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The problem of on-line identification of non-stationary delay systems is considered. The dynamics of supervised industrial
processes are usually modeled by ordinary differential equations. Discrete-time mechanizations of continuous-time process
models are implemented with the use of dedicated finite-horizon integrating filters. Least-squares and instrumental variable
procedures mechanized in recursive forms are applied for simultaneous identification of input delay and spectral parameters
of the system models. The performance of the proposed estimation algorithms is verified in an illustrative numerical
simulation study.
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1. Introduction

In many practical realizations of diagnostic procedures the
key information about the performance of a supervised
system is gained from observations of the evolution
of specific system parameters. Appropriate procedures
of modeling the dynamics of the observed system and
effective on-line identification of the model parameters
are then necessary. Most commonly, the dynamics of
monitored industrial processes are modeled by differential
or difference equations, transfer functions or state space
representations.

In the case of discrete-time descriptions, appropriate
modeling is much easier because the necessary regression
data simply have the form of shifted samples of the
stored input and output signals. On the other hand, the
parameters of such models have no physical interpretation
and the estimated values heavily depend on the sampling
frequency applied. When one uses the continuous-time
representations, in turn, physically motivated parameters
deliver additional diagnostic information. In addition,
the numerical conditioning (sampling frequency) of the
identification process does not affect the estimated values.
Having in mind, however, that estimation of parameters is
based on the system input-output data obtained in discrete
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instants, a numerical approximation of continuous-time
regressors is necessary (Johansson, 1994; Middleton and
Goodwin, 1990; Kowalczuk, 1995; Schoukens, 1990;
Unbehauen and Rao, 1990; Young, 1981). Among
various methods of such a discrete mechanization of
differential equations (Kowalczuk, 1993; Sagara et al.,
1991), the idea of finite-horizon integrating filters is worth
recommendation. In this approach, modeling accuracy
is controlled by properly tuning an integration horizon,
while numerically well-conditioned regressors result from
the simple FIR processing of discrete-time measurements.
Moreover, the omission of the free system response does
not affect the results of identification.

Estimates of the parameters of the discretized
description can easily be obtained using the popular
least-squares (LS) routine, which is known to generate
consistent estimates provided that additive measurement
perturbation is zero-mean white noise. In realistic
situations the corrupting noise is correlated, and this
makes the estimates of parameters asymptotically biased.
In order to cure this problem, the concept of instrumental
variables (IVs) can be put into practice (Stoica and
Söderström, 1983). Moreover, the deployment of special
weighting mechanisms allows tracking the evolution of
parameters of monitored non-stationary systems.

Both the LS and IV methods work perfectly for
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non-delay systems or systems with a known input delay.
There exist, however, complex industrial plants with input
delays, which are undesirably changeable (time varying).
Identification of such delays along with the parameters
of the continuous models is definitely a challenging
issue. Among the existing solutions, off-line estimation
of input delay based on the gradient search can be
applied (Ferretti et al., 1991; Zhao and Sagara, 1991). A
dedicated three-stage procedure for off-line identification
of delay can be used in practical implementations
(Kozłowski and Kowalczuk, 2009). The above-mentioned
issues, discussed in this paper, lead us to propose an
on-line procedure for simultaneous identification of the
input delay and parameters of non-stationary continuous
models. The performance of the proposed algorithms is
verified by simulation, and the corresponding properties
of these procedures are highlighted.

The paper is organized as follows. In Section 2,
the well-known LS and IV estimators in algebraic and
recursive forms are first recalled. With the aid of
forgetting mechanisms, these algorithms are adjusted
for the identification of non-stationary systems, i.e., for
the tracking of time-variant parameters. An ordinary
differential equation is introduced in Section 3 to
represent the dynamics of the underlying continuous
system, while the employment of properly tuned
finite-horizon (FIR) integrating filters leads to an
equivalent discrete model, which retains the original
system parameterization. An additional stochastic part
(disturbance) in the ultimate regression model follows
from FIR filtering of measurement signals contaminated
by noise. The original contribution can be attributed
to Section 4, in which new methods of identification
of differential equations with input delay are developed.
Additionally, an outline of consistency analysis of the
proposed estimation algorithms is presented. Moreover,
in Section 5 the performance of the algorithms is
verified via simulation. Finally, in Section 6 the
fundamental properties of the new estimation procedures
are highlighted, and some promising directions of further
investigations in this area are indicated.

