AM)
is considered and, as the floating point representation is
used, the crossover step is performed by single arithmetic
recombination of each population member (Eiben and
Smith, 2003).

4.2. Optimal design problem. Considering the
structure described in the experimental application
section, we can state an optimization problem as

min Ωn = min

∥∥∥∥∥
ω2
n

∣∣
X
−Rn

(
φn

(
x, ktj

))
ω2
n|X

∥∥∥∥∥
2

(40)

subject to

klowtj ≤ ktj ≤ kuptj , j = 1, 2, (41)

where Ωn is the objective function related to the n
eigenfrequency, ktj is the vector of design variables,
whose values are bounded by the lower and upper
limits klowtj and kuptj , respectively. In this context, the
design variables to be identified are the torsional stiffness
coefficients and the imposed limits are used as boundary
constraints for the optimization process. The objective
function is the euclidean norm of the relative difference
between the experimental fundamental frequency and its
analytical approximation, given by Eqn. (40).

4.3. Kriging predictor as a meta-model. Usually,
global optimization techniques, such as DE, are
computationally expensive. They require hundreds or
even thousands of evaluations of the objective function,
which, in the present case, encompass the evaluation of an
eigenproblem. Meta-models, or the so-called fast-running
surrogates, have been successfully used to describe
the relationship between the model responses (here
the fundamental eigenfrequency) and design parameters
with a significant decrease in the computational effort.
Amongst available meta-models, the Kriging ones are
excellent predictors of model responses (De Munck
et al., 2009). The Kriging predictor is a Gaussian
process model (Rasmussen and Williams, 2005), and
therefore it produces unbiased estimates at the reference
or training locations, i.e., despite the quality of the model
responses approximation, one can be certain that the
model responses at reference locations are not degraded.

In the current work, we build a Kriging model
based on a set of design parameters, torsional stiffness
coefficients, and their responses, computed using
Rayleigh’s quotient. We consider the covariance function
of the Ornstein–Uhlenbeck process (Rasmussen and
Williams, 2005). Hence, the Kriging response prediction
ẑ may be written as

ẑ = λT z, (42)

where z is the vector of reference responses used
for training the Kriging model and λ is the vector
of regression coefficients, computed from the selected
covariance function as

λ =

⎡
⎢⎢⎣

covu1,u1 · · · covu1,uns
1

...
. . .

...
...

covuns ,u1 · · · covuns ,uns
1

1 · · · 1 0

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

covu1,û

...
covuns ,û

1

⎤
⎥⎥⎦,

(43)
where cov·,· is the covariance function of the
Ornstein–Uhlenbeck process, u is the vector of each
one of the ns reference design parameters or training
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locations, and û is the vector of design parameters for
which the Kriging prediction is performed.

Summarizing, we build the Kriging model and use its
prediction ẑ on each evaluation of the objective function
by the DE algorithm. Hence, Eqn. (40) is recast as

min Ωn = min

∥∥∥∥∥
ω2
n

∣∣
X
− ẑ(ktj )

ω2
n|X

∥∥∥∥∥
2

. (44)

Note that the optimization process is bounded by the lower
and upper limits of the design parameters (Eqn. (41)). In
the present paper, we use fixed side constraints for ktj :
ktj ∈ [500, 5000] N/m. These bounds were defined in
order to improve convergence, after wider ranges had been
tried.

4.4. Optimal identification procedure. The proposed
procedure to identify the torsional stiffness coefficients
on structures modelled as an elastically restrained
Bernoulli–Euler beam is implemented in the symbolic
computation commercial software Maple (Maplesoft,
2010) following the steps of Algorithm 1.

Algorithm 1. Optimal identification of elastic support
parameters on Bernoulli–Euler beams.
Require: Create the Kriging predictor (Section 4.3).
Require: DE algorithm setup (Section 4.1).

1: for all DE algorithm generations do
2: for all DE algorithm population members do
3: Define set of boundary conditions (Section 2.3);
4: Define set of continuity conditions for the

discontinuity h (Section 2.4);
5: Set the exact eigenproblem (from Eqn. (17));
6: Compute eigenvalues (a numerical

approximation using a modified
Newton–Raphson method);

7: Compute eigenfunctions (Eqn. (17));
8: Compute predicted fundamental eigenfrequency

(Eqn. (42));
9: Evaluate objective function (Eqn. (44)).

10: end for
11: end for
12: return ktj , ẑ(ktj ),Ωn {Optimal values}

Note that the adopted stopping criterion is only
the defined DE maximum number of generations. No
tolerance on the solution convergence is considered due to
the fact that we wanted to overview the overall evolution
of the optimization process. The results presented in
Section 5.3 support this decision. As expected, due to the
employed DE scheme, a good convergence performance
is achieved (Fig. 8).

