A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H_∞ norm bounding constraints. Simulation results are used to compare the different FTC strategies.

Keywords: linear parameter varying systems, fault tolerant control, quadrotor, model reference-based control, linear matrix inequalities.

1. Introduction

In the last years, unmanned aerial vehicles (UAVs) have become an important topic of research because of their characteristics that make them ideal vehicles for several applications, such as security, traffic surveillance, management of natural risks, environment exploration, agriculture and military (Sharifi et al., 2010). Considerable efforts have been made to control these vehicles, applying techniques ranging from PID control (Hofmann and Waslander, 2008) to nonlinear control techniques (Chowdhary et al., 2014), such as dynamic feedback control (Mokhtari and Benallegue, 2004), backstepping (Aranjo-Estrada et al., 2009; Guenard et al., 2008), nested saturations (Castillo et al., 2005), predictive/nonlinear H_∞ control (Raffo et al., 2010) and quaternion-based feedback for event-triggered stabilization (Guerrero-Castellano et al., 2013).

Recently, some works have considered fault detection and diagnosis (FDD) and fault tolerant control (FTC) for UAVs (Zhang et al., 2013); see Table I Generally speaking, FTC techniques can be classified into two types: passive and active (see the works of Zhang and Jiang (2008) as well as Benosman (2010) for reviews). In passive techniques, controllers are fixed and designed to be robust against a class of presumed faults. This approach needs neither FDD schemes nor controller reconfiguration, but it has limited fault-tolerant capabilities. On the other hand, active techniques react to system component failures actively by reconfiguring control actions so that the stability and acceptable performance of the entire system can be maintained. In such control systems, the controller compensates for the impacts of the faults either by selecting a pre-computed control law or by synthesizing a new one on-line. In the last years, some comparative studies between passive and active FTC techniques have appeared (see, e.g., Jiang and Yu, 2012; Rotondo et al., 2013b). A comparison of active and passive FTC strategies shows the importance of investigating the design of hybrid techniques that can merge the benefits of active and passive FTC, while...
Some results in this direction have been obtained in a reducing or even nullifying their respective drawbacks.Used to obtain vertex uncertain systems, where vertex polytopic layer manages the varying parameters and is polytopic description to take into account both variability.The resulting approach consists in using a double-layer introduced (Rotondo et al., 2013c). However, the fault detection, fault isolation and fault estimation problems, for which some recent solutions have been proposed (Zhang et al., 2010; 2011; Rotondo et al., 2012; Zhaohui and Noura, 2013; Aguilar-Sierra et al., 2014), are not considered in this article.

In this paper, a solution to the fault tolerant control problem is proposed for a quadrotor UAV. This solution relies on the use of a reference model that describes the desired trajectory. The idea of using a model reference-based control is well-established in the LTI framework (Landau, 1979) and has been recently extended to cope with the control of LPV systems (Abdullah and Zribi, 2009). Depending on the type of reference model used for generating the reference trajectory and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. In the first one, faults enter into the system as if they were perturbations, making such an error model suitable for passive FTC (see Fig. 1). The second one is scheduled by faults, and it is referred to as the active FTC error model (see Fig. 2). Finally, in the third one, the error model is scheduled by the fault and considers the fault estimation uncertainty as a perturbation and an uncertainty at the same time: this model will be used for hybrid FTC (the scheme shown in Fig. 2 is valid in this case, too). The controller is obtained using theoretical results from the robust LPV polytopic framework and linear matrix inequalities (LMIs), in order to achieve regional pole placement and H_{∞} norm bounding constraints. Simulation results are used to compare the different FTC strategies.

It is worth highlighting that, in the active and hybrid FTC cases, the overall scheme should include a module that provides fault estimation using some available measurements and the knowledge about the mathematical model of the system, as shown in Fig. 2. Furthermore, a fault detection and isolation (FDI) module could be added in order to reduce on-line the number of faults taken into consideration by the fault tolerant controller, allowing increasing the obtainable performance, as shown by Rotondo et al. (2013c). However, the fault detection, fault isolation and fault estimation problems, for which some recent solutions have been proposed (Zhang et al., 2010; 2011; Rotondo et al., 2012; Zhaohui and Noura, 2013; Aguilar-Sierra et al., 2014; Cen et al., 2014), are not considered in this article. Indeed, the main goal of this work is to propose an FTC strategy that efficiently takes into account the information available from a fault estimator, independently of the fault estimation algorithm considered, and to show that it is possible to increase the FTC robustness using a hybrid passive/active FTC approach thanks to the robust LPV framework.

The paper is structured as follows. Section 2 introduces the dynamic model of the quadrotor, the reference and error models that are used for passive FTC, active FTC and hybrid FTC. Section 3 presents the robust LPV framework and the error feedback controller design built in each vertex system to take into account model uncertainties and add robustness in the design step.

In the last decades, the linear parameter varying (LPV) paradigm has become a standard formalism in systems and control, for analysis, controller synthesis and system identification (Shamma, 2012). This class of systems is important because, by embedding the system nonlinearities in the varying parameters, gain-scheduling control of nonlinear systems can be performed using an extension of linear techniques (in this case, the system is referred to as quasi-LPV since the varying parameters depend on exogenous signals). Some applications of LPV control theory to quadrotor UAVs can be found in the recent literature (Budiyono and Sutarto, 2006; Rangajeewa and Whidborne, 2011; Serirrojanakul and Wongaisuwan, 2012; Rotondo et al., 2014).

Recently, the robust LPV polytopic framework, obtained by extending known results from the robust polytopic and the LPV polytopic control area has been introduced (Rotondo et al., 2013a; 2013c). In the proposed framework, the vector of varying parameters is used to schedule between uncertain LTI systems. The resulting approach consists in using a double-layer polytopic description to take into account both variability due to the parameter vector and uncertainty. The first polytopic layer manages the varying parameters and is used to obtain vertex uncertain systems, where vertex controllers are designed. The second polytopic layer is

<table>
<thead>
<tr>
<th>Technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>model predictive control (MPC)</td>
<td>Izadi et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Izadi et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Yu et al., 2013</td>
</tr>
<tr>
<td>feedback linearization (FL)</td>
<td>Frieddi et al., 2011</td>
</tr>
<tr>
<td>model reference adaptive control (MRAC)</td>
<td>Dydek et al., 2010a</td>
</tr>
<tr>
<td></td>
<td>Dydek et al., 2010b</td>
</tr>
<tr>
<td></td>
<td>Sadeghzadeh et al., 2011a</td>
</tr>
<tr>
<td></td>
<td>Sadeghzadeh et al., 2011b</td>
</tr>
<tr>
<td></td>
<td>Chamseidine et al., 2011</td>
</tr>
<tr>
<td>control allocation</td>
<td>Zhou et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Chamseidine et al., 2012</td>
</tr>
<tr>
<td>gain-scheduled PID</td>
<td>Sadeghzadeh et al., 2011a</td>
</tr>
<tr>
<td></td>
<td>Sadeghzadeh et al., 2011b</td>
</tr>
<tr>
<td></td>
<td>Mihlim et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Amoozgar et al., 2012</td>
</tr>
<tr>
<td>backstepping</td>
<td>Zhang et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Khebbache et al., 2012</td>
</tr>
<tr>
<td>sliding mode control (SMC)</td>
<td>Shariat et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Li et al., 2013</td>
</tr>
<tr>
<td></td>
<td>Merheb et al., 2013</td>
</tr>
<tr>
<td>adaptive control</td>
<td>Zhang and Zhang, 2010</td>
</tr>
</tbody>
</table>

Table 1. Techniques applied for fault tolerant control.
using LMI-based techniques. In Section 4 reference input calculation for trajectory tracking is discussed. Simulation results are shown in Section 5. Finally, the main conclusions are outlined in Section 6.