2. Estimation procedures

The dynamics of the monitored system are given by the
following regression equation:

γ(k) = φT(k) θ + e(k), (1)

φ(k) = [ f0(k) f1(k) . . . fr(k) ]
T, (2)

θ = [ ϑ0 ϑ1 . . . ϑr ]T, (3)

where γ(k) is a reference signal, e(k) stands for an
equation error, while φ(k) and θ hold specific regression
data and system parameters, respectively. The above
model is assumed to be a discrete counterpart of

an original standard differential equation (an example
(21) is analyzed later) that describes the dynamics of
the underlying continuous system. The components
represented in (2) take the form of consecutive filtered
derivatives of the input and output signals, while the
quantities appearing in (3) are simply the evaluated
coefficients of the differential equation and the estimated
input-signal delay (see (24) and (25) discussed later on).
Furthermore, the distinguished stochastic part e(k) results
from FIR filtering of measurement signals contaminated
by noise (as demonstrated in (43) through (47) in the run
of a consistency analysis).

The LS estimates of the parameters (3) can
be directly obtained by minimizing the following
performance index (Ljung, 1987):

V (θ) =

k∑

l=1

wl [ e(l) ]
2

=

k∑

l=1

wl [ γ(l)− φT(l) θ ] 2,

(4)

using a non-increasing (wl ≥ wl+1) sequence of
non-negative (wl ≥ 0) weights such that the so-called
memory of the estimator (i.e., Γ =

∑
wl, calculated for

the indices in the range of l = −∞, . . . , k) is finite (i.e.,
Γ <∞).

By zeroing the gradient of (4), an algebraic form of
the LS routine (Ljung, 1987) is obtained:

θ̂(k) =

[
k∑

l=1

wl φ(l)φ
T(l)

]−1

×
[

k∑

l=1

wl φ(l) γ(l)

]
.

(5)

The basic asymptotic properties of the non-weighted
(wl = 1) LS estimator employed for identification of
systems with input delay are discussed in Section 4.

It is known that, in the case of measurement noises
mutually correlated with the analyzed regression data, the
LS estimates are usually asymptotically biased. In order
to cure this problem, the instrumental variable method
(Söderström and Stoica, 1981) can be put into practice.

The idea behind the IV solution lies in a simple
modification of the algebraic LS procedure. In this
solution an auxiliary (noise-free) vector ξ(k) is used in
place of genuine regressors φ(k), while the transpose
regression vector remains unmodified. Thus the IV
estimates of the system parameters result from (Ljung,
1987)
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θ̂(k) =

[
k∑

l=1

wl ξ(l)φ
T(l)

]−1

×
[

k∑

l=1

wl ξ(l) γ(l)

]
.

(6)

The respective consistency analysis (considering the
non-weighted identification of delay systems) is submitted
in Section 4.

Both the presented estimation procedures, LS and IV,
suffer from numerically inconvenient matrix inversion. In
order to overcome this issue, the respective formulas can
be easily written in appropriate recursive forms.

Assuming that the utility weighting mechanism is
represented by an exponential window (wl = λk−l), the
explicit algebraic formula is given by

θ̂(k) =

[
k∑

l=1

λ k−l ψ(l)φT(l)

]−1

×
[

k∑

l=1

λ k−l ψ(l) γ(l)

]
.

(7)

Employing the well-known matrix inversion lemma,
we find an equivalent recursive procedure involving
evaluation of the prediction error ε(k), update of the
covariance matrix P (k) and correction of the estimates
of the parameters,

ε(k) = γ(k)− φT(k) θ̂(k − 1), (8)

P (k) =
1

λ

[
P (k − 1)

− P (k − 1) ψ(k) φT(k) P (k − 1)

λ+ φT(k) P (k − 1) ψ(k)

]
,

(9)

θ̂(k) = θ̂(k − 1) + P (k)ψ(k) ε(k). (10)

With ψ(k) = φ(k), Eqns. (7) and (8)–(10) yield the
LS estimates, and by substituting ψ(k)= ξ(k) the IV
estimates are obtained. The bounded forgetting factor
(0 < λ < 1) influences the length of the estimator’s
memory: Γ= 1 / (1 – λ). Obviously, in the non-weighting
case (λ= 1) this memory is infinite.