For solution verification purposes, after the
application of the described optimal identification

procedure, we use the Rayleigh quotient of Eqn. (39) to
compute the exact solution of the problem in order to
assess the quality of the identified stiffness coefficients,
as it is still a function of the Kriging predictor quality.

5. Results and discussion

5.1. Solutions for the mode shapes. In the work of
Silva and Maia (2013), the bending vibration problem of
Bernoulli–Euler beams was presented and the influence of
the disc position in the mode shape highlighted.

In the present work, the exact solution for the
model of Fig. 3 is implemented recurring to the symbolic
computation commercial software Maple (Maplesoft,
2010). The symbolic implementation of the presented
problem has several computational advantages over the
previous numerical one, both in terms of programming
and the range of solutions, i.e., it is now possible to
change every single design parameter without the need
to explicitly evaluate every single shape function and
respective derivatives beforehand.

Figures 4–6 show a set of solutions for different
models obtained from a unique computer code. The
influence of the type of support (represented by a black
diamond) and the disc location (represented by a black
circle) on the mode shape is clearly understandable from
these figures.

5.2. Kriging predictions. As mentioned, a Kriging
model was created in order to be used as a meta-model,
avoiding the evaluation of the exact problem solutions
for each member of each DE generation, at a satisfactory
accuracy. Figure 7 shows the Kriging model surface of
predictions and its mean squared error. Note that the
Kriging model was trained with a data point selected
from preliminary runs of different DE configurations,
using the exact solution evaluation, and some other data

(a)

(b)

Fig. 4. Mode shapes for a simply supported beam with a disc at
x/l = 0.2 (supports: black diamond, disc: black circle):
first mode shape (a), second mode shape (b).
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(a)

(b)

Fig. 5. Mode shapes for a beam with the left end side clamped,
the right end side on an elastic support (kt2 = 500 N/m
and k2 = ∞) and a disc at x/l = 0.8 (supports: black
diamond, disc: black circle): first mode shape (a), third
mode shape (b).

(a)

(b)

Fig. 6. Mode shapes for a beam with the left end side clamped,
an intermediate elastic support at x/l = 0.8 (kt2 =
500N/m and k2 = ∞) and a disc at the right end side
(supports: black diamond, disc: black circle): first mode
shape (a), third mode shape (b).

points randomly selected within the feasible parameters
space. This training data points are represented in Fig. 7
as black dots. In Fig. 7(a), the plane corresponding
to the experimental fundamental frequency is shown (in
grey) and some points (black dots) on the contour line of
the experimental fundamental frequency are depicted in
Fig. 7(b). Note that this isoline marks the interception
of the experimental fundamental frequency plan with the
surface of predictions.

The Kriging predictor, whose results are presented
in Fig. 7, is the one used to perform the optimal
identification of the torsional stiffness coefficients of
the elastic supports. Note that unbiased estimates
at the reference or training locations are guaranteed
and thus it is evident that the error at such locations
is null (Fig. 7(c)).

Table 1. Comparison of computational times: one run of the ex-
act solution (Rayleigh’s quotient) (a), one run of DE
for one generation with two members using the Krig-
ing predictor (b), one run of DE for one generation with
100 members using the Kriging predictor (c).

Run CPU time (s) CPU time ratio

(a) 45 1.00
(b) 1.826 0.04
(c) 19.905 0.44

Recalling the purpose of the Kriging predictor, which
aims at decreasing the computational effort without a
significant loss in the accuracy of the identification
process, Table 1 shows a comparison of computational
times, in seconds, with the computational time ratios
calculated with respect to the time spent to complete
a single evaluation of the exact solution (Rayleigh’s
quotient).

Note that the same DE configuration was used to
compute the results (b) and (c) of Table 1 (static mutation
for one difference vector). It is worth emphasizing that
computing the result of (b) is equivalent to computing the
exact solution twice. Therefore, if Rayleigh’s quotient
had been used to compute the objective function for each
member of a usual DE population size, instead of the
Kriging predictor, the computational time would have
easily reached several hours, in comparison with a few
minutes spent by the described DE implementation.

5.3. Optimal identification of elastic supports
parameters. In order to identify the most suitable
configuration for the DE algorithm, a parametric study
on the DE algorithm was conducted. Hence, several
sets of DE parameters were tried. Note that each
set of DE parameters is an arrangement of different
variables, namely, the number of difference vectors used
in the mutation step Dif, the perturbation factor F (if
adaptive mutation with generations, define lower and
upper bounds, Fi and Ff ), the population size Np, and
the maximum number of generations to be evaluated
g. Moreover, the adopted DE strategy does not need
a crossover constant, as we use a single arithmetic
recombination process with a random parameter for each
one of the population members.