2. Quadrotor modeling

The quadrotor is a vehicle that has four propellers in a cross configuration. Two propellers can rotate in a clockwise direction, while the other two can rotate anticlockwisely. The quadrotor is moved by changing the rotor speeds. For example, by increasing or decreasing the four propeller speeds, a vertical motion is achieved. Changing only the speeds of the propellers situated oppositely produces either roll or lateral motions. Finally, a yaw rotation results from the difference in the counter-torque between each pair of propellers.

Let us consider an earth fixed frame \(\{ X Y Z \} \) and a body fixed frame \(\{ x_b y_b z_b \} \) with the origin in the quadrotor center of mass. Under the assumptions that the body is rigid and symmetrical, and the propellers are rigid, i.e., no blade flapping occurs, the quadrotor faulty dynamic model is described by the following equations, obtained by Bouabdallah et al. (2004), adding multiplicative faults in the actuators (\(\Omega_i \rightarrow f_i \Omega_i \)):

\[
\ddot{x}_b = \left(\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi \right) \frac{U_f I}{m},
\]

\[
\ddot{y}_b = \left(\cos \phi \sin \theta \sin \psi + \sin \phi \cos \psi \right) \frac{U_f I}{m},
\]

\[
\ddot{z}_b = -g + \cos \phi \cos \theta \frac{U_f I}{m},
\]

\[
\ddot{\phi} = \dot{\theta} \psi \left(\frac{I_y - I_z}{I_x} \right) - \frac{J_{TP}}{I_x} \dot{\theta} \Omega_f + \frac{W_f I}{I_x},
\]

\[
\ddot{\theta} = \dot{\phi} \psi \left(\frac{I_x - I_z}{I_y} \right) + \frac{J_{TP}}{I_y} \dot{\phi} \Omega_f + \frac{W_f I}{I_y}.
\]
In this paper, only the problem of attitude/altitude control is considered, with the faulty inputs $U_1^f, U_2^f, U_3^f, U_4^f, \hat{\Omega}_r$ defined as follows:

$$U_1^f = b (f_1^2 \Omega_1^2 + f_2^2 \Omega_2^2 + f_3^2 \Omega_3^2 + f_4^2 \Omega_4^2),$$ \hspace{1cm} (7)

$$U_2^f = b (f_2^2 \Omega_1^2 - f_2^2 \Omega_2^2),$$ \hspace{1cm} (8)

$$U_3^f = b (f_3^2 \Omega_1^2 - f_3^2 \Omega_3^2),$$ \hspace{1cm} (9)

$$U_4^f = d (f_2^2 \Omega_2^2 + f_3^2 \Omega_3^2 - f_2^2 \Omega_1^2 - f_3^2 \Omega_1^2),$$ \hspace{1cm} (10)

$$\hat{\Omega}_r = f_2 \Omega_2 + f_3 \Omega_3 - f_1 \Omega_1 - f_3 \Omega_3,$$ \hspace{1cm} (11)

where f_i and Ω_i denote the i-th rotor fault magnitude and speed, respectively ($f_i = 1$ corresponds to the healthy rotor while $f_i = 0$ corresponds to its total loss). For a description of the system parameters, as well as the values used in the simulations that are taken from Brescia (2008); see Table 2.

In this paper, only the problem of attitude/altitude tracking control will be addressed. Hence, the dynamics of the system along the x_b and y_b axes, i.e., Eqs. (1) and (2), will be neglected.

Passive FTC reference model
In passive FTC, no information about the fault is available on-line. Hence, the same reference model used for the nominal case, and described by Rotondo et al. (2014), should be used as follows:

$$\dot{\psi} = \phi \theta \frac{I_y - I_z}{I_z} + \frac{U_3^f}{I_x},$$ \hspace{1cm} (12)

$$\dot{\theta} = \theta \frac{I_y - I_z}{I_z} + \frac{U_3^f}{I_y},$$ \hspace{1cm} (13)

$$\dot{\phi} = \phi \frac{I_y - I_z}{I_z} + \frac{U_3^f}{I_y},$$ \hspace{1cm} (14)

where ϕ, θ, and ψ are the yaw, pitch, and roll angles, respectively.}

Active FTC reference model
In active FTC, an estimate of the faults, denoted in the following by \hat{f}_i, is available. This information is added to the reference model (12)-(19) by changing $U_1^f, U_2^f, U_3^f, U_4^f, \hat{\Omega}_r$ in (20)-(24) with the following values:

$$U_1^f = b (\Omega_1 \Omega_1 + \Omega_2 \Omega_2 + \Omega_3 \Omega_3 + \Omega_4 \Omega_4),$$ \hspace{1cm} (20)

$$U_2^f = b (\Omega_4 \Omega_4 - \Omega_2 \Omega_2),$$ \hspace{1cm} (21)

$$U_4^f = b (\Omega_4 \Omega_4 - \Omega_2 \Omega_2),$$ \hspace{1cm} (22)

$$\Omega_r = \Omega_2 + \Omega_4 - \Omega_1 - \Omega_3,$$ \hspace{1cm} (23)

where Ω_r denotes the i-th reference rotor speed.