As an alternative, a rectangular window (referred to
as a sliding window) of observations (when wl = 1(k −
l) − 1(k − l − M), with 1(k) standing for the unit-step
function) can be used in both the estimation formulas
LS and IV. With this, the resultant estimator assumes the
following algebraic form:

θ̂(k) =

[
k∑

l=k−M+1

ψ(l)φT(l)

]−1

×
[

k∑

l=k−M+1

ψ(l) γ(l)

]
.

(11)

Again, with the aid of the matrix inversion lemma,
a convenient recursive realization involving evaluation
of prediction errors, update of covariance matrices and
ultimate correction of estimates can be derived:

ε(k) = γ(k)− φT(k) θ̂(k − 1), (12)

ε̃(k) = γ(k −M)− φT(k −M) θ̂(k − 1), (13)

P̃ (k) = P (k − 1)

− P (k − 1) ψ(k) φT(k) P (k − 1)

1 + φT(k) P (k − 1) ψ(k)
,

(14)

P (k) = P̃ (k)

+
P̃ (k) ψ(k −M) φT(k −M) P̃ (k)

1− φT(k −M) P̃ (k) ψ(k −M)
,

(15)

θ̂(k) = θ̂(k − 1) + P (k)ψ(k) ε(k)

− P (k)ψ(k −M) ε̃(k).
(16)

As before, with ψ(k) = φ(k), Eqns. (11) and
(12)–(16) describe the LS estimation, while by employing
ψ(k)= ξ(k) the IV estimates are obtained. This time the
length of the sliding window (M > 0) simply equals the
length of the estimator’s memory: Γ=M .

It is of fundamental importance that the LS
information matrix appearing in (5), and composed as the
sum of the vector products φ(k)φT(k), is invertible. A
rigorous proof of this property can be found in the work
of Sagara and Zhao (1990), where multi-sine excitations
are applied to the input of the identified continuous-time
system.

In the case of the IV information matrix represented
in (6), and gained by summing the products ξ(k)φT(k),
the corresponding argument and the proofs demonstrating
the non-singularity of this matrix and the local
convergence of parameter estimates can be found in the
work of Söderström and Stoica (1981).

Commonly, the recursive LS estimators (8)–(10) and
(12)–(16) are initiated using diagonal covariance matrices
(e.g., P (0)= diag (105 , . . . , 105)). In the case of the
IV schemes, in turn, the respective initiation has to be
based on the results gained from an LS algorithm running
in parallel. This is so because generating instrumental
variables usually requires a preliminary knowledge of the
sought parameter estimates. Clearly, with a properly
evaluated instrumental variable ξ(k), the auxiliary LS
routine can finally be switched off and the estimation can
be continued using solely the IV procedure.
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3. Discrete-time approximation of
continuous systems

The dynamics of a continuous system can be represented
by an ordinary differential equation (n ≥m ≥ 0):

any
(n) + an−1y

(n−1) + · · ·+ a0y

= bmu
(m) + bm−1u

(m−1) + · · ·+ b0u, (17)

where u = u(t) and y = y(t) stand for the input and
output signals, respectively.

Since identification of unknown parameters ai and
bi is based on records of discrete-time data, suitable
discrete approximation of (17) retaining the original
parameterization has to be performed. There exists
a method in which consecutive derivatives of (17) are
evaluated numerically, using the so-called ‘delta’ operator.
In another approach, multiple integration of both the sides
of (17) is performed to yield a discrete-time equivalent
of the original model. Having in mind, however,
that high-pass differentiation operators are certain to
attenuate noise, heavily biased estimates can result from
identification of the ‘delta’ models. In the case of
integral modeling, in turn, the regression data given by
multiple integrals diverge to infinity, while the non-zero
initial conditions of (17) influence the results of parameter
estimation. The method of finite-horizon integrating
filters, in which both the sides of (17) are n times
integrated over a fixed time interval (h > 0), overcomes
the above-mentioned problems (Sagara et al., 1991).