In the present paper, a selection of the best results
from the parametric study is presented (Table 2). Note
that Ωn corresponds to the optimum value of the objective
function at the last generation, computed from Eqn. (44)
with f1|X for the DE optimal members, kt1 and kt2 . As
referred, the following side constraint parameters were
adopted: klowtj = 500 N/m and kuptj = 5000 N/m. Also
in Table 2, the first column identifies the DE strategy
considered, which is the same as in Table 3, and AM
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(a) (b) (c)

Fig. 7. Kriging predictor results: surface of prediction with the experimental fundamental frequency plane and the training data (black
circles) (a), kt1 vs. kt2 planar or view of the surface of prediction for the training data (black circles) and the experimental
fundamental frequency isoline (black dots) (b), and the mean squared error of the Kriging predictor (c).

Table 2. DE parametric study and respective results (f1|X = 38.907 Hz).

Strategy AM Dif. Fi Ff Np g kt1 (N/m) kt2 (N/m)
f1 (Hz) Ωn

(Eqn. (42)) (Eqn. (44))

(a) 1 2 1 0.01 10 50 807.6215 3974.4138 38.906998 5.9302E-08
(b) 1 2 1 0.01 20 50 749.5921 3831.7455 38.907000 5.2445E-09
(c) 1 2 1 0.01 20 200 763.9674 3845.8196 38.907000 1.8230E-09
(d) 0 2 2 n.a. 20 50 858.0000 4294.0000 38.910427 8.8091E-05

stands for adaptive mutation (1 if it is used or 0 otherwise).

Table 3. Exact solution results for the optimal torsional stiffness
coefficients and the error with respect to the experi-
mental fundamental frequency (f1|X = 38.907 Hz).

Strategy
kt1 kt2 R1 (Hz)

error (%)
(N/m) (N/m) (Eqn. (39))

(a) 807.62 3974.41 38.731 0.45
(b) 749.59 3831.75 37.620 3.31
(c) 763.97 3845.82 37.891 2.61
(d) 858.00 4294.00 39.728 –2.11

After estimating the optimal torsional stiffness
coefficients, we must compute the exact solution
(Eqn. (39)), in order to assess the accuracy of the optimal
design parameters computed with the Kriging predictor.
In Table 3, one can find results for the exact solution
and its error with respect to the experimental fundamental
frequency (f1|X = 38.907 Hz). The accuracy of the
obtained results is excellent. However, the results for
all the presented DE strategies suggest an asymmetric
structure, which is not expected at a first glance, although
the experimental test rig is in fact asymmetric. Note that
in the experimental structure (Fig. 2) the shaft under study
is not isolated from the one of the electrical motor, as
considered on the theoretical model of Fig. 3, i.e., the real
shaft is not confined between its supports.

The evolution for the best computed solution

(strategy (a): Table 3) and its corresponding first mode
shape of the exact problem with the identified optimal
torsional stiffness coefficients are presented in Figs. 8
and 9, respectively. Note that the so-called strategy (a)
does not attain the lowest cost for the objective function
computed with the Kriging predictor (Table 2), although
the identified optimal torsional stiffness coefficients of
strategy (a) led to the minimum error, regarding the
relative difference between the fundamental experimental
frequency and the one approximated by Rayleigh’s
quotient (Table 3).

It is relevant to note that this hybrid procedure yields
good convergence characteristics, requiring a low number
of generations to achieve good results, as we can globally
observe in Fig. 8(a). Additionally, Fig. 8(b) provides
complementary information that allows concluding on
the adaptive mutation scheme influence. The adopted
mutation scheme enables fine tuning of the obtained
global optimum, considering the pre-defined maximum
number of generations.

6. Conclusion

The bending vibration problem of Bernoulli–Euler beams
is addressed. A comprehensive formulation for the
referred subject and its computational implementation are
presented. Some examples of hypothetical structures
are given. Besides the classical beam theory, the
authors introduce a hybrid identification procedure in
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(a)

(b)

Fig. 8. DE global optimum evolution (strategy (a): Table 3): lin-
ear scale (a), logarithmic scale (b).

order to identify the torsional stiffness coefficients of
the supports that experimentally validate the analytical
solution. The computed optimal torsional stiffness
coefficients lead to a very accurate solution, in terms of
the predicted eigenfrequency, with a relative error under
0.5%, which supports the use of the Kriging predictor as a
meta-model. In fact, if one considers the proposed hybrid
identification procedure without using a meta-model, it
is computationally prohibitive. The optimal solutions
indicate that the structure is not symmetric, which is true
in reality but is not considered in the analytical model.
Therefore, a new experimental test with a decoupled shaft
and a correspondent analytical model must be addressed
in future work.

Fig. 9. First mode shape for the model with optimal torsional
stiffness coefficients (strategy (a): Table 3) (supports:
black diamond, disc: black circle)
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