Passive FTC error model
By defining the tracking errors $e_1 \triangleq \psi - \hat{\psi}, e_2 \triangleq \phi - \hat{\phi}, e_3 \triangleq \theta - \hat{\theta}, e_4 \triangleq \hat{\psi} - \hat{\psi}, e_5 \triangleq \psi - \hat{\psi}, e_6 \triangleq \hat{\psi} - \hat{\psi}, e_7 \triangleq \hat{\psi} - \hat{\psi}$, the new inputs $o_i \triangleq \Omega_r - \Omega_i$, $i = 1, 2, 3, 4$, and rewriting the faults as $\Delta f_i = f_i - 1$, the error model for passive FTC of the quadrotor can be obtained from (13)-(24) and brought to a quasi-LPV representation following the non-linear embedding in the parameters approach proposed by Kwiatkowski et al. (2006) as follows:

$$\dot{e}(t) = A(\theta(t)) e(t) + B(\theta(t)) o(t) + D(\theta(t)) \Delta f(t),$$ \hspace{1cm} (30)
Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

where the vector of varying parameters is

\[
\vartheta(t) = \begin{bmatrix}
\vartheta_1(t) \\
\vartheta_2(t) \\
\vartheta_3(t) \\
\vartheta_4(t) \\
\vartheta_5(t) \\
\vartheta_6(t) \\
\vartheta_7(t) \\
\vartheta_8(t) \\
\vartheta_9(t) \\
\vartheta_{10}(t) \\
\vartheta_{11}(t) \\
\vartheta_{12}(t)
\end{bmatrix} = \begin{bmatrix}
\dot{\varphi}(t) \\
\dot{\theta}(t) \\
\dot{\psi}(t) \\
Omega_1(t) \\
Omega_2(t) \\
Omega_3(t) \\
Omega_4(t) \\
Omega_5(t) \\
\hat{\varphi}_i(t) \\
\hat{\psi}_i(t) \\
\hat{\vartheta}_i(t) \\
\cos \varphi(t) \cos \theta(t)
\end{bmatrix}, \quad (31)
\]

and the matrices \(A(\vartheta(t)), B(\vartheta(t))\) and \(D(\vartheta(t))\) are defined by (32), (33) and (34).

2.4. Active FTC error model. The error model for active FTC of the quadrotor can be obtained from (3)–(19) and (25)–(29) considering \(f_i = \bar{f}_i + \Delta f_i, \quad i = 1, 2, 3, 4\), and brought to a quasi-LPV representation as follows (Kwiatkowski et al., 2006):

\[
\dot{e}(t) = A(\vartheta(t)) e(t) + B(\vartheta(t)) o(t), \quad (35)
\]

where the vector of varying parameters is

\[
\vartheta(t) = \begin{bmatrix}
\vartheta_1(t) \\
\vartheta_2(t) \\
\vartheta_3(t) \\
\vartheta_4(t) \\
\vartheta_5(t) \\
\vartheta_6(t) \\
\vartheta_7(t) \\
\vartheta_8(t) \\
\vartheta_9(t) \\
\vartheta_{10}(t) \\
\vartheta_{11}(t) \\
\vartheta_{12}(t)
\end{bmatrix} = \begin{bmatrix}
\dot{\varphi}(t) \\
\dot{\theta}(t) \\
\dot{\psi}(t) \\
\Omega_1(t) \\
\Omega_2(t) \\
\Omega_3(t) \\
\Omega_4(t) \\
\Omega_5(t) \\
\hat{\varphi}_i(t) \\
\hat{\psi}_i(t) \\
\hat{\vartheta}_i(t) \\
\cos \varphi(t) \cos \theta(t)
\end{bmatrix}, \quad (36)
\]

the matrix \(A(\vartheta(t))\) is defined as in (32), and the matrix \(B(\vartheta(t))\) is defined by (37).

2.5. Hybrid FTC error model. Fault estimation algorithms are affected by uncertainties that will cause a difference between the fault estimated value, given by the algorithm, and the real fault value. Among the causes of uncertainty, there are the presence of external disturbances, the mismatch between the real and modeled dynamics, due to unmodeled nonlinearities and errors in the calibration of the model parameters during the identification phase, and the noise affecting the measurements given by the sensors. The presence of these uncertainties in fault estimation, if not properly taken into account, can degrade the fault tolerant control system performances and give rise to undesired behaviours. This fact motivates a combination of the benefits of passive and active FTC strategies in order to obtain a hybrid passive/active FTC.

The error model for hybrid passive/active FTC of the quadrotor can be obtained from (3)–(19) and (25)–(29) considering \(f_i = \bar{f}_i + \Delta f_i, \quad i = 1, 2, 3, 4\). Then, the resulting quasi-LPV representation (Kwiatkowski et al., 2006) has the same structure of the passive FTC error model (30) with the vector of varying parameters made up by the one of active FTC error models (35) plus the following varying parameters:

\[
\begin{bmatrix}
\vartheta_{17}(t) \\
\vartheta_{18}(t) \\
\vartheta_{19}(t) \\
\vartheta_{20}(t)
\end{bmatrix} = \begin{bmatrix}
\Omega_1^2(t) \\
\Omega_2^2(t) \\
\Omega_3^2(t) \\
\Omega_4^2(t)
\end{bmatrix}, \quad (38)
\]

where the matrix \(A(\vartheta(t))\) is defined by (32), the matrix \(B(\vartheta(t))\) is defined by (37), and the matrix \(D(\vartheta(t))\) is defined by (39).

3. Robust LPV framework

In this paper, a framework based on a combination of robust and LPV polytopic designs is proposed. In this framework, the variation in the state matrix is due to the vector of varying parameters \(\vartheta\), whose measurement or estimate is assumed to be available, together with some bounded uncertainties. The nominal LPV model is used to generate a polytope described by its vertices. Later, the model uncertainties are taken into account generating more polytopes, one for each vertex of the nominal polytope. The robust LPV polytopic design problem involves obtaining a controller scheduled by \(\vartheta(t)\) as a combination of vertex controllers, each of which is designed to satisfy some LMI conditions at all vertices of the vertex polytope. Under some assumptions, the final result will be an LPV controller scheduled by \(\vartheta\) that is robust against bounded uncertainties.

In particular, consider a continuous-time uncertain LPV system as in (30), where \(e(t) \in \mathbb{R}^{n_e}\) is the state, \(o(t) \in \mathbb{R}^{n_o}\) is the control input, \(\Delta f_i \in \mathbb{R}^{n_f}\) is a vector of exogenous inputs, \(\vartheta(t) \in \Theta \subset \mathbb{R}^{n_{\vartheta}}\) is the vector of varying parameters and \(A(\vartheta(t))\), \(B(\vartheta(t))\) are matrices of appropriate

\[\text{Notice that } \Delta f_i \text{ used in the passive FTC error model is different from } \Delta f_i \text{ employed in the hybrid FTC error model. However, the same notation is used because the design procedure described in this paper deals with both of them in the same way.} \]
\[
A(\cdot) = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \varphi_2 \left(\frac{I_y - I_z}{2I_x} \right) & 0 & \varphi_2 \left(\frac{I_y - I_z}{2I_x} \right) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \varphi_1 \left(\frac{I_z - I_y}{2I_y} \right) & 0 & 0 \\
0 & \varphi_2 \left(\frac{I_x - I_y}{2I_y} \right) & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}, \quad (32)
\]