The operator of finite-horizon n-th order integration
of an i-th derivative of a signal x(t) can be shown as

Jn
i x(t)

=

∫ t

t−h

∫ t1

t1−h

. . .

∫ tn−1

tn−1−h

x(i)(tn) dtn dtn−1 . . . dt1.

(18)
A numerical realization of integrals (18) leads
to convenient FIR processing of sampled data
(x(kT ) = x(t) |t = kT ). With a trapezoidal rule
involving the bilinear operator, the respective filtering can
be expressed as follows (Sagara et al., 1991):

Jn
i x(t) | t=kT ≈ Ini x(kT )

=

(
T

2

) n−i

(1 + q−1)n−i(1− q−1)i

×
(
1 +

L−1∑

j=1

q−j
)n

x(kT ),

(19)
where q−1 is the backward shift operator (i.e.,
q−1x(kT ) = x(kT − T )) and L = h/T represents
the number of samples falling within the integration
horizon h. In order to suppress accumulation of possible
numerical errors, spline methods can be used in discrete

mechanizations (Kowalczuk, 1991). Ultimately, by
performing numerical integration of both the sides of
(17), the discrete counterpart preserving the parameters is
obtained:

an I
n
ny(kT ) + . . . + a0 I

n
0 y(kT )

= bm Inmu(kT ) + . . . + b0 I
n
0 u(kT ). (20)

The resultant equation (20) can be written in a suitable
regression form (1)–(3).

4. Parameter and delay estimation

Among existing methods of identification of delay
systems, a solution employing the gradient search
algorithm for minimization of an auxiliary quality
function is worth noticing (Zhao and Sagara, 1991). Also
a three-stage procedure involving a preliminary guess of
the delay, estimation of parameters and final identification
of the delay can be functional (Kozłowski and Kowalczuk,
2009). However, in both approaches the underlying
processing is off-line, and the parameters are assumed to
be time-invariant. In this study an on-line method based
on Taylor’s expansion of the delayed input is proposed.

For clarity of reasoning, the second order (n = 2)
delay system is considered:

a2y
′′(t) + a1y

′(t) + a0y(t) = b0u(t− τ), (21)

where τ represents an unknown system delay and, without
loss of generality, it is assumed that b0 = 1. The
differentiable input signal u(t− τ) can be written as

u(t − τ)

= u(t) +
(−τ)
1 !

u′(t) +
(−τ)2
2 !

u′′(t)

+ . . . +
(−τ)r
r !

u(r)(t) + . . . .

(22)

Assuming that the delay is relatively small, the
higher order components multiplied by decaying weights
(τr/r !) can be disregarded. In the simplest approach
the partial expansion (22) obtained for r = 2 can be
considered in (21). Now, by employing the operator of
finite-horizon integration (19), the original model (21)
assumes a discrete-time regression form of γ(k) =
φT (k)θ + e(k):

γ(k) = I20u(k), (23)

φ(k) = [ I21u(k) I22u(k) I20y(k)

I21y(k) I22y(k) ]
T,

(24)

θ = [ τ − 1
2τ

2 a0 a1 a2 ]T, (25)

where, for brevity, the index k stands for kT . Finally,
by applying an estimation procedure (Section 2), both the
model parameters and the delay can be estimated.
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As can be observed in the results of identification,
by ignoring higher-order components of the expansion
(22), the obtained estimates (25) are made asymptotically
biased. In order to improve the consistency of estimation,
more terms of the expansion (22) can be considered in the
regression equation. Unfortunately, such an improvement
encounters some practical limitations. First, the increased
number of regressors in (24) requires the input u(t) to
be suitably modified, in such a way that the excitation
is persistently exciting of a sufficient order. Second, in
the case of second order systems (21), the finite-horizon
integration (19) of order n = 2 cannot be applied for the
derivatives exceeding the system order. Yet, additional
regressors result in an increase in the variance of the
estimation process.

Specific compensation of the rejected components
of the expansion (22) can be proposed as an alternative
approach, where the input signal is represented as a linear
combination of sinusoidal components. Application of
such excitations brings several advantages, to mention
avoidance of non-zero offsets, facilitated generation and
simplicity in selecting the proper order of persistency of
excitation (each new sine wave increases this order by the
value of 2). The resulting input dynamics

u(t) =

p∑

j=1

(Aj sinωjt+Bj cosωjt) (26)

meet the requirements imposed upon the selection of
persistently exciting signals in open-loop experiments
(Schoukens et al., 1994).