\[
B(\cdot) = \begin{pmatrix}
\frac{J_{TP}}{I_x} \varphi_2 - \frac{lb}{I_x} \varphi_7 & \frac{J_{TP}}{I_y} \varphi_7 & \frac{J_{TP}}{I_y} \varphi_7 + \frac{lb}{I_y} \varphi_9 & \frac{J_{TP}}{I_x} \varphi_7 & \frac{J_{TP}}{I_x} \varphi_7 + \frac{lb}{I_x} \varphi_11 \\
\frac{J_{TP}}{I_y} \varphi_2 - \frac{lb}{I_y} \varphi_5 & \frac{J_{TP}}{I_y} \varphi_5 & \frac{J_{TP}}{I_y} \varphi_5 + \frac{lb}{I_y} \varphi_9 & \frac{J_{TP}}{I_x} \varphi_5 & \frac{J_{TP}}{I_x} \varphi_5 + \frac{lb}{I_x} \varphi_11 \\
\frac{d}{I_x} \varphi_5 & \frac{d}{I_x} \varphi_7 & \frac{d}{I_x} \varphi_7 & \frac{d}{I_x} \varphi_9 & \frac{d}{I_x} \varphi_11 \\
\frac{b}{m} \varphi_5 \varphi_{12} & \frac{b}{m} \varphi_7 \varphi_{12} & \frac{b}{m} \varphi_9 \varphi_{12} & \frac{b}{m} \varphi_11 \varphi_{12} & \frac{b}{m} \varphi_11 \varphi_{12} \\
\end{pmatrix}, \quad (33)
\]

\[
D(\cdot) = \begin{pmatrix}
0 & \frac{J_{TP}}{I_x} \varphi_5 & \frac{J_{TP}}{I_y} \varphi_5 + \frac{lb(2 + \Delta f_3)}{I_y} \varphi_4 & \frac{J_{TP}}{I_x} \varphi_7 + \frac{lb(2 + \Delta f_2)}{I_x} \varphi_6 & \frac{J_{TP}}{I_x} \varphi_7 \\
\frac{J_{TP}}{I_y} \varphi_5 & 0 & \frac{d(2 + \Delta f_1)}{I_x} \varphi_4 & \frac{J_{TP}}{I_y} \varphi_7 & 0 \\
\frac{d(2 + \Delta f_1)}{I_x} \varphi_4 & 0 & 0 & \frac{d(2 + \Delta f_2)}{I_x} \varphi_6 & 0 \\
\frac{b(2 + \Delta f_3)}{m} \varphi_4 \varphi_{12} & \frac{b(2 + \Delta f_3)}{m} \varphi_6 \varphi_{12} & 0 & 0 & \frac{J_{TP}}{I_x} \varphi_9 \\
\frac{J_{TP}}{I_y} \varphi_9 & \frac{J_{TP}}{I_x} \varphi_9 & \frac{J_{TP}}{I_y} \varphi_9 & 0 & \frac{J_{TP}}{I_x} \varphi_9 \\
\frac{J_{TP}}{I_y} \varphi_9 & \frac{J_{TP}}{I_x} \varphi_9 & \frac{J_{TP}}{I_y} \varphi_9 & 0 & \frac{J_{TP}}{I_x} \varphi_9 \\
\frac{b(2 + \Delta f_3)}{m} \varphi_8 \varphi_{12} & \frac{b(2 + \Delta f_3)}{m} \varphi_8 \varphi_{12} & \frac{b(2 + \Delta f_3)}{m} \varphi_8 \varphi_{12} & 0 & 0 \\
\frac{d(2 + \Delta f_3)}{I_x} \varphi_8 & \frac{d(2 + \Delta f_3)}{I_x} \varphi_8 & \frac{d(2 + \Delta f_3)}{I_x} \varphi_8 & 0 & 0 \\
\frac{b(2 + \Delta f_3)}{m} \varphi_8 \varphi_{12} & \frac{b(2 + \Delta f_3)}{m} \varphi_8 \varphi_{12} & \frac{b(2 + \Delta f_3)}{m} \varphi_8 \varphi_{12} & 0 & 0 \\
\end{pmatrix}, \quad (34)
\]
dimensions. Moreover, consider the additional algebraic equation
\[h(t) = C(\vartheta(t)) \varepsilon(t) + Eo(t) + F(\vartheta(t)) \Delta f(t) \]
(40)
where \(h \in \mathbb{R}^m \) is a vector of output signals related to the \(H_\infty \) performance of the control system, and \(C(\vartheta(t)), E, F(\vartheta(t)) \) are matrices of appropriate dimensions. The system state-space matrices take values inside a polytope as follows:

\[
\begin{pmatrix}
A(\vartheta(t)) \\
C(\vartheta(t)) \\
D(\vartheta(t)) \\
F(\vartheta(t))
\end{pmatrix} = \sum_{i=1}^{N} \alpha_i(\vartheta(t)) \begin{pmatrix}
A_i \\
C_i \\
D_i \\
F_i
\end{pmatrix},
\]
(41)
with
\[
\sum_{i=1}^{N} \alpha_i(\vartheta(t)) = 1, \quad \alpha_i(\vartheta(t)) \geq 0,
\]
\(\forall i = 1, \ldots, N, \vartheta \in \Theta \).
(42)

The matrices \(A_i, C_i, D_i, F_i \) denote the vertices of \(A(\vartheta(t)), C(\vartheta(t)), D(\vartheta(t)), F(\vartheta(t)) \) at the \(i \)-th vertex of the polytope. Each of these matrices, together with \(B \) and \(E \), is uncertain, with an uncertainty that can be described as well in a polytopic way by \(M \) LTI systems as follows:

\[
\begin{pmatrix}
A_i \\
B_i \\
C_i \\
D_i \\
E \\
F_i
\end{pmatrix} = \sum_{j=1}^{M} \eta_{ij} \begin{pmatrix}
A_{ij} \\
B_{ij} \\
C_{ij} \\
D_{ij} \\
E_{ij} \\
F_{ij}
\end{pmatrix},
\]
(43)
with
\[
\sum_{j=1}^{M} \eta_{ij} = 1, \quad \eta_{ij} \geq 0,
\]
\(i = 1, \ldots, N, \quad j = 1, \ldots, M \).
(44)

The goal is to compute a polytopic LPV state-feedback control law:
\[\alpha(t) = K(\vartheta(t)) \varepsilon(t) = \sum_{i=1}^{N} \alpha_i(\vartheta(t)) K_i \varepsilon(t) \]
(45)
that meets an \(H_\infty \) performance constraint and a regional pole placement constraint on the closed-loop behaviour. These specifications must be satisfied in the robust LPV sense, that is, for each possible value that the parameter \(\vartheta \) and the uncertain matrices \(A, \ldots, F \) in (39) and (40) can take. In order to achieve this goal, the following theorem, namely, an extension of the results obtained by Chilali and Gahinet (1996), is used.