In the case of identification of differential equations
(17), it usually suffices that the periodic input (26) is
composed of n + 1 distinct sinusoids sinωjt with the
corresponding normalized frequencies Ωj = ωjT (i.e.,
expressed in radians) falling below π (Sagara et al., 1991).
Usually, the periodic signal (26) is generated by a digital
computer and forwarded to the plant via a D/A converter.
It is therefore realistic that the applied frequencies are
known and time-invariant (i.e., the period of a given
sinusoid is simply a multiplicity of the ‘stable’ and known
clocking period of the CPU in the PC). As a result, the
values of magnitudes Aj and Bj can be evaluated on-line
from the regression model γ(k) = φT (k)θ + e(k):

γ(k) = u(k), (27)

φ(k) = [ sin Ω1k . . . sin Ωpk

cos Ω1k . . . cos Ωpk ]T,
(28)

θ = [ A1 . . . Ap B1 . . . Bp ]T, (29)

where Ωj =ωjT stand for the already mentioned
normalized frequencies.

Considering that the input (26) is noise-free (by
definition), the recursive LS estimator can be used to yield
consistent estimates of the magnitudes (29). Based on
the identified quantities (29), one can easily evaluate (in
discrete-time instants) higher order derivatives of the input
as follows:

û(i)(k) =

p∑

j=1

Âj

(
Ωj

T

)i

sin(Ωjk + i
π

2
)

+

p∑

j=1

B̂j

(
Ωj

T

)i

cos(Ωjk + i
π

2
).

(30)

Ultimately, an improved regression model

γ(k) = φT (k)θ + e(k)

of the delay system (with the compensation of the
additional terms in (22) ) can be used

γ(k) = I20u(k)−
1

3 !

(
τ̂
) 3
I20 û

(3)(k)

+
1

4 !

(
τ̂
) 4
I20 û

(4)(k),

(31)

φ(k) = [ I21u(k) I22u(k) I20y(k)

I21y(k) I22y(k) ]
T,

(32)

θ = [ τ − 1
2τ

2 a0 a1 a2 ]T, (33)

with an averaged estimate of the delay (i.e., an arithmetic
mean based on L past values of the estimate of τ ) used
in (31).

A further improvement in consistency of estimation
can result from the use of the IV method. The respective
vector ξ(k) can be determined as

ξ(k) = [ I21u(k) I22u(k) I20 ŷ(k)

I21 ŷ(k) I22 ŷ(k) ]
T,

(34)

with an estimate of the noise-free output y(k) found from
an auxiliary filtering involving current estimates of the
parameters (Sagara et al., 1991). A deterministic filter can
be obtained by substituting the bilinear operator into the
Laplace transfer function of the system model (21). Based
on current estimates of the parameters (33), the respective
Laplace transfer function of the system (21) provides the
following estimate of the system output:

Ŷ (s) =
b̂0

â2s2 + â1s+ â0
e−sτ̂U(s), (35)

where U(s) and Y (s) stand for the Laplace transforms of
signals u(t) and y(t), respectively, while e−s τ yields the
delay of the input signal. Now, application of the bilinear
operator (i.e., Tustin’s rule of trapezoidal integration)

T

2

1 + q−1

1− q−1
(36)
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in place of the Laplace operator s−1 of genuine integration
immediately leads to the following ‘discrete-time’
counterpart of the ‘continuous-time’ transfer function
represented in (35):

b̂0

(
T

2

1 + q−1

1− q−1

)2

â2 + â1

(
T

2

1 + q−1

1− q−1

)
+ â0

(
T

2

1 + q−1

1− q−1

)2 . (37)

The above formula allows a convenient on-line evaluation
of the noise-free output y(k) based on recorded sequences
of the input u(k)

ŷ(k) =
C(q−1)

D(q−1)
u(k),

C(q−1) = b̂0
T 2

4
(1 + q−1)2,

D(q−1) = â2(1 − q−1)2

+ â1
T

2
(1− q−1)(1 + q−1)

+ â0
T 2

4
(1 + q−1)2.