Theorem 1. Let \(\mathcal{D} \) be an LMI region:
\[\mathcal{D} = \{ z \in \mathbb{C} : f_\mathcal{D}(z) < 0 \} \]
(46)
with the characteristic function
\[f_\mathcal{D}(z) = \alpha + z\beta + z\beta^T \]
\[
= [\alpha_{kl} + \beta_{kl}z + \beta_{lk}z^T]_{k,l \in [1,m]},
\]
and \(\gamma > 0 \) being an upper bound on the closed-loop \(H_\infty \) performance. Assume that there exist a single Lyapunov matrix \(X = X^T > 0 \) and \(N \) matrices \(\Gamma_i \) such that the following system of LMIs is feasible:
\[
[\alpha_{kl}X + \beta_{kl}U_{ij}(X,\Gamma_i) + \beta_{lk}(X,\Gamma_i^T)]_{k,l \in [1,m]} < 0,
\]
(48)
with
\[
U_{ij}(X,\Gamma_i) + U_{ij}(X,\Gamma_i)^T - \frac{D_{ij}}{F_{ij}} V_{ij}(X,\Gamma_i)^T - \frac{\gamma^2}{\delta^2} I \]
(49)
\[
U_{ij}(X,\Gamma_i) = A_{ij} + B_{ij} \Gamma_i,
\]
(50)
Notice that, following Ghersin and Sanchez-Peña (2002) and with a little abuse of language, the poles of an LPV system are defined as the set of all the poles of the LTI systems obtained by freezing \(\vartheta(t) \) to all its possible values \(\vartheta \in \Theta \).
Then, if \((X^*, \Gamma^*_i) \), \(i = 1, \ldots, N \), is a solution of (43) and (49), the LPV state-feedback controller (45), with vertex gains calculated as \(K_i = \Gamma_i^*(X^*)^{-1} \), satisfies the pole placement in \(\mathcal{D} \) constraint and the \(\mathcal{H}_\infty \) performance bound \(\gamma \) in the robust LPV sense.

Proof. The pole placement in the \(\mathcal{D} \) constraint and the \(\mathcal{H}_\infty \) performance bound \(\gamma \) are satisfied in the robust LPV sense if the following conditions hold, \(\forall \vartheta \in \Theta \):

\[
\begin{align*}
[\alpha_k X + \beta_k U(X, \Gamma(\vartheta(t))) + \beta_k U(X, \Gamma(\vartheta(t)))^T]_{k,l \in [1,m]} &< 0, \quad (52) \\
\begin{pmatrix}
U(X, \Gamma(\vartheta(t))) + U(X, \Gamma(\vartheta(t)))^T & D(\vartheta(t))^T \\
V(X, \Gamma(\vartheta(t))) & V(X, \Gamma(\vartheta(t)))^T \\
D(\vartheta(t)) & D(\vartheta(t))^T \\
I & -\gamma^2 I \\
F(\vartheta(t)) & F(\vartheta(t))^T \\
\end{pmatrix} &< 0.
\end{align*}
\quad (53)
\]

These conditions are a consequence of the theorems presented by Chilali and Gahinet (1996).

where

\[
\begin{align*}
U(X, \Gamma(\vartheta(t))) &= A(\vartheta(t))X + B\Gamma(\vartheta(t)) , \quad (54) \\
V(X, \Gamma(\vartheta(t))) &= C(\vartheta(t))X + E\Gamma(\vartheta(t)) . \quad (55)
\end{align*}
\]

Taking into account (41)–(55), (52) can be rewritten as

\[
\begin{pmatrix}
\alpha_k X + \beta_k \left(\sum_{j=1}^{M} \alpha_j(\vartheta(t)) \sum_{i=1}^{N} \eta_{ij}A_{ij}X + \sum_{j=1}^{M} \eta_{ij}B_{ij} \right) \\
\beta_k \left(\sum_{j=1}^{M} \alpha_j(\vartheta(t)) \sum_{i=1}^{N} \eta_{ij}A_{ij}^T \right) \\
\beta_k \left(\sum_{j=1}^{M} \alpha_j(\vartheta(t)) \sum_{i=1}^{N} \eta_{ij}B_{ij}^T \right) \\
\end{pmatrix}_{k,l \in [1,m]} < 0,
\quad (56)
\]

which can be rewritten as

\[
\sum_{i=1}^{N} \alpha_i(\vartheta(t)) \sum_{j=1}^{M} \eta_{ij} \Phi_{ij}^T < 0,
\quad (57)
\]
with

\[
\Phi_{ij}^D = \left[\alpha_{kl} X + \beta_{kl} (A_{ij} X + B_{ij} \Gamma_i) + \beta_{lk} (A_{ij} X + B_{ij} \Gamma_i)^T \right]_{k,l \in [1,m]} \tag{58}
\]

Similarly, (53) can be brought to the following form:

\[
\sum_{i=1}^{N} \alpha_i (\vartheta(t)) \sum_{j=1}^{M} \eta_{ij} \Phi_{ij}^\infty < 0, \tag{59}
\]

with

\[
\Phi_{ij}^\infty = \begin{pmatrix}
U_{ij} (X, \Gamma_i) + U_{ij} (X, \Gamma_i)^T \\
V_{ij} (X, \Gamma_i) \\
-1 & F_{ij}^T \\
F_{ij} & -\gamma^2 I
\end{pmatrix} \tag{60}
\]

From the basic property of matrices (Horn and Johnson, 1990) that any linear combination of positive (resp. negative) definite matrices with non-negative coefficients, whose sum is positive, is positive (resp. negative) definite, (48) and (49) are obtained, and this completes the proof.

Notice that the hypothesis of fixed matrices \(B\) and \(E\) has been done. In many cases, this is not true and a prefiltering of the input \(o(t)\) is needed in order to obtain a new system with constant matrices \(B\) and \(E\); as proposed by Apkarian et al. (1995). More specifically, defining a new control input \(\tilde{o}(t)\) such that

\[
\dot{x}_o(t) = A_o (\vartheta(t)) x_o(t) + B_o \tilde{o}(t),
\]

(61)

\[
o(t) = C_o x_o(t),
\]

(62)

with \(A_o (\vartheta(t))\) being stable, the resulting LPV plant is described by

\[
\begin{pmatrix}
\dot{\vartheta}(t) \\
\dot{x}_o(t)
\end{pmatrix} =
\begin{pmatrix}
A(\vartheta(t)) & B(\vartheta(t)) C_o \\
0 & A_o
\end{pmatrix}
\begin{pmatrix}
\vartheta(t) \\
x_o(t)
\end{pmatrix} +
\begin{pmatrix}
0 \\
B_o
\end{pmatrix} \tilde{o}(t) +
\begin{pmatrix}
D(\vartheta(t)) \\
0
\end{pmatrix} \Delta f(t),
\]

(63)

\[
h(t) =
\begin{pmatrix}
C(\vartheta(t)) & E(\vartheta(t)) C_o
\end{pmatrix}
\begin{pmatrix}
\vartheta(t) \\
x_o(t)
\end{pmatrix} +
F(\vartheta(t)) \Delta f(t).
\]

(64)

4. Reference inputs calculation for trajectory tracking

To make the quadrotor track a desired trajectory, proper values of \(\Omega_{1r}, \Omega_{2r}, \Omega_{3r}, \Omega_{4r}\) should be fed to the reference model, such that its state equals the one corresponding to the desired trajectory.