(38)

It is of fundamental importance that the operator (36)
makes the auxiliary filter (37) stable, provided the
underlying continuous system (21) is stable. One
should also notice that the delay τ appearing in (35) is
disregarded in the final formulas (37)–(38). This hint
is by all means acceptable, because with the delayed
input used in (38) the underlying correlation E[ξ(k)e(k)]
gets even more reduced (Söderström and Stoica, 1981),
and therefore the asymptotic bias of estimates is also
suppressed.

Based on (34) and (38), the recursive IV procedures
(8)–(10) or (12)–(16) can be directly applied to identify
the system with delay (21).

4.1. Outline of consistency analysis for higher-
order systems. In the above discussion, for simplicity,
we took into account a second-order delay system. It
is, however, fairly straightforward to generalize the
developed methodology of identification of systems with
delay for higher-order differential equations.

Consider now a general case of differential equations
of order n (n > 2):

any
(n)(t) + · · ·+ a1y

(1)(t) + a0y(t) = u(t− τ). (39)

The respective regression representation of the identified
model takes the form γ(k) = φT (k)θ + e(k), where

γ(k) = In0 u(k)−
1

3 !

(
τ̂
) 3
In0 û

(3)(k)

+
1

4 !

(
τ̂
) 4
In0 û

(4)(k),

(40)

φ(k) = [ In1 u(k) In2 u(k) In0 y(k)

In1 y(k) . . . I
n
ny(k) ]

T, (41)

θ = [ τ − 1
2τ

2 a0 a1 . . . an ]T. (42)

For known theoretical and practical reasons, it
is important to verify the asymptotic behavior of the
algorithms LS and IV used in identification of continuous
models with input-signal delay. First, it is assumed that
the discrete measurement of the output signal y(k) is
corrupted by an additive white noise process v(k) (thus,
effectively, y(k) + v(k) is measured at the output), while
the input signal u(k) is assumed to be noise free. Note
that part of the components of the regression vector (41)
follow from the FIR filtering (19) of the measured output
signal. Thus the resulting processing

Ini [ y(k) + v(k) ] = Ini y(k) + Ini v(k) (43)

(in the presence of noise) generates a correlated
disturbance component ev(k) of the type of moving
average (MA):

ev(k) = a0I
n
0 v(k) + a1I

n
1 v(k)

+ . . . + anI
n
nv(k).

(44)

Second, by taking into account that higher-order
constituents of Taylor’s representation of u(t − τ) are
excluded from the regression vector (41), a deterministic
error eu(k) appears in the regression equation:

eu(k) =
1

3 !
τ3In3 u(k)− 1

4 !
τ4In4 u(k) . . . . (45)

In summary, the total error e(k) as shown in the
regression model has the following form: e(k) = ev(k)+
eu(k).

Now, the asymptotic behavior of the (non-weighted)
procedures LS and IV can be gained based on a simple
rearrangement of the respective algebraic formulas of
LS and IV. By substituting (1) into (5) and (6), one
immediately obtains

θ̂(k) = θ +

[
1

k

k∑

l=1

ψ(l)φT(l)

]−1

×
[
1

k

k∑

l=1

ψ(l) e(l)

]
,

(46)

where ψ(l) stands for φ(l) or ξ(l) for the methods LS and
IV, respectively. Assuming that the processes occurring in
(46) are ergodic, the above averaging in the discrete-time
domain represents simply correlation:

θ̂(k) = θ+
{

E [ψ(k)φT(k)]
}−1 {E[ψ(k) e(k)]} . (47)

It is evident from (40) that the influence of the
deterministic error (45) is to a large extent compensated;
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the effect of the other, stochastic part e(k) = ev(k) has to
be considered in the analysis.

Naturally, with the FIR-filtered regressors ψ(k) =
φ(k), inevitably correlated with the MA process (44),
i.e., E[φ(k) e(k)] �= 0, the LS method suffers from
asymptotically biased estimates. In the case of the
IV method, in turn, the deterministic instrumental
variables ψ(k) = ξ(k), obtained from the auxiliary
processing (38), are certainly uncorrelated with (44),
i.e., E[ξ(k) e(k)] = 0. Therefore, the estimates (47)
are asymptotically consistent. Hence the application
of compensation techniques (40) and the utilization of
instrumental variables are fully justified.