Here, for illustrative purposes, the case of sinusoidal trajectories is considered as follows

\[
\phi_r(t) = \Phi \sin \left(\frac{2\pi t}{N_\phi} \right),
\]

(65)

\[
\theta_r(t) = \Theta \sin \left(\frac{2\pi t}{N_\theta} \right),
\]

(66)

\[
\psi_r(t) = \Psi \sin \left(\frac{2\pi t}{N_\psi} \right),
\]

(67)

\[
z_r(t) = Z \sin \left(\frac{2\pi t}{N_z} \right),
\]

(68)

where \(\Phi, \Theta, \Psi, Z\) are the amplitudes, and \(N_\phi, N_\theta, N_\psi, N_z\) are the periods. Taking the derivatives of (65)–(68) and considering (13), (14), (16), (18), respectively, the following is obtained:

\[
\dot{\phi}_r(t) = \dot{\phi}_o(t) = \Phi \cos \left(\frac{2\pi t}{N_\phi} \right) \left(\frac{2\pi}{N_\phi} \right),
\]

(69)

\[
\dot{\theta}_r(t) = \dot{\theta}_o(t) = \Theta \cos \left(\frac{2\pi t}{N_\theta} \right) \left(\frac{2\pi}{N_\theta} \right),
\]

(70)

\[
\dot{\psi}_r(t) = \dot{\psi}_o(t) = \Psi \cos \left(\frac{2\pi t}{N_\psi} \right) \left(\frac{2\pi}{N_\psi} \right),
\]

(71)

\[
\dot{z}_r(t) = \dot{z}_o(t) = Z \cos \left(\frac{2\pi t}{N_z} \right) \left(\frac{2\pi}{N_z} \right),
\]

(72)

Then, another differentiation of (69)–(72) leads to

\[
\ddot{\phi}_r(t) = \ddot{\phi}_o(t) = -\Phi \left(\frac{2\pi}{N_\phi} \right)^2 \sin \left(\frac{2\pi t}{N_\phi} \right),
\]

(73)

\[
\ddot{\theta}_r(t) = \ddot{\theta}_o(t) = -\Theta \left(\frac{2\pi}{N_\theta} \right)^2 \sin \left(\frac{2\pi t}{N_\theta} \right),
\]

(74)

\[
\ddot{\psi}_r(t) = \ddot{\psi}_o(t) = -\Psi \left(\frac{2\pi}{N_\psi} \right)^2 \sin \left(\frac{2\pi t}{N_\psi} \right),
\]

(75)

\[
\ddot{z}_r(t) = \ddot{z}_o(t) = -Z \left(\frac{2\pi}{N_z} \right)^2 \sin \left(\frac{2\pi t}{N_z} \right),
\]

(76)

and, by properly replacing (69)–(76) into (13), (14), (16) and (19), and taking into account (55)–(59), we obtain

\[
\dot{\Theta} \cos \left(\frac{2\pi t}{N_\phi} \right) \left(\frac{2\pi}{N_\phi} \right) + \dot{\Theta} \cos \left(\frac{2\pi t}{N_\theta} \right) \left(\frac{2\pi}{N_\theta} \right) - \frac{J_{TRP}}{I_x} \dot{\vartheta}(f_{2r} \Omega_{2r} + f_{4r} \Omega_{4r} - f_{1r} \Omega_{1r} - f_{3r} \Omega_{3r}) + \frac{J_{TRP}}{I_x} \left[f_{2r}^2 (\Omega_{2r}^2 - \alpha_4) \Omega_{2r} - f_{2r}^2 (\Omega_{2r} - \alpha_2) \Omega_{2r} \right] + \Phi \left(\frac{2\pi}{N_\phi} \right)^2 \sin \left(\frac{2\pi t}{N_\phi} \right) = 0.
\]

(77)
Adding the states of the input matrix

\[\dot{\psi} \cos \left(\frac{2\pi t}{N_\phi} \right) \left(\frac{2\pi I_z - I_x}{N_\phi} \right) + \dot{\phi} \cos \left(\frac{2\pi t}{N_\phi} \right) \left(\frac{2\pi I_x - I_y}{N_\phi} \right) \]

\[+ \phi \theta \cos \left(\frac{2\pi t}{N_\phi} \right) \left(\frac{2\pi I_x - I_y}{N_\phi} \right) \]

\[+ \frac{1}{I_y} \left[\frac{f_2^2}{\Omega_{2r} - \omega_2} \Omega_{2r} + \frac{f_4^2}{\Omega_{4r} - \omega_4} \Omega_{4r} - \frac{f_1^2}{\Omega_{1r} - \omega_1} \Omega_{1r} \right] \]

\[+ \Theta \left(\frac{2\pi t}{N_\phi} \right)^2 \sin \left(\frac{2\pi t}{N_\phi} \right) = 0. \]

(78)

\[\frac{b \cos \phi \cos \theta}{m} \left[\frac{f_2^2}{\Omega_{1r} - \omega_1} \Omega_{1r} + \frac{f_4^2}{\Omega_{4r} - \omega_4} \Omega_{4r} \right] \]

\[+ \frac{b \cos \phi \cos \theta}{m} \left[\frac{f_2^2}{\Omega_{3r} - \omega_3} \Omega_{3r} + \frac{f_4^2}{\Omega_{4r} - \omega_4} \Omega_{4r} \right] \]

\[- g + Z \left(\frac{2\pi t}{N_\phi} \right)^2 \sin \left(\frac{2\pi t}{N_z} \right) = 0. \]

(79)

Given \(\dot{\phi}, \dot{\theta}, \psi \) (measured), \(f_1, f_2, f_3, f_4 \) (estimated), and \(\omega_1, \omega_2, \omega_3, \omega_4 \) (obtained using (45)), we get (77)–(80) as a system of nonlinear equations with unknown variables \(\Omega_{1r}, \Omega_{2r}, \Omega_{3r}, \Omega_{4r} \) that can be solved using some appropriate solver, e.g., f.solve in the Matlab Optimization Toolbox (Coleman et al., 1999).

Notice that when the passive FTC reference model is considered, i.e., (20)–(24), the changes \(f_i \to 1, i = 1, 2, 3, 4 \) should be introduced in (77)–(80).

5. Results

The results presented in this section compare the proposed FTC strategies. As already discussed in Section 3 since the input matrix \(B \) is not constant, a prefiltering of the inputs is needed to obtain a constant input matrix \(\tilde{B} \). Adding the states \(x_{o_2}, x_{o_3}, x_{o_4} \) and \(x_{o_5} \) to the error vector such that \(\bar{o}_i(t) = x_{o_i}(t) \), this corresponds to the case \(C_0 = I \) in (62), with the state equation (61) given by

\[\dot{x}_{o_i}(t) = -\omega_i x_{o_i}(t) + \omega_i \bar{o}_i(t), \]

where \(\bar{o}_i(t), i = 1, \ldots, 4 \) are the new inputs, and \(\omega_i \) has been chosen as \(\omega_i = 100, i = 1, \ldots, 4 \).

The polytopic approximation (41) of the quadrotor quasi-LPV passive FTC error model (30)–(34) was obtained by considering

\[\vartheta_1 \in \left[\min(\omega), \max(\omega) \right] = [-0.25, 0.25], \]

(82)

\[\vartheta_2 \in \left[\min(\theta), \max(\theta) \right] = [-0.25, 0.25], \]

(83)

\[\vartheta_3 \in \left[\min(\psi), \max(\psi) \right] = [-0.25, 0.25], \]

(84)

\[\left(\begin{array}{c} \vartheta_{2i+2} \\ \vartheta_{2i+3} \end{array} \right) \in \text{Tr} \left\{ \left(\begin{array}{c} \min(\Omega_i) \\ \max(\Omega_i) \end{array} \right) \right\}, \]

(85)

with \(\min(\Omega_i) = 100, \max(\Omega_i) = 500, i = 1, 2, 3, 4 \), and where ‘Tr’ denotes a triangular polytopic approximation, which was preferred to a bounding box one in order to reduce the conservativeness. Finally, \(\vartheta_8 \in [0.5, 1] \), which corresponds to the interval of possible values of \(\vartheta_8 \) when \(\phi \in [-\pi/4, \pi/4] \) and \(\theta \in [-\pi/4, \pi/4] \).

The polytopic approximation (41) of the quadrotor quasi-LPV active FTC error model (35)–(37) was obtained by considering

\[\vartheta_1 \in \left[\min(\omega), \max(\omega) \right] = [-0.25, 0.25], \]

(86)

\[\vartheta_2 \in \left[\min(\theta), \max(\theta) \right] = [-0.25, 0.25], \]

(87)

\[\vartheta_3 \in \left[\min(\psi), \max(\psi) \right] = [-0.25, 0.25], \]

(88)

\[\vartheta_{i+3} \in \left[\min(\Omega_i), \max(\Omega_i) \right] = [100, 500], \]

(89)

\[i = 1, 2, 3, 4, \]

\[\left(\begin{array}{c} \vartheta_{2i+6} \\ \vartheta_{2i+7} \end{array} \right) \in \text{Tr} \left\{ \left(\begin{array}{c} \min(f_i)^2 \\ \max(f_i)^2 \end{array} \right), \left(\begin{array}{c} \min(f_i) \\ \max(f_i) \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right\}, \]

(90)

\[\vartheta_{16} \in [0.5, 1]. \]

(91)

Similar considerations were applied to the quadrotor quasi-LPV hybrid FTC error model for obtaining its polytopic approximation. In particular, the results presented hereafter were obtained considering \(\min(f_i) = 0.7 \).

The passive/active/hybrid controllers were designed using (45)–(49), to assure stability and pole clustering in:

\[D = \left\{ z \in \mathbb{C} : \text{Re}(z) < -0.5, \text{Re}(z)^2 + \text{Im}(z)^2 < 10000, \tan(0.3)\text{Re}(z) < -|\text{Im}(z)| \right\}. \]

(92)
and an H_∞ performance bound $\gamma = 1000$, and considering $h(t) = [\phi \theta \psi z]^T$ in (40).

It must be remarked that, due to the exponential growth of the vertices with the number of faults taken into consideration ($2^5 \times 3^4$ vertices in the passive and active FTC cases, $2^8 \times 3^2$ in the hybrid FTC case, where i is the number of considered faults), the time needed to solve the LMIs grows exponentially, too. However, the strong calculating capacity available nowadays and the fact that the controller design is performed off-line and only the coefficients of the polytopic decomposition must be calculated on-line make this issue less critical.

The results shown in this paper refer to simulations which last 30 s, where the quadrotor is driven from the initial state:

$$\phi(0) = \frac{\pi}{6}, \quad \theta(0) = \frac{\pi}{6}, \quad \psi(0) = \frac{\pi}{6}, \quad z(0) = 0,$$

$$\dot{\phi}(0) = 0, \quad \dot{\theta}(0) = 0, \quad \dot{\psi}(0) = 0, \quad \dot{z}(0) = 0$$

to the desired trajectory defined as in (77)–(80), with $\Phi = \Theta = \Psi = 0$, $Z = 0$, $N_\phi = N_\theta = N_\psi = N_z = 10$ s. The desired trajectory was generated by the reference model (12)–(19) starting from the initial reference state:

$$\left(\phi_r(0), v_r(0), \theta_r(0), v_\theta(0), \psi_r(0), v_\psi(0), z_r(0), v_z(0)\right)^T = (0, 2\pi\Phi/N_\phi, 0, 2\pi\Theta/N_\theta, 0, 2\pi\Psi/N_\psi, 0, 2\pi Z/N_z)^T$$

Figures 3 and 4 present a comparison between the responses obtained with a nominal controller and the ones obtained with the proposed passive FTC approach. A fault in the first actuator acts starting from the time instant $t = 15$ s. It can be seen that even a small fault, e.g., $f_1 = 0.9$, is enough to drive the system to instability if the nominal controller is used. On the other hand, passive FTC shows some tolerance capability since, for $f_1 = 0.8$ and $f_1 = 0.9$, the stability is preserved, although with a steady-state error due to the effect of the fault.

On the other hand, the proposed active FTC technique can achieve perfect fault tolerance as long as the fault is correctly estimated, as shown in Figs. 3 and 4 (black solid line), where a fault $f_1 = 0.7$ acting from $t = 15$ s is considered. However, as the uncertainty in fault estimation (in this work modeled as a uniformly bounded noise) increases, so does the error between the real trajectory and the reference one.

By applying the proposed hybrid FTC method, the overall performance can be improved, thus reducing the effect that the fault estimation error has on the closed-loop response, as shown in Figs. 5 and 6.