At this point of our presentation it can be instructive
to recollect all stages which constitute the procedure of the
so-called ‘discrete-time identification of continuous-time
systems’. First, the original differential equation (39) of
the continuous-time model is integrated equally on both
sides using the finite-horizon integrating operators (18).
Next, the respective operators are discretized using
suitable numerical techniques (in order to suppress
accumulation of numerical errors, the normal integration
methods can be put into practice; trapezoidal integration
can be applied in (19) in the simplest case). As a result, the
original continuous model is transformed into the discrete
representation (20), which retains the original parameters.
Ultimately, as the discrete-time measurement y∗(kT ) of
the genuine/sampled output signal y(kT ) is assumed to
be corrupted by an additive white noise sequence v(kT ),
the employed FIR processing (19) subject to (43) is able
to produce a correlated disturbance given by (44). Hence,
the resultant discrete-time stochastic model assumes the
fundamental regression form of (1)–(3).

5. Numerical example

In this study a second order (n = 2) non-stationary
continuous-time system (21) was simulated with the
following scenario. A periodic input (26) composed
of harmonic terms sin (ωjt) with equal magnitudes
(Aj = 1) and the respective frequencies (ω1= 0.31 rad/s,
ω2 = 0.71 rad/s, ω3 = 1.39 rad/s, ω4 = 1.67 rad/s,
ω5 = 2.23 rad/s) satisfying the already-mentioned
condition Ωj = ωjT < π was applied. The model
coefficients a2 = 0.9 and a0 = 4.0 were time invariant,
while the other parameters a1 = 3.0, . . . , 2.5 and τ =
0, . . . , 0.37 were changing gradually within the interval of
[200 s, 600 s]. The measurement (y(k) = y(t) |t = kT )
of the output signal was contaminated by a normally
distributed white noise process v(k), so that the resultant
noise-to-signal ratio (i.e., the quotient of the respective
standard deviations) was equal to σv/σy = 5%.

The vital discrete-time representation of the
continuous system (21) was obtained using the
finite-horizon integrator (19) with L = 30. The

exponentially weighted LS and IV algorithms (λ = 0.995)
were used to track the evolution of the parameters of this
system, while the non-weighted LS routine was applied to
identify the magnitudes of the periodic input components
of (26). The initial value of the covariance matrix in the
LS algorithms was fixed to P (0) = diag (105 , . . . , 105),
while the IV routine was initiated based on results of a
temporary (running in parallel) LS estimator. Input and
output signals of the examined continuous system were
sampled at the frequency of 20 Hz (i.e., the sampling
interval was T = 0.05 s) and each simulation run
was carried out for a period of 800 s (16000 sampling
instants).
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Fig. 1. LS estimates of parameters using the simple model.
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Fig. 2. LS estimate of delay using the simple model.

The results of the LS identification of the simple
model (23)–(25) are illustrated in Figs. 1 and 2 . It is clear
that the negligence of higher order terms (22) of the input
u(t − τ) makes the estimation process asymptotically
biased. The estimation consistency has been improved (as
shown in Figs. 3 and 4) by using the IV algorithm working
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on the model (31)–(33) with compensated input terms.
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Fig. 3. IV estimates of parameters using the improved model.
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Fig. 4. IV estimate of delay using the improved model.

6. Conclusions and further investigations

The presented methods of on-line identification of
continuous-time delay systems constitute the principal
original contribution of this study. Employing Taylor’s
truncated series in the system’s modeling, the coefficients
of the underlying differential equation along with the
unknown input delay can be easily estimated. Moreover,
the adapted idea of instrumental variables, together
with the proposed compensation of Taylor’s disregarded
constituents, allows an improved evaluation of system
parameters. Finally, the outline of the consistency analysis
and the straightforward enhancement of the presented
method for identification of higher-order systems can be
considered interesting achievements in the consequent
course of the authors’ investigations (Kowalczuk and
Kozłowski, 2000; 2011; Kozłowski and Kowalczuk,
2009).

The reported simulation results show the
applicability of the finite-horizon integration operators
in the problem of discrete-time approximation of
continuous-time dynamic systems. The subject filters
of the FIR type are convenient for implementation,
while low-pass filtering provides elimination of additive
measurement noise. An additional improvement
in the accuracy of numerical integration can be
easily achieved by using the spline approach
(Kowalczuk, 1991; Kowalczuk and Kozłowski, 2000)
in the discrete mechanization of (18). Moreover,
by selecting the integration horizon L such that the
bandwidth of the filter (18) matches as close as possible
the band of the identified system (21), the required tuning
of integrating filters is considerably facilitated.

It is of practical importance that such finite-horizon
integration operators can also be used for convenient
numerical mechanization of partial differential equations
(representing distributed parameter systems) and
continuous models with certain non-linear components
(Kozłowski and Kowalczuk, 2007).

The presented results of numerical tests confirm
that the developed method of delay system identification
allows on-line tracking of gradual changes in system
parameters and input delay. Both of the described
modeling techniques (23)–(25) and (31)–(33) are
conceptually simple and convenient for numerical
implementation.

It is also worth emphasizing that, in the proposed
solution, the evaluated delay is not expressed as a
multiplicity of the sampling period applied.

A suitably modified method can also be applied
for identifying linear continuous-time models using
differentiated inputs.

Since the FIR processing of measurements
introduces correlation into the additive noise (of the
moving average type), the LS estimates are certain to
be asymptotically biased. Application of instrumental
variables significantly improves the consistency of
parameter and delay estimates. It is also worth noting that
the proposed technique of delay-systems modeling has
been developed irrespective of the routines used for the
ultimate identification of the parameters. Therefore, by
replacing the classical LS algorithm with an estimator in
the sense of the least sum of absolute errors, the results
of identification become insensitive to sporadic outliers
in measurement data (Janiszowski, 1998; Kozłowski and
Kowalczuk, 2007; Kowalczuk and Kozłowski, 2011).

At this stage, several promising directions of further
investigation can be specified. In particular, the developed
method of delay systems identification appears to be
helpful in solving the following three problems.

1. Identification of continuous-time delay MIMO sys-
tems. In the underlying domain of continuous-time
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linear models, the generalizing transition from
SISO systems to MIMO ones does not introduce
any difficulty. Specifically, for the matrix
transfer function models, the necessary modification
is straightforward. Some results concerning
the identification of continuous-time (non-delayed)
MIMO systems are reported by Chao et al. (1987)
as well as Sagara and Zhao (1989).

2. Identification of delay SISO systems with non-linear
dynamics. The main problem of identification of
non-linear systems is that the developed methods
are usually dedicated for particular applications (e.g.,
Konen et al., 1999; Inoue et al., 1994). However,
the method of Hartley modulating functions applied
to non-linear Hammerstein models also gained some
attention in literature (Mzyk, 2007). Enlightening
numerical examples were supplied by Unbehauen
and Rao (1997), for instance, in their instructive
tutorial on system identification.

3. Identification of distributed parameter systems
with input delay. The fundamental problem
is attributed to the issue of handling non-trivial
system descriptions, usually taking the form of
partial differential equations. Based on specific
approximations of such models, several classical
estimation routines can be used for identification.
Practical solutions concerning identification of
non-delayed distributed systems are described, for
instance, by Sagara and Zhao (1990).

Finally, it is worth noting that there exist modern,
unconventional methods (such as genetic algorithms
or neural networks, for instance), which can also
be effectively applied for identification of continuous
systems (e.g., Goldberg, 1989; Willis et al., 1992; Uciński
and Patan, 2010).

There is a relevant question concerning the
uniqueness of identification of the delay parameter τ . This
issue is challenging, requires further investigation, and, at
this stage of the research, only some heuristic arguments
can be suggested. By employing the proposed idea of
compensation (30)–(33) of higher order constituents of
the (infinite) delay term (22), the ultimate model has a
finite number of the identified parameters (33). With a
persistently exciting input (26) the model is identifiable
and the LS results of identification are definitely unique
(the estimates though can be biased). The sketched
way of reasoning, however, is only intuitive and requires
precise analytical examination, which we leave for further
research.
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