In order to quantitively numerically the improvement brought by the FTC strategies considered, let us introduce the following performance measures:

$$J_\phi = \frac{1}{1500} \sum_{k=1500}^{3000} \left(\phi_r \left(\frac{k}{100} \right) - \phi \left(\frac{k}{100} \right) \right)^2,$$ (93)

$$J_\theta = \frac{1}{1500} \sum_{k=1500}^{3000} \left(\theta_r \left(\frac{k}{100} \right) - \theta \left(\frac{k}{100} \right) \right)^2,$$ (94)

$$J_\psi = \frac{1}{1500} \sum_{k=1500}^{3000} \left(\psi_r \left(\frac{k}{100} \right) - \psi \left(\frac{k}{100} \right) \right)^2,$$ (95)

$$J_z = \frac{1}{1500} \sum_{k=1500}^{3000} \left(z_r \left(\frac{k}{100} \right) - z \left(\frac{k}{100} \right) \right)^2,$$ (96)

$$J = J_\phi + J_\theta + J_\psi + J_z.$$ (97)

A comparison of the performance measures obtained in the different cases, as given in Table 3, shows the improvement brought by the proposed FTC strategies with respect to the nominal one, as well as the one brought by hybrid FTC with respect to the passive and active FTC strategies.
In particular, three kinds of strategies can be used: (i) different error models suitable for FTC can be obtained. By defining two reference models, we can estimate the fault and the perturbation. In this paper, a solution for FTC of a quadrotor UAV has been proposed. By defining two reference models, relevant features of the proposed FTC strategy, which is robust against bounded uncertainties, satisfying some limited tolerance capability, resulting in the appearance of steady-state errors due to the fault effect, the active FTC technique can achieve perfect fault tolerance as long as the fault is correctly estimated. However, as the uncertainty in fault estimation increases, so does the error between the real trajectory and the reference one. By applying the proposed hybrid FTC method, the overall performance can be improved, thus reducing the effect that the fault estimation error has on the closed-loop response. The introduction and comparison of some performance measures have allowed to numerically confirm such analysis.

Future research will be aimed at applying the proposed FTC strategy to a real set-up. This goal brings additional challenges, due to the presence of many sources of uncertainties that must be taken into account in order to enforce the robustness of the FTC strategy. Moreover, as remarked in the introduction, the inclusion of an FDI module can allow increasing the obtainable performance. FTC technique can achieve perfect fault tolerance as long as the fault is correctly estimated. However, as the uncertainty in fault estimation increases, so does the error between the real trajectory and the reference one. By applying the proposed hybrid FTC method, the overall performance can be improved, thus reducing the effect that the fault estimation error has on the closed-loop response. The introduction and comparison of some performance measures have allowed to numerically confirm such analysis.

6. Conclusions

In this paper, a solution for FTC of a quadrotor UAV has been proposed. By defining two reference models, different error models suitable for FTC can be obtained. In particular, three kinds of strategies can be used: (i) passive FTC, where faults are dealt with as though they were exogenous perturbations, (ii) active FTC, where the controller is scheduled by the fault estimation, and (iii) hybrid FTC, which combines the characteristics of passive and active FTC.

Controller design is performed within the robust LPV framework, where an LPV controller is designed to be scheduled by the vector of varying parameters and to be robust against bounded uncertainties, satisfying some conditions expressed as LMIs. The results presented in the paper have shown the relevant features of the proposed FTC strategy, which is able to improve the performances under fault occurrence. In particular, whereas the passive FTC shows some limited tolerance capability, resulting in the appearance of steady-state errors due to the fault effect, the active FTC technique can achieve perfect fault tolerance as long as the fault is correctly estimated. However, as the uncertainty in fault estimation increases, so does the error between the real trajectory and the reference one. By applying the proposed hybrid FTC method, the overall performance can be improved, thus reducing the effect that the fault estimation error has on the closed-loop response. The introduction and comparison of some performance measures have allowed to numerically confirm such analysis.

Future research will be aimed at applying the proposed FTC strategy to a real set-up. This goal brings additional challenges, due to the presence of many sources of uncertainties that must be taken into account in order to enforce the robustness of the FTC strategy. Moreover, as remarked in the introduction, the inclusion of an FDI module can allow increasing the obtainable performance. Thus, further research will investgate FTC (as well as fault estimation) algorithms that can be successfully applied to quadrotor UAVs.
Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

Fig. 7. Roll angle response (active FTC without and with uncertainty, $f_1 = 0.7$).

Fig. 8. Pitch angle response (active FTC without and with uncertainty, $f_1 = 0.7$).

Fig. 9. Yaw angle response (active FTC without and with uncertainty, $f_1 = 0.7$).

Fig. 10. Height response (active FTC without and with uncertainty, $f_1 = 0.7$).

Acknowledgment

This work has been funded by the Spanish MINECO through the project CICYT SHERECS (ref. DPI2011-26243), by the European Commission through the contract i-Sense (ref. FP7-ICT-2009-6-270428), by AGAUR through the contracts FI-DGR 2013 (ref. 2013FI00218) and FI-DGR 2014 (ref. 2014FI_B1 00172), and by the DGR of Generalitat de Catalunya (SAC group ref. 2014/SGR/374).

References

Fig. 11. Roll angle response (comparison between active FTC and hybrid FTC, $f_1 = 0.7$).

Fig. 12. Pitch angle response (comparison between active FTC and hybrid FTC, $f_1 = 0.7$).

Fig. 13. Yaw angle response (comparison between active FTC and hybrid FTC, $f_1 = 0.7$).

Fig. 14. Height response (comparison between active FTC and hybrid FTC, $f_1 = 0.7$).

Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

Damiano Rotondo was born in Francavilla Fontana, Italy, in 1987. He received the B.Sc. degree (with honors) from the Second University of Naples, Italy, and the M.Sc. degree (with honors) from the University of Pisa, Italy, in 2008 and 2011, respectively. Since 2011, he has been a Ph.D. student at the Research Center for Supervision, Safety and Automatic Control (CS2AC), Technical University of Catalonia (UPC), Barcelona, Spain. His main research interests include LPV systems, fault detection and isolation, and fault tolerant control of dynamic systems. He has published several papers in international conference proceedings and scientific journals.

Fatiha Nejjarı received the M.Sc. in physics from Hassan II University, Casablanca, Morocco, in 1993 and the Ph.D. in automatic control from Cadi Ayyad University, Marrakech, Morocco, in 1997. She is currently an associate professor with the Department of Automatic Control, Universitat Politècnica de Catalunya (UPC). She is also a member of the Advanced Control Systems (SAC) research group of the Research Center for Supervision, Safety and Automatic Control (CS2AC) at UPC. Her main research areas include LPV control, fault detection and isolation, and fault tolerant control of dynamic systems. She has published several papers in journals and international conferences and participated in several European projects and networks related to these topics.

Vicenç Puig was born in Girona, Spain, in 1969, received the Ph.D. degree in control engineering in 1999 and the telecommunications engineering degree in 1993, both from Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. He is currently an associate professor of automatic control and the leader of the Advanced Control Systems (SAC) research group of the Research Center for Supervision, Safety and Automatic Control (CS2AC) at UPC. His main research interests are fault detection, isolation of fault-tolerant control of dynamic systems. He has been involved in several European projects and networks, and has published many papers in international conference proceedings and scientific journals.

Received: 18 January 2014
Revised: 22 April 